首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.  相似文献   

2.
Pulsatile flow was studied in physiologically realistic models of a normal and a moderately stenosed (30% diameter reduction) human carotid bifurcation. Time-resolved velocity measurements were made using magnetic resonance imaging, from which wall shear stress (WSS) vectors were calculated. Velocity measurements in the inflow and outflow regions were also used as boundary conditions for a computational fluid dynamics (CFD) model. Experimental flow patterns and derived WSS vectors were compared qualitatively with the corresponding CFD predictions. In the stenosed phantom, flow in the bulb region of the "internal carotid artery" was concentrated along the outer wall, with a region of low and recirculating flow near the inner wall. In the normal phantom, the converse was found, with a low flow region near the outer wall of the bulb. Time-averaged WSS and oscillatory shear index were also markedly different for the two phantoms.  相似文献   

3.
To study the effects of intraventricular flow dynamics on the aortic flow, we created an integrated model of the left ventricle and aorta and conducted a computer simulation of diastolic and systolic blood flow within this model. The results demonstrated that the velocity profile at the aortic annulus changed dynamically, and was influenced by the intraventricular flow dynamics. The profile was almost flat in early systole but became nonuniform as systole progressed, and was skewed toward the posterior side in midsystole and toward the anterior side in later systole. At a distance from the aortic annulus, a different velocity profile was induced by the twisting and torsion of the aorta. In the ascending aorta, the fastest flow was initially located in the posteromedial sector, and it moved to the posterior section along the circumference as systole progressed. The nonuniformity of the aortic inflow gave rise to a complex wall shear stress (WSS) distribution in the aorta. A comparison of the WSS distribution obtained in this integrated analysis with that obtained in flow calculations using an isolated aorta model with Poiseuille and flat inlet conditions showed that intraventricular flow affected the WSS distribution in the ascending aorta. These results address the importance of an integrated analysis of flow in the left ventricle and aorta.  相似文献   

4.
D Liepsch  S Moravec  R Baumgart 《Biorheology》1992,29(5-6):563-580
Flow studies were done in an elastic true-to-scale silicone rubber model of an aortic arch to study further hemodynamic influences on atherosclerosis. The model was prepared from a cast of a young woman. A revised model technique was used. The model had a compliance similar to that of the human aortic arch. Velocity measurements were done in the model with a two component laser-Doppler-anemometer in steady and pulsatile flow using a calcium chloride solution with a viscosity of eta = 3.18 mPas and density of rho = 1.28 kg/m3 at 20 degrees C. The time average Reynolds numbers over a whole cycle in the ascending aorta was Re = 1350. The Womersley parameter for pulsatile flow was a = 20. The pulse wave velocity in the ascending aorta was about c = 5.4 m/sec. The secondary flow behavior was discussed for steady and pulsatile flow. Reverse flows were found, especially along the inner radius of the aortic arch in the descending aorta in steady and pulsatile flow and also in small areas of the ascending aorta and at the branches of the aortic arch. The formation of atherosclerotic plaques at preferred local flow regions is discussed.  相似文献   

5.
Blood flow in human arteries has been investigated using computational fluid dynamics tools. This paper considers flow modeling through three aorta models reconstructed from cross-sectional magnetic resonance scans of female patients. One has the normal control configuration, the second has elongation of the transverse aorta, and the third has tortuosity of the aorta with stenosis. The objective of this study is to determine the impact of aortic abnormal geometries on the wall shear stress (WSS), luminal surface low-density lipoproteins (LDLs) concentration, and oxygen flux along the arterial wall. The results show that the curvature of the aortic arch and the stenosis have significant effects on the blood flow, and in turn, the mass transport. The location of hypoxia areas can be predicted well by ignoring the effect of hemoglobin on the oxygen transport. However, this simplification indeed alters the absolute value of Sherwood number on the wall.  相似文献   

6.
7.
The patchy distribution of atherosclerosis within arteries is widely attributed to local variation in haemodynamic wall shear stress (WSS). A recently-introduced metric, the transverse wall shear stress (transWSS), which is the average over the cardiac cycle of WSS components perpendicular to the temporal mean WSS vector, correlates particularly well with the pattern of lesions around aortic branch ostia. Here we use numerical methods to investigate the nature of the arterial flows captured by transWSS and the sensitivity of transWSS to inflow waveform and aortic geometry. TransWSS developed chiefly in the acceleration, peak systolic and deceleration phases of the cardiac cycle; the reverse flow phase was too short, and WSS in diastole was too low, for these periods to have a significant influence. Most of the spatial variation in transWSS arose from variation in the angle by which instantaneous WSS vectors deviated from the mean WSS vector rather than from variation in the magnitude of the vectors. The pattern of transWSS was insensitive to inflow waveform; only unphysiologically high Womersley numbers produced substantial changes. However, transWSS was sensitive to changes in geometry. The curvature of the arch and proximal descending aorta were responsible for the principal features, the non-planar nature of the aorta produced asymmetries in the location and position of streaks of high transWSS, and taper determined the persistence of the streaks down the aorta. These results reflect the importance of the fluctuating strength of Dean vortices in generating transWSS.  相似文献   

8.
Chen J  Lu XY 《Journal of biomechanics》2004,37(12):1899-1911
The non-Newtonian fluid flow in a bifurcation model with a non-planar daughter branch is investigated by using finite element method to solve the three-dimensional Navier–Stokes equations coupled with a non-Newtonian constitutive model, in which the shear thinning behavior of the blood fluid is incorporated by the Carreau–Yasuda model. The objective of this study is to investigate the influence of the non-Newtonian property of fluid as well as of curvature and out-of-plane geometry in the non-planar daughter vessel on wall shear stress (WSS) and flow phenomena. In the non-planar daughter vessel, the flows are typified by the skewing of the velocity profile towards the outer wall, creating a relatively low WSS at the inner wall. In the downstream of the bifurcation, the velocity profiles are shifted towards the flow divider. The low WSS is found at the inner walls of the curvature and the lateral walls of the bifurcation. Secondary flow patterns that swirl fluid from the inner wall of curvature to the outer wall in the middle of the vessel are also well documented for the curved and bifurcating vessels. The numerical results for the non-Newtonian fluid and the Newtonian fluid with original Reynolds number and the corresponding rescaled Reynolds number are presented. Significant difference between the non-Newtonian flow and the Newtonian flow is revealed; however, reasonable agreement between the non-Newtonian flow and the rescaled Newtonian flow is found. Results of this study support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

9.
Three non-Newtonian blood viscosity models plus the Newtonian one are analysed for a patient-specific thoracic aorta anatomical model under steady-state flow conditions via wall shear stress (WSS) distribution, non-Newtonian importance factors, blood viscosity and shear rate. All blood viscosity models yield a consistent WSS distribution pattern. The WSS magnitude, however, is influenced by the model used. WSS is found to be the lowest in the vicinity of the three arch branches and along the distal walls of the branches themselves. In this region, the local non-Newtonian importance factor and the blood viscosity are elevated, and the shear rate is low. The present study revealed that the Newtonian assumption is a good approximation at mid-and-high flow velocities, as the greater the blood flow, the higher the shear rate near the arterial wall. Furthermore, the capabilities of the applied non-Newtonian models appeared at low-flow velocities. It is concluded that, while the non-Newtonian power-law model approximates the blood viscosity and WSS calculations in a more satisfactory way than the other non-Newtonian models at low shear rates, a cautious approach is given in the use of this blood viscosity model. Finally, some preliminary transient results are presented.  相似文献   

10.
An experimental investigation of an elastic model of the human arterial tree, has been performed for physiological type flow by pulsed Doppler ultrasonic velocimetry. The arterial tree model, fabricated in clear polyurethane, includes the aortic arch, with a Starr-Edwards ball valve mounted in the root of the aorta, the descending aorta and the iliac bifurcation. Our study showed that the velocity profile, a few centimeters beyond the valve, is skewed, with higher velocities towards the top and the inner wall (anatomically the posterior and left lateral wall). An inward shift of the maximum velocity and reverse flow are denoted along the inner wall of the aortic arch. The velocity profiles in the descending aorta are blunted. Downstream from the vertex of the iliac bifurcation, there is vorticity creation, but the branching effect is quickly damped by the pulsatility of the flow and the elasticity of the wall.  相似文献   

11.
Steady flow studies were conducted in a transparent canine aortic cast. The cast segment stretched from the aortic valve to beyond the renal arteries and included all major branches. Flow was visualized by analysis of dye streaklines. Flow rates for basal and exercising cardiovascular states were simulated. The Reynolds numbers in the ascending aorta for basal and exercising conditions were 900 and 1587 respectively. Aortic core flow was laminar in basal simulations. Disturbed flow commenced in the upper descending aorta with exercising flow rates. Separation zones existed along the inner curvature of the aortic arch and the proximal walls of the brachiocephalic, left subclavian, and coeliac arteries. Such zones may exist over a portion of the cardiac cycle. If either renal artery was occluded, then a vortex formed. This vortex is associated with high shear regions which correlate well with sites where sudanophilic lesions have been reported in cholesterol-fed nephrectomized rabbits.  相似文献   

12.
Image-based computational fluid dynamics (CFD) studies conducted at rest have shown that atherosclerotic plaque in the thoracic aorta (TA) correlates with adverse wall shear stress (WSS), but there is a paucity of such data under elevated flow conditions. We developed a pedaling exercise protocol to obtain phase contrast magnetic resonance imaging (PC-MRI) blood flow measurements in the TA and brachiocephalic arteries during three-tiered supine pedaling at 130, 150, and 170 % of resting heart rate (HR), and relate these measurements to non-invasive tissue oxygen saturation \((\hbox {StO}_{2})\) acquired by near-infrared spectroscopy (NIRS) while conducting the same protocol. Local quantification of WSS indices by CFD revealed low time-averaged WSS on the outer curvature of the ascending aorta and the inner curvature of the descending aorta (dAo) that progressively increased with exercise, but that remained low on the anterior surface of brachiocephalic arteries. High oscillatory WSS observed on the inner curvature of the aorta persisted during exercise as well. Results suggest locally continuous exposure to potentially deleterious indices of WSS despite benefits of exercise. Linear relationships between flow distributions and tissue oxygen extraction calculated from \(\hbox {StO}_{2}\) were found between the left common carotid versus cerebral tissue \((r^{2}=0.96)\) and the dAo versus leg tissue \((r^{2}=0.87)\). A resulting six-step procedure is presented to use NIRS data as a surrogate for exercise PC-MRI when setting boundary conditions for future CFD studies of the TA under simulated exercise conditions. Relationships and ensemble-averaged PC-MRI inflow waveforms are provided in an online repository for this purpose.  相似文献   

13.
Steady flow through a model of the human aortic arch has been studied with hot-film anemometry. A three sensor hot-film velocity probe was inserted into an acrylic flow chamber fabricated from the in situ casting of a human aorta, and the axial, radial and tangential velocity profiles were determined for steady flows in the region of the aortic arch. These studies demonstrated the presence of a potential core throughout the arch region, with a concomitant boundary layer adjacent to the inner wall of curvature of the arch. Trapped secondary flows in this fluid layer along the inner wall were quantitatively determined. Our steady flow studies in the model human aortic arch suggests that a shear-dependent mass transfer mechanism may play a significant role in the development and propagation of atherosclerotic lesions in this segment of the human cardiovascular system.  相似文献   

14.
Aortic arch aneurysm is a complex pathology which requires coverage of one or more aortic arch vessels. In this study we explore the hemodynamic behavior of the aortic arch in aneurysmatic and treated cases with three currently available treatment approaches: Surgery Graft, hybrid Stent-Graft and chimney Stent Graft. The analysis included four models of the time-dependent fluid domains of aneurysmatic arch and of the surgery, hybrid and chimney endovascular techniques. Dimensions of the models are based on typical anatomy, and boundary conditions are based on typical physiological flow.The simulations used computational fluid dynamics (CFD) methods to delineate the time-dependent flow dynamics in the four geometric models.Results of velocity vectors, flow patterns, blood pressure and wall shear stress distributions are presented.The results delineate disturbed and recirculating flow in the aortic arch aneurysm accompanied with low wall shear stress and velocities, compared to a uniformly directed flow and nominal wall shear stress (WSS) in the model of Surgery graft. Out of the two endograft procedures, the hybrid procedure clearly exhibits better hemodynamic performances over the chimney model, with lower WSS, lower pressure drop and less disturbed and vortical flow regions. Although the chimney procedure requires less manufacturing time and cost, it is associated with higher risk rates, and therefore, it is recommended only for emergency cases. This study may shed light on the hemodynamic factors for these complications and provide insight into ways to improve the procedure.  相似文献   

15.
Gregersen H  Zhao J  Lu X  Zhou J  Falk E 《Biorheology》2007,44(2):75-89
Atherosclerosis is the most frequent cause of death and severe chronic disability in North America and Europe. The atherosclerosis-prone apolipoprotein E (apoE)-deficient mice contain the entire spectrum of lesions observed during atherogenesis. Significant remodelling of the artery occurs in atherosclerosis. The aim was to study the remodelling of the zero-stress state of the aorta in apoE-deficient mice up to 56 weeks of age. Normal wild-type mice served as control groups. The mice were euthanised at ages 10, 28 and 56 weeks and tissue rings where excised from several locations along the aorta. The rings where photographed in the no-load state (without any external forces applied), then cut radially to obtain the zero-stress state and photographed again. The cross-sectional wall area and wall thickness increased over time in apoE-deficient mice compared to controls (P<0.001). The residual strains at the inner and outer surface varied as function of aortic location both in controls and apoE-deficient mice (P<0.001). From age 28 to age 56 weeks a gradual increase in positive strain at the outer surface and negative strain at the inner surface was found in the apoE-deficient mice when compared to age-matched control mice (P<0.001). Furthermore, the inner residual strain in the plaque location was significantly smaller than in the non-plaque location in the rings with atherosclerotic plaques (P<0.001). The change over time of the opening angle was especially pronounced in the aortic arch. The opening angle increased to app. 200 degrees in the aortic arch in apoE-deficient mice at 56 weeks of age whereas it in age-matched controls was app. 125 degrees. Correspondingly, atherosclerotic plaques were prominent in the apoE-deficient mice, especially at week 56 in the ascending aorta and the aortic arch. In conclusion, a pronounced remodelling of the biomechanical properties in aorta was found in apoE-deficient mice. The stress gradient across the vessel wall in the plaque region is likely larger in vivo due to the smaller residual strain in the plaque area.  相似文献   

16.
The spatial distribution of sites of enhanced permeability to the macromolecule horseradish peroxidase (HRP) in the normal rabbit aorta after one min circulation was studied using image analysis. These sites, referred to as "HRP spots," exhibit a nonuniform distribution that is qualitatively similar in all rabbits studied. The density of HRP spots is highest in the aortic arch, decreases distally, reaches a minimum in the lower descending thoracic aorta, and then increases again in the abdominal aorta. The region of highest spot density follows a clockwise helical pattern in the aortic arch and outside the arch occurs in streaks largely oriented in the bulk flow direction. The streaks in the abdominal aorta localize along the anatomical right lateral wall and occasionally along the left lateral wall proximal to the celiac artery and along the ventral wall between the celiac and superior mesenteric arteries. The density of spots is high in the immediate vicinity of aortic ostia with the most elevated density being distal to ostia in most cases. At a short distance from the ostium edge of the celiac and superior mesenteric branches the proximal density is comparably high, and no preferred spot orientation is observed around the brachiocephalic vessel. These results are consistent with an influence of localizing factors such as detailed hemodynamic phenomena and/or arterial wall structural and/or functional variations.  相似文献   

17.
A right-sided aorta is a rare malformation which may be associated with other various types of congenital heart disease. We utilised haemodynamic, echocardiographic measurements, computerised tomography and image reconstruction software packages that were integrated in a computational fluid dynamics model to determine blood flow patterns in patient-based aortas. In the left-sided aorta, a systolic clockwise rotational component was present, while helical flow was depicted in the aortic arch that was converted in the descending aorta as counter-rotating vortices with accompanying retrograde flow. The right-sided configuration has not altered the orientation of the three-dimensional vortex, but intensification of polymorphic flow patterns, alterations in wall shear stress distribution and development of a lateral pressure gradient at the area of an aneurysmal anomaly was observed. Moreover, increments of Reynolds, Womersley and Dean numbers were evident. These phenomena along with the formation of the aneurysm might influence cardiovascular risk in patients with right-sided aortas.  相似文献   

18.
Flow in the aortic arch is characterized primarily by the presence of a strong secondary flow superimposed over the axial flow, skewed axial velocity profiles and diastolic flow reversals. A significant amount of helical flow has also been observed in the descending aorta of humans and in models. In this study a computational model of the abdominal aorta complete with two sets of outflow arteries was adapted for three-dimensional steady flow simulations. The flow through the model was predicted using the Navier-Stokes equations to study the effect that a rotational component of flow has on the general flow dynamics in this vascular segment. The helical velocity profile introduced at the inlet was developed from magnetic resonance velocity mappings taken from a plane transaxial to the aortic arch. Results showed that flow division ratios increased in the first set of branches and decreased in the second set with the addition of rotational flow. Shear stress varied in magnitude with the addition of rotational flow, but the shear stress distribution did not change. No regions of flow separation were observed in the iliac arteries for either case. Helical flow may have a stabilizing effect on the flow patterns in branches in general, as evidenced by the decreased difference in shear stress between the inner and outer walls in the iliac arteries.  相似文献   

19.
The spatial and temporal distributions of wall shear stress (WSS) in prototype vessel geometries of coronary segments are investigated via numerical simulation, and the potential association with vascular disease and specifically atherosclerosis and plaque rupture is discussed. In particular, simulation results of WSS spatio-temporal distributions are presented for pulsatile, non-Newtonian blood flow conditions for: (a) curved pipes with different curvatures, and (b) bifurcating pipes with different branching angles and flow division. The effects of non-Newtonian flow on WSS (compared to Newtonian flow) are found to be small at Reynolds numbers representative of blood flow in coronary arteries. Specific preferential sites of average low WSS (and likely atherogenesis) were found at the outer regions of the bifurcating branches just after the bifurcation, and at the outer-entry and inner-exit flow regions of the curved vessel segment. The drop in WSS was more dramatic at the bifurcating vessel sites (less than 5% of the pre-bifurcation value). These sites were also near rapid gradients of WSS changes in space and time – a fact that increases the risk of rupture of plaque likely to develop at these sites. The time variation of the WSS spatial distributions was very rapid around the start and end of the systolic phase of the cardiac cycle, when strong fluctuations of intravascular pressure were also observed. These rapid and strong changes of WSS and pressure coincide temporally with the greatest flexion and mechanical stresses induced in the vessel wall by myocardial motion (ventricular contraction). The combination of these factors may increase the risk of plaque rupture and thrombus formation at these sites.  相似文献   

20.
The pulsatile flow of non-Newtonian fluid in a bifurcation model with a non-planar daughter branch is investigated numerically by using the Carreau-Yasuda model to take into account the shear thinning behavior of the analog blood fluid. The objective of this study is to deal with the influence of the non-Newtonian property of fluid and of out-of-plane curvature in the non-planar daughter vessel on wall shear stress (WSS), oscillatory shear index (OSI), and flow phenomena during the pulse cycle. The non-Newtonian property in the daughter vessels induces a flattened axial velocity profile due to its shear thinning behavior. The non-planarity deflects flow from the inner wall of the vessel to the outer wall and changes the distribution of WSS along the vessel, in particular in systole phase. Downstream of the bifurcation, the velocity profiles are shifted toward the flow divider, and low WSS and high shear stress temporal oscillations characterized by OSI occur on the outer wall region of the daughter vessels close to the bifurcation. Secondary motions become stronger with the addition of the out-of-plane curvature induced by the bending of the vessel, and the secondary flow patterns swirl along the non-planar daughter vessel. A significant difference between the non-Newtonian and the Newtonian pulsatile flow is revealed during the pulse cycle; however, reasonable agreement between the non-Newtonian and the rescaled Newtonian flow is found. Calculated results for the pulsatile flow support the view that the non-planarity of blood vessels and the non-Newtonian properties of blood are an important factor in hemodynamics and may play a significant role in vascular biology and pathophysiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号