首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PS I core proteins are expected to interact with the electron donor proteins plastocyanin or cytochrome c 6. To investigate the role of the luminal H loop of PsaB in the assembly and function of the PS I complex, we generated 15 deletion and repetition mutations in the H loop of the PsaB protein from Synechocystis sp. PCC 6803. The mutant strains differed in their photoautotrophic growth. The PS I proteins could not be detected in the membranes of mutants in which the N438–E448, I453–T464, or S500–G512 region was deleted from the PsaB protein, indicating the essential role of these segments in proper folding of the PsaB protein. Mutants with partial or complete deletion of the L469–D496 segment contained the PS I proteins. These results indicate that the regions near the transmembrane helices are more important for the assembly of PsaB than the middle region of the H loop. The L469-D496 segment in the H loop of PsaB is dispensable in the interaction between the PS I complex and the soluble donor proteins. These results suggested that sections of the H loop of PsaB are crucial for the structural integrity of the PsaB protein.  相似文献   

2.
At the lumenal side of photosystem I (PSI) in cyanobacteria, algae, and vascular plants, proper recognition and binding of the donor proteins plastocyanin (pc) and cytochrome (cyt) c(6) are crucial to allow subsequent efficient electron transfer to the photooxidized primary donor. To characterize the surface regions of PSI needed for the correct binding of both donors, loop j of PsaB of Chlamydomonas reinhardtii was modified using site-directed mutagenesis and chloroplast transformation. Mutant strains D624K, E613K/D624K, E613K/W627F, and D624K/W627F accumulated <20% of PSI as compared with wild type and were only able to grow photoautotrophically at low light intensities. Mutant strains E613N, E613K, and W627F accumulated >50% of PSI as compared with wild type. This was sufficient to isolate the altered PSI and perform a detailed analysis of the electron transfer between the modified PSI and the two algal donors using flash-induced spectroscopy. Such an analysis indicated that residue Glu(613) of PsaB has two functions: (i) it is crucial for an improved unbinding of the two donors from PSI, and (ii) it orientates the positively charged N-terminal domain of PsaF in a way that allows efficient binding of pc or cyt c(6) to PSI. Mutation of Trp(627) to Phe completely abolishes the formation of an intermolecular electron transfer complex between pc and PSI and also drastically diminishes the rate of electron transfer between the donor and PSI. This mutation also hinders binding and electron transfer between the altered PSI and cyt c(6). It causes a 10-fold increase of the half-time of electron transfer within the intermolecular complex of cyt c(6) and PSI. These data strongly suggest that Trp(627) is a key residue of the recognition site formed by the core of PSI for binding and electron transfer between the two soluble electron donors and the photosystem.  相似文献   

3.
To study electrogenesis the photosystem I particles fromSynechococcus elongatus were incorporated into asolectin liposomes, and fast kinetics of laser flash-induced electric potential difference generation has been measured by a direct electrometric method in proteoliposomes adsorbed on a phospholipid-impregnated collodion film. The photoelectric response has been found to involve three electrogenic stages associated with (i) iron-sulfur center Fx reduction by the primary electron donor P700, (ii) electron transfer between iron-sulfur centers Fx and FA/FB, and (iii) reduction of photo-oxidized P700+ by reduced cytochromec 553. The relative magnitudes of phases (ii) and (iii) comprised about 20% of phase (i).  相似文献   

4.
Cyanobacterial photosystem (PS) I is remarkably similar to its counterpart in the chloroplast of plants and algae. Therefore, it has served as a prototype for the type I reaction centers of photosynthesis. Cyanobacterial PS I contains 11-12 proteins. Some of the cyanobacterial proteins are modified post-translationally. Reverse genetics has been used to generate subunit-deficient cyanobacterial mutants, phenotypes of which have revealed the functions of the missing proteins. The cyanobacterial PS I proteins bind cofactors, provide docking sites for electron transfer proteins, participate in tertiary and quaternary organization of the complex and protect the electron transfer centers. Many of these mutants are now being used in sophisticated structure-function analyses. Yet, the roles of some proteins of the cyanobacterial PS I are unknown. It is necessary to examine functions of these proteins on a global scale of cell physiology, biogenesis and evolution.  相似文献   

5.
The primary electron donor of photosystem I, P700, is a chlorophyll species that in its excited state has a potential of approximately -1.2 V. The precise chemical composition and electronic structure of P700 is still unknown. Recent evidence indicates that P700 is a dimer of one chlorophyll (Chl) a and one Chl a'. The Chl a' and Chl a are axially coordinated by His residues provided by protein subunits PsaA and PsaB, respectively. The Chl a', but not the Chl a, is also H-bonded to the protein. The H-bonding is likely responsible for selective insertion of Chl a' into the reaction center. EPR studies of P700(+*) in frozen solution and single crystals indicate a large asymmetry in the electron spin and charge distribution towards one Chl of the dimer. Molecular orbital calculations indicate that H-bonding will specifically stabilize the Chl a'-side of the dimer, suggesting that the unpaired electron would predominantly reside on the Chl a. This is supported by results of specific mutagenesis of the PsaA and PsaB axial His residues, which show that only mutations of the PsaB subunit significantly alter the hyperfine coupling constants associated with a single Chl molecule. The PsaB mutants also alter the microwave induced triplet-minus-singlet spectrum indicating that the triplet state is localized on the same Chl. Excitonic coupling between the two Chl a of P700 is weak due to the distance and overlap of the porphyrin planes. Evidence of excitonic coupling is found in PsaB mutants which show a new bleaching band at 665 nm that likely represents an increased intensity of the upper exciton band of P700. Additional properties of P700 that may give rise to its unusually low potential are discussed.  相似文献   

6.
PSI-K is a subunit of photosystem I. The function of PSI-K was characterized in Arabidopsis plants transformed with a psaK cDNA in antisense orientation, and several lines without detectable PSI-K protein were identified. Plants without PSI-K have a 19% higher chlorophyll a/b ratio and 19% more P700 than wild-type plants. Thus, plants without PSI-K compensate by making more photosystem I. The photosystem I electron transport in vitro is unaffected in the absence of PSI-K. Light response curves for oxygen evolution indicated that the photosynthetic machinery of PSI-K-deficient plants have less capacity to utilize light energy. Plants without PSI-K have less state 1-state 2 transition. Thus, the redistribution of absorbed excitation energy between the two photosystems is reduced. Low temperature fluorescence emission spectra revealed a 2-nm blue shift in the long wavelength emission in plants lacking PSI-K. Furthermore, thylakoids and isolated PSI without PSI-K had 20-30% less Lhca2 and 30-40% less Lhca3, whereas Lhca1 and Lhca4 were unaffected. During electrophoresis under mildly denaturing conditions, all four Lhca subunits were partially dissociated from photosystem I lacking PSI-K. The observed effects demonstrate that PSI-K has a role in organizing the peripheral light-harvesting complexes on the core antenna of photosystem I.  相似文献   

7.
The PSI-N subunit of photosystem I (PSI) is restricted to higher plants and is the only subunit located entirely in the thylakoid lumen. The role of the PSI-N subunit in the PSI complex was investigated in transgenic Arabidopsis plants which were generated using antisense and co-suppression strategies. Several lines without detectable levels of PSI-N were identified. The plants lacking PSI-N assembled a functional PSI complex and were capable of photoautotrophic growth. When grown on agar media for several weeks the plants became chlorotic and developed significantly more slowly. However, under optimal growth conditions, the plants without PSI-N were visually indistinguishable from the wild-type although several photosynthetic parameters were affected. In the transformants, the second-order rate constant for electron transfer from plastocyanin to P700+, the oxidized reaction centre of PSI, was only 55% of the wild-type value, and steady-state NADP+ reduction was decreased to a similar extent. Quantum yield of oxygen evolution and PSII photochemistry were about 10% lower than in the wild-type at leaf level. Photochemical fluorescence quenching was lowered to a similar extent. Thus, the 40-50% lower activity of PSI at the molecular level was much less significant at the whole-plant level. This was partly explained by a 17% increase in PSI content in the plants lacking PSI-N.  相似文献   

8.
The X-ray crystal structure of photosystem I (PS I) depicts six chlorophyll a molecules (in three pairs), two phylloquinones, and a [4Fe-4S] cluster arranged in two pseudo C2-symmetric branches that diverge at the P700 special pair and reconverge at the interpolypeptide FX cluster. At present, there is agreement that light-induced electron transfer proceeds via the PsaA branch, but there is conflicting evidence whether, and to what extent, the PsaB branch is active. This problem is addressed in cyanobacterial PS I by changing Met688(PsaA) and Met668(PsaB), which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3-chlorophylls, to Leu. The premise of the experiment is that alteration or removal of the ligand should alter the midpoint potential of the A0-/A0 redox pair and thereby result in a change in the forward electron-transfer kinetics from A0- to A1. In comparison with the wild type, the PsaA-branch mutant shows: (i) slower growth rates, higher light sensitivity, and reduced amounts of PS I; (ii) a reduced yield of electron transfer from P700 to the FA/FB iron-sulfur clusters at room temperature; (iii) an increased formation of the 3P700 triplet state due to P700(+)A0- recombination; and (iv) a change in the intensity and shape of the polarization patterns of the consecutive radical pair states P700(+)A1- and P700(+)FX-. The latter changes are temperature dependent and most pronounced at 298 K. These results are interpreted as being due to disorder in the A0 binding site, which leads to a distribution of lifetimes for A0- in the PsaA branch of cofactors. This allows a greater degree of singlet-triplet mixing during the lifetime of the radical pair P700(+)A0-, which changes the polarization patterns of P700(+)A1- and P700(+)FX-. The lower quantum yield of electron transfer is also the likely cause of the physiological changes in this mutant. In contrast, the PsaB-branch mutant showed only minor changes in its physiological and spectroscopic properties. Because the environments of eC-A3 and eC-B3 are nearly identical, these results provide evidence for asymmetric electron-transfer activity primarily along the PsaA branch in cyanobacterial PS I.  相似文献   

9.
PsaD subunit of Synechocystis sp PCC 6803 photosystem I (PSI) plays a critical role in the stability of the complex and is part of the docking site for ferredoxin (Fd). In the present study we describe major physiological and biochemical effects resulting from mutations in the accessible C-terminal end of the protein. Four basic residues were mutated: R111, K117, K131, and K135, and a large 36-amino acid deletion was generated at the C terminus. PSI from R111C mutant has a 5-fold decreased affinity for Fd, comparable with the effect of the C terminus deletion, and NADP+ is photoreduced with a 2-fold decreased rate, without consequence on cell growth. The K117A mutation has no effect on the affinity for Fd, but decreases the stability of PsaE subunit, a loss of stability also observed in R111C and the deletion mutants. The double mutation K131A/K135A does not change Fd binding and reduction, but decreases the overall stability of PSI and impairs the cell growth at temperatures above 30 degrees C. Three mutants, R111C, K117A, and the C-terminal deleted exhibit a higher content of the trimeric form of PSI, in apparent relation to the removal of solvent accessible positive charges. Various regions in the C terminus of cyanobacterial PsaD thus are involved in Fd strong binding, PSI stability, and accumulation of trimeric PSI.  相似文献   

10.
PSI-H is an intrinsic membrane protein of 10 kDa that is a subunit of photosystem I (PSI). PSI-H is one of the three PSI subunits found only in eukaryotes. The function of PSI-H was characterized in Arabidopsis plants transformed with a psaH cDNA in sense orientation. Cosuppressed plants containing less than 3% PSI-H are smaller than wild type when grown on sterile media but are similar to wild type under optimal conditions. PSI complexes lacking PSI-H contain 50% PSI-L, whereas other PSI subunits accumulate in wild type amounts. PSI devoid of PSI-H has only 61% NADP+ photoreduction activity compared with wild type and is highly unstable in the presence of urea as determined from flash-induced absorbance changes at 834 nm. Our data show that PSI-H is required for stable accumulation of PSI and efficient electron transfer in the complex. The plants lacking PSI-H compensate for the less efficient PSI with a 15% increase in the P700/chlorophyll ratio, and this compensation is sufficient to prevent overreduction of the plastoquinone pool as evidenced by normal photochemical quenching of fluorescence. Nonphotochemical quenching is approximately 60% of the wild type value, suggesting that the proton gradient across the thylakoid membrane is decreased in the absence of PSI-H.  相似文献   

11.
A covalent stoichiometric complex between photosystem I (PSI) and ferredoxin from the cyanobacterium Synechocystis sp. PCC 6803 was generated by chemical cross-linking. The photoreduction of ferredoxin, studied by laser flash absorption spectroscopy between 460 and 600 nm, is a fast process in 60% of the covalent complexes, which exhibit spectral and kinetic properties very similar to those observed with the free partners. Two major phases with t(1/2) <1 micros and approximately 10-14 micros are observed at two different pH values (5.8 and 8.0). The remaining complexes do not undergo fast ferredoxin reduction and 20-25% of the complexes are still able to reduce free ferredoxin or flavodoxin efficiently, thus indicating that ferredoxin is not bound properly in this proportion of covalent complexes. The docking site of ferredoxin on PSI was determined by electron microscopy in combination with image analysis. Ferredoxin binds to the cytoplasmic side of PSI, with its mass center 77 angstroms distant from the center of the trimer and in close contact with a ridge formed by the subunits PsaC, PsaD and PsaE. This docking site corresponds to a close proximity between the [2Fe- 2S] center of ferredoxin and the terminal [4Fe-4S] acceptor FII of PSI and is very similar in position to the docking site of flavodoxin, an alternative electron acceptor of PSI.  相似文献   

12.
Breton J  Chitnis PR  Pantelidou M 《Biochemistry》2005,44(14):5402-5408
P700, the primary electron donor of photosystem I, is an asymmetric dimer made of one molecule of chlorophyll a' (P(A)) and one of chlorophyll a (P(B)) that are bound to the homologous PsaA and PsaB polypeptides. While the carbonyl groups of P(A) are involved in hydrogen-bonding interactions with several surrounding amino acid side chains and a water molecule, P(B) does not engage hydrogen bonds with the protein. Notably, the residue Thr A739 is donating a strong hydrogen bond to the 9-keto C=O group of P(A) and the homologous residue Tyr B718 is free from interaction with P(B). Light-induced FTIR difference spectroscopy of the photooxidation of P700 has been combined with a site-directed mutagenesis attempt to introduce hydrogen bonds to the carbonyl groups of P(B) in Synechocystis sp. PCC 6803. The FTIR study of the Y(B718)T mutant provides evidence that the 9-keto C=O group of P(B) and P(B)(+) engages a relatively strong hydrogen-bonding interaction with the surroundings in a significant fraction (40 +/-10%) of the reaction centers. Additional mutations on the two PsaB residues homologous to those involved in the main interactions between the PsaA polypeptide and the 10a-carbomethoxy groups of P(A) affect only marginally the vibrational frequency of the 10a-ester C=O group of P(B). The FTIR data on single, double, and triple mutants at these PsaB sites indicate a plasticity of the interactions of the carbonyl groups of P(B) with the surrounding protein. However, these mutations do not perturb the hydrogen-bonding interactions assumed by the 9-keto and 10a-ester C=O groups of P(A) and P(A)(+) with the protein and have only a limited effect on the relative charge distribution between P(A)(+) and P(B)(+).  相似文献   

13.
F Rousseau  P Stif    B Lagoutte 《The EMBO journal》1993,12(5):1755-1765
Of the stroma-accessible proteins of photosystem I (PSI) from Synechocystis sp. PCC 6803, the PSI-C, PSI-D and PSI-E subunits have already been characterized, and the corresponding genes isolated. PCR amplification and cassette mutagenesis were used in this work to delete the psaE gene. PSI particles were isolated from this mutant, which lacks subunit PSI-E, and the direct photoreduction of ferredoxin was investigated by flash absorption spectroscopy. The second order rate constant for reduction of ferredoxin by wild type PSI was estimated to be approximately 10(9) M-1s-1. Relative to the wild type, PSI lacking PSI-E exhibited a rate of ferredoxin reduction decreased by a factor of at least 25. After reassociation of the purified PSI-E polypeptide, the original rate of electron transfer was recovered. When a similar reconstitution was performed with a PSI-E polypeptide from spinach, an intermediate rate of reduction was observed. Membrane labeling of the native PSI with fluorescein isothiocyanate allowed the isolation of a fluorescent PSI-E subunit. Peptide analysis showed that some residues following the N-terminal sequence were labeled and thus probably accessible to the stroma, whereas both N- and C-terminal ends were probably buried in the photosystem I complex. Site-directed mutagenesis based on these observations confirmed that important changes in either of the two terminal sequences of the polypeptide impaired its correct integration in PSI, leading to phenotypes identical to the deleted mutant. Less drastic modifications in the predicted stroma exposed sequences did not impair PSI-E integration, and the ferredoxin photoreduction was not significantly affected. All these results lead us to propose a structural role for PSI-E in the correct organization of the site involved in ferredoxin photoreduction.  相似文献   

14.
A covalent complex between photosystem I and flavodoxin from the cyanobacterium Synechococcus sp. PCC 7002 was generated by chemical cross-linking. Laser flash-absorption spectroscopy indicates that the bound flavodoxin of this complex is stabilized in the semiquinone state and is photoreduced to the quinol form upon light excitation. The kinetics of this photoreduction process, which takes place in approximately 50% of the reaction centres, displays three exponential components with half-lives of 9 microsec, 70 microsec and 1 ms. The fully reduced flavodoxin subsequently recombines with P700+ with a t1/2 of 330 ms. A corresponding flavodoxin semiquinone radical signal is readily observed in the dark by room temperature electron paramagnetic resonance, which reversibly disappears upon illumination. In contrast, the light-induced reduction of oxidized flavodoxin can be observed only by first-flash experiments following excessive dark adaptation. In addition, the docking site of flavodoxin on photosystem I was determined by electron microscopy in combination with image analysis. Flavodoxin binds to the cytoplasmic side of photosystem I at a distance of 7 nm from the centre of the trimer and in close contact to a ridge formed by the subunits PsaC, PsaD and PsaE.  相似文献   

15.
Low-temperature resonance Raman (RR) spectra have been obtained at resonance with the Soret transition of chlorophyll a in photosystem I particles containing large amounts either of the triplet state of P700 or of its radical cation state. Subtracting these spectra from those of resting reaction centers yielded RR spectra of P700 in its neutral, ground state. These spectra arise from two distinct chlorophyll a molecules differing by the strengths of the bonding interactions assumed by their keto carbonyl groups, the stretching frequencies of which are found at 1655 and 1675 cm-1. The present results rule out previous hypotheses that P700 might have consisted of a single, chemically modified chlorophyll a molecule. Neither of the bonding interactions assumed by the keto carbonyls of the P700 chlorophylls most probably involves chlorophyll-chlorophyll bridging through water molecules, as surmised in the so-called special pair models, but likely consists of H bonds with distinct protein sites. The magnesium atoms of the two P700 chlorophylls are 5-coordinated. Hence, the structural model of P700 provided by the present data is qualitatively the same, in terms of bonding interactions, as that currently accepted for the bacterial primary donor.  相似文献   

16.
Ferrous iron cations Fe(II) can effectively bind to the donor side of the manganese-depleted photosystem II (PSII(-Mn)) and in this way block electron transfer from diphenylcarbazide (DPC) to the major donor for P680, YZ. The present study was focused on the characteristic features of this process. The oxidation and subsequent binding of Fe(II) cations to PSII(-Mn) may proceed in the absence of an artificial electron acceptor, and therefore we investigated the role of O2 as a putative endogenous acceptor. Oxygen was shown to participate in the blockade of YZ by Fe cations, apparently as a structural element of Fe cluster formed at the donor side of PSII(-Mn). The kinetic study of blocking YZ by Fe(II) as dependent on light intensity demonstrated that the quantum efficiency of Fe cations binding to the donor side of PSII(-Mn) considerably exceeded that of Mn cations. We also compared the possibilities of extracting the native Mn cluster and reconstructed Fe cations from PSII and an alternative electron transport from DPC to P680+ under the conditions of the YZ blockade by Fe cations. Neither an alternative donor for P680, YD , nor cytochrome b 559 participated in the latter process. As a whole, our evidence shows that many features of binding Fe cation to the donor side of PSII(-Mn) are in common with photoassembling the Mn cluster.Translated from Fiziologiya Rastenii, Vol. 52, No. 1, 2005, pp. 12–20.Original Russian Text Copyright © 2005 by Lovyagina, Davletshina, Kultysheva, Timofeev, Ivanov, Semin.  相似文献   

17.
The PsaC subunit of photosystem I (PS I) binds two [4Fe-4S] clusters, F(A) and F(B), functioning as electron carriers between F(X) and soluble ferredoxin. To resolve the issue whether F(A) or F(B) is proximal to F(X), we used single-turnover flashes to promote step-by-step electron transfer between electron carriers in control (both F(A) and F(B) present) and HgCl2-treated (F(B)-less) PS I complexes from Synechococcus sp. PCC 6301 and analyzed the kinetics of P700+ reduction by monitoring the absorbance changes at 832 nm in the presence of a fast electron donor (phenazine methosulfate (PMS)). In control PS I complexes exogenously added ferredoxin, or flavodoxin could be photoreduced on each flash, thus allowing P700+ to be reduced from PMS. In F(B)-less complexes, both in the presence and in the absence of ferredoxin or flavodoxin, P700+ was reduced from PMS only on the first flash and was reduced from F(X)- on the following flashes, indicating lack of electron transfer to ferredoxin or flavodoxin. In the F(B)-less complexes, a normal level of P700 photooxidation was detected accompanied by a high yield of charge recombination between P700+ and F(A)- in the presence of a slow donor, 2,6-dichlorophenol-indophenol. This recombination remained the only pathway of F(A)- reoxidation in the presence of added ferredoxin, consistent with the lack of forward electron transfer. F(A)- could be reoxidized by methyl viologen in F(B)-less PS I complexes, although at a concentration two orders of magnitude higher than is required in wild-type PS I complexes, thus implying the presence of a diffusion barrier. The inhibition of electron transfer to ferredoxin and flavodoxin was completely reversed after reconstituting the F(B) cluster. Using rate versus distance estimates for electron transfer rates from F(X) to ferredoxin for two possible orientations of PsaC, we conclude that the kinetic data are best compatible with PsaC being oriented with F(A) as the cluster proximal to F(X) and F(B) as the distal cluster that donates electrons to ferredoxin.  相似文献   

18.
The effects of exogenous glucose on the rates of alternative pathways of photosystem II (PSII)-independent electron flow to PSI and of dark respiration in Synechocystis sp. 6803 cells were studied. The presence of glucose was shown to accelerate the electron flow to P700+, the PSI primary electron donor oxidized with Far-red light (FRL), which excites specifically only PSI. An increase in the glucose concentration was accompanied by a further activation of electron flow to PSI, which was supported by the dark donation of reducing equivalents to the electron transport chain. An increase in the external glucose concentration resulted also in the disappearance of lag-phase in the kinetics of P700+ reduction, which was observed in the cells incubated without glucose after FRL switching off. A similarity of nonphotochemical processes of electron transfer to PSI in cyanobacteria and higher plants was supposed, basing on the earlier observed fact of the occurrence of such lagphase in higher plants and its dependence on the exhausting of stromal reductants in the light. Acceleration of dark electron flow to PSI in the presence of glucose, a major respiratory substrate, may indicate the coupling between nonphotochemical processes in the photosynthetic and respiratory chains of electron transport in cyanobacterial cells. A close correlation between photosynthesis and respiration in cyanobacterial cells is also confirmed by a sharp acceleration of respiration with an increase in the glucose concentration in medium.  相似文献   

19.
R M Wynn  J Omaha  R Malkin 《Biochemistry》1989,28(13):5554-5560
Photosystem I (PSI) complexes have been isolated from two cyanobacterial strains, Synechococcus sp. PCC 7002 and 6301. These complexes contain six to seven low molecular mass subunits in addition to the two high molecular mass subunits previously shown to bind the primary reaction center components. Chemical cross-linking of ferredoxin to the complex identified a 17.5-kDa subunit as the ferredoxin-binding protein in the Synechococcus sp. PCC 6301-PSI complex. The amino acid sequence of this subunit, deduced from the DNA sequence of the gene, confirmed its identity as the psaD gene product. A 17-kDa subunit cross-links to the electron donor, cytochrome c-553, in a manner analogous to the cross-linking of plastocyanin to the higher plant PSI complex. Using antibodies raised against the spinach psaC gene product (a 9-kDa subunit which binds Fe-S centers A and B), we identified an analogous protein in the cyanobacterial PSI complex.  相似文献   

20.
The dynamics of photosystem I assembly in cyanobacteria have been addressed using in vivo pulse-chase labeling of Synechocystis sp. PCC 6803 proteins in combination with blue native polyacrylamide gel electrophoresis. The analyses indicate the existence of three different monomeric photosystem I complexes and also the high stability of photosystem I trimers. We show that in addition to a complete photosystem I monomer, containing all 11 subunits, we detected a PsaK-less monomer and a short-lived PsaL/PsaK-less complex. The latter two monomers were missing in the ycf37 mutant of Synechocystis sp. PCC 6803 that accumulates also less trimers. Pulse-chase experiments suggest that the three monomeric complexes have different functions in the biogenesis of the trimer. Based on these findings we propose a model where PsaK is incorporated in the latest step of photosystem I assembly. The PsaK-less photosystem I monomer may represent an intermediate complex that is important for the exchange of the two PsaK variants during high light acclimation. Implications of the presented data with respect to Ycf37 function are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号