首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
An experimental study was undertaken to identify and quantitate the effects of plasmid amplification and recombinant gene expression on Escherichia coli growth kinetics. Identification of these effects was possible because recombinant gene expression and plasmid copy number were controlled by different mechanisms on plasmid pVH106/172. Recombinant gene expression of the lactose operon structural genes was under the control of the lac promoter and was activated by the addition of the chemicals, IPTG and cyclic AMP, to the fermentation medium. Plasmid content was amplified in a separate fermentation by increasing culture temperature since the plasmid replicon was temperature-sensitive. A final fermentation was performed in which both plasmid content and recombinant gene expression were induced simultaneously by adding chemicals and raising the culture temperature. Recombinant growth rates were found to be reduced by the expression of high levels of recombinant lac proteins in the chemical induction experiments and by the amplification of plasmid levels in the temperature induction experiment. High expression of recombinant lac proteins following chemical induction was accompanied by a loss in recombinant cell viability. In the plasmid amplification experiment, the recombinant cells did not lose viability but the recombinant product yields were much lower than those achieved in the chemical induction experiments. Combining temperature and chemical induction increased the recombinant product yield by a factor of 4400 but also lowered cellular growth rates by 70%.  相似文献   

2.
Previously, we have developed a genetically structured mathematical model to describe the inhibition of Escherichia coli lac operon gene expression by antigene oligos. Our model predicted that antigene oligos targeted to the operator region of the lac operon would have a significant inhibitory effect on beta-galactosidase production. In this investigation, the E. coli lac operon gene expression in the presence of antigene oligos was studied experimentally. A 21-mer oligo, which was designed to form a triplex with the operator, was found to be able to specifically inhibit beta-galactosidase production in a dose-dependent manner. In contrast to the 21-mer triplex-forming oligonucleotide (TFO), several control oligos showed no inhibitory effect. The ineffectiveness of the various control oligos, along with the fact that the 21-mer oligo has no homology sequence with lacZYA, and no mRNA is transcribed from the operator, suggests that the 21-mer oligo inhibits target gene expression by an antigene mechanism. To simulate the kinetics of lac operon gene expression in the presence of antigene oligos, a genetically structured kinetic model, which includes transport of oligo into the cell, growth of bacteria cells, and lac operon gene expression, was developed. Predictions of the kinetic model fit the experimental data quite well after adjustment of the value of the oligonucleotide transport rate constant (9.0 x 10(-)(3) min(-)(1)) and oligo binding affinity constant (1.05 x 10(6) M(-)(1)). Our values for these two adjusted parameters are in the range of reported literature values.  相似文献   

3.
Efficient expression of a foreign protein product by the yeastSaccharomyces cerevisiaerequires a stable recombinant vector present at a high number of copies per cell. A conditional centromere yeast plasmid was constructed which can be amplified to high copy number by a process of unequal partitioning at cell division, followed by selection for increased copy number. However, in the absence of selection pressure for plasmid amplification, copy number rapidly drops from 25 plasmids/cell to 6 plasmids/cell in less than 10 generations of growth. Copy number subsequently decreases from 6 plasmids/cell to 2 plasmids/cell over a span of 50 generations. A combination of flow cytometric measurement of copy number distributions and segregated mathematical modeling were applied to test the predictions of a conceptual model of conditional centromereplasmid propagation. Measured distributions of plasmid content displayed a significant subpopulation of cells with a copy number of 4-6, evenin a population whose mean copy number was 13.5. This type of copy number distribution was reproduced by a mathematical model which assumes that amaximum of 4-6 centromere plasmids per cell can be stably partitionedat cell division. The model also reproduces the observed biphasic kinetics of plasmid number instability. The agreement between simulation and experimental results provides support for the proposed model and demonstrates the utility of the flow cytometry/segregated modeling approach for the study of multicopy recombinant vector propagation.  相似文献   

4.
An expression vector characterized by tight regulation and high expression of cloned genes appears to be indispensable for the engineering need. To achieve this goal, in association with lacI the T7 A1 promoter containing two synthetic lac operators was constructed into a runaway-replication vector. To further examine this vector system, lacZ was subcloned and placed under the control of the T7 A1 promoter on the plasmid. With the application of the thermal induction alone, the Escherichia coli strain harboring the recombinant plasmid was able to produce 15,000 Miller units of beta-galactosidase, while it yielded the recombinant protein with 45,000-50,000 Miller units upon both thermal and chemical induction. In sharp contrast, only 60-90 Miller units of beta-galactosidase was obtained for the cell at an uninduced state. As a result, the production yield of beta-galactosidase over the background level is amplified approximately 170-fold by thermal induction and 500-fold by thermal and chemical induction. To produce the recombinant protein on a large scale, an approach by connecting two fermenters in series was newly developed. By applying the three-stage temperature shift in this dual fermenter system, 55,000 Miller units of beta-galactosidase was obtained. Overall, it shows the potential use of the vector system developed here for its tight control and high production of recombinant proteins.  相似文献   

5.
6.
Improved expression vectors have been constructed which are derived from runaway-replication mutants of plasmid pYM307 and carry the strong hybrid promoter tac with lac iq gene. The activity of this promoter is controlled by lac repressor, product of the lac iq gene. Heat induction leads to amplification of the plasmid copy number. This system was used for high level expression of the chemically synthesized gene for human immune interferon (hIFN-7). 3 h after induction at 37 degrees C the hIFN-7 amounted to about 20% of total cellular proteins.  相似文献   

7.
8.
Escherichia coli harboring a recombinant plasmid was grown in a fermenter to study the effects of selected process parameters on the growth of the microbe and on plasmid amplification with chloramphenicol treatment. Eighteen fermentations were carried out according to a statistical experimental design in which the fermentation temperature, pH, and turbidity of culture at the onset of plasmid amplification were the selected independent process variables. Static regression models describing the process were derived from the experimental results. It turned out that recombinant plasmid copy numbers could be influenced by controlling fermentation temperature and pH. The maximal copy number during bacterial growth phase and the optimal plasmid production were found to require fermentation conditions different from those needed for optimal bacterial growth and cell division. The conditions also differed significantly from those routinely used in research laboratories for plasmid preparation. The chloramphenicol treatment increased the plasmid copy number compared with chromosome numbers up to fivefold. Some of the data suggest that under certain conditions the number of chromosome molecules in E. coli cells may rise during the plasmid amplification stage. Statistical experimental design, a nucleic acid sandwich hybridization technique for plasmid quantification, and regression models proved to be useful in this study.  相似文献   

9.
A structured kinetic model, which describes the production of the recombinant ice nucleation protein in different conditions, was applied. The model parameters were estimated based on the variation of the specific growth rate and the intracellular product concentration during cultivation. The equations employed relate the cellular plasmid content or plasmid copy number with the cloned-gene expression; these correlations were successfully tested on the experimental data. The optimal nutrient conditions for the growth of Escherichia coli expressing the inaZ gene of Pseudomonas syringae were determined for the production of active ice nucleation protein. The kinetics of the cultures expressing the inaZ gene were studied in a bioreactor at different growth temperatures and nutrient conditions.  相似文献   

10.
Temperature shifting was investigated as a means of improving cloned-gene product yields form a recombinant Escherichia coli containing the temperature-sensitive plasmid, pOU 140. In a series of shaker flask fermentations recombinant cells were thermally induced for different time periods. The growth, stability, and plasmid product levels were followed, and the results indicate the existence of an induction time period that maximizes product yield. A sustained thermal induction results in recombinant cell death and instability, while exposure to a runaway temperature for minimal time periods does not give sufficiently high product yields. At intermediate cycling times, however, the recombinant cells remain stable, and the plasmid replication region is activated, resulting in higher product yields.  相似文献   

11.
Experimental elucidation of the metabolic load placed on bacteria by the expression of foreign protein is presented. The host/vector system is Escherichia coli RR1/pBR329 (amp(r), cam(r), and let(r)). Plasmid content results, which indicate that the plasmid copy number monotonically increases with decreasing growth rate, are consistent with the literature on ColE1-like plasmids. More significantly, we have experimentally quantified the reduction in growth rate brought about by the expression of chloramphenicol-acetyl-transferase (CAT) and beta-lactamase. Results indicate a nearly linear decrease in growth rate with increasing foreign protein content. Also, the change in growth rate due to foreign protein expression depends on the growth rate of the cells. The observed linear relationship is media independent and, to our knowledge, previously undocumented. Furthermore, the induction of CAT, mediated by the presence of chloramphenicol, is shown to occur only at low growth rates, which further increases the metabolic load.Results are vdelineated with the aid of a structured kinetic model representing the metabolism of recombinant E. coli. In this article, several previous hypotheses and model predictions are justified and validated. This work provides an important step in the development of comprehensive, methabolically-structured, kinetic models capable of prediciting optimal conditions for maximizing product yield.  相似文献   

12.
R C Dickson  J S Markin 《Cell》1978,15(1):123-130
The yeast Kluyveromyces lactis synthesizes a beta-galactosidase (EC 3.2.1.32) which is inducible by lactose. We have isolated the gene that codes for this enzyme using recombinant DNA techniques. K. lactis DNA was partially digested with the restriction endonuclease Eco R1 and joined to Eco R1-digested pBR322 plasmid DNA using DNA ligase. ligase. A lac-mutant of Escherichia coli lacking the structural gene for beta-galactosidase was transformed with ligated DNA. Three lac+ transformants containing recombinant plasmids were selected. Two of the plasmids (pK15 and pK17) contain four Eco R1-K. lactis DNA fragments having molecular weights of 2.2, 1.4, 0.55 and 0.5 x 10(6) daltons. The other plasmid (pK16) lacks the smallest fragment. E. coli carrying any of these plasmids produce beta-galactosidase activity that has a sedimentation coefficient and immunological determinants that are nearly identical to K. lactis beta-galactosidase and distinctly different from E. coli beta-galactosidase. DNA-DNA hybridization studies show that the four Eco R1 fragments in pK15 hybridize to K. lactis but not to E. coli DNA.  相似文献   

13.
14.
Merodiploid derivatives bearing an F-linked lac operon (i(+), o(+), z(+), y(+), a(+)) from Escherichia coli were prepared from a Proteus mirabilis strain unable to utilize lactose and from a lac deletion strain of E. coli. A suitable growth medium was found in which the episomal element in the P. mirabilis derivative was sufficiently stable to allow induction of the episome-borne lac operon and thus to permit a comparison of the activities and properties of E. coli lac products in the intracellular environments of P. mirabilis and E. coli. In both derivatives the episomal lac operon was shown to be repressed in the absence of inducer. Kinetics of induction with gratuitous inducer (isopropyl-1-thio-beta-d-galactoside) were similar for both beta-galactosidase activity (beta-d-galactoside galactohydrolase, EC 3.4.1.23) and beta-galactoside transport activity in both derivatives, although the ratio of galactoside transport to beta-galactosidase activity was approximately 1.6-fold higher in the E. coli derivative. Comparison of beta-galactosidase and M-protein (lac y gene product)-specific activities indicated coordinate expression of the induced lac operon in both derivatives. Quantitatively, the maximal beta-galactosidase specific activity was two or three times higher for the E. coli derivative. A significant sodium azide inhibition (65% inhibition by 10 mM sodium azide) of lactose permease-mediated transport of o-nitrophenyl-beta-galactoside from an outside region of high concentration to an inside region of very low concentration ("downhill transport") was observed for the P. mirabilis derivative. Identical conditions for the E. coli derivative yielded only about 15% inhibition. Active transport of thiomethyl-beta-galactoside was similar for both derivatives, the major difference being that active transport was more sensitive to azide poisoning in the P. mirabilis derivative. Preliminary examination of the thiomethyl-beta-galactoside derivatives following active transport did not demonstrate the accumulation of a phosphorylated product in either strain but did reveal an unidentified derivative present in the P. mirabilis merodiploid extract which was not detectable in the E. coli merodiploid.  相似文献   

15.
16.
17.
18.
The growth dynamics of Escherichia coli with the temperature-sensitive plasmid, pOU140, were examined. Recombinant cells exhibited nearly identical kinetic behavior to host cells at low culture temperatures and low copy numbers. However, at higher temperatures, in which the copy number was significantly increased, the recombinant cells showed decreased stability along with lower growth rates and substrate yields as compared to the host. Furthermore, the production of a constitutive cloned-gene protein was shown to increase with temperature in an Arrhenius fashion when culture temperature was varied between 38 and 42 degrees C. These results suggest that temperature can be used to quantitatively control the production of a desirable plasmid-coded gene product.  相似文献   

19.
Accurate estimates of plasmid copy number in a cell are a prerequisite for predicting plasmid stability and protein production. A refined version of a structured model for the pBR322 plasmid replication mechanism is described. The model is capable of accurately predicting pBR322 plasmid copy number in Escherichia coli B/r for a wide range of growth rates. The refinements include better estimates of promoter strength, the degradation rate of RNA species, binding constant of RNAI-RNAII reaction, and dependency of promoter strength on growth rate. The predictions of the model are verified by recent experimental observations but differ from some previous reports. This model can also be used to predict the binding constant of the RNAI-RNAII reaction of ColE1 type plasmids. At 37 degrees C, the binding constant is estimated to be 77 +/- 11 x 10(-13) mL/molecule-h for pBR322.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号