首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Effects of endothelin (ET) homologues (ET-1, 2, 3 and sarafotoxin S6b) and its precursor (big ET-1) on phosphoinositide (PI) turnover were compared in neurally-related cell cultures. All ET-related peptides induced a robust increase of PI turnover in cerebellar astrocytes, C6-glioma and cerebellar granule cells. The rank order of potency in stimulating PI turnover was ET-1 = ET-2 greater than or equal to S6b greater than ET-3 greater than big ET-1 for granule cell neurons, while it was ET-1 greater than or equal to ET-2 greater than or equal to S6b greater than big ET-1 greater than ET-3 for astrocytes and C6-glioma cells. Short-term pretreatment with phorbol dibutyrate (PDBu) attenuated the ET-1-induced PI response in all three types of cultures. However, long-term pretreatment with PDBu attenuated the response in granule cells and C6-gliomas, but enhanced responses to ET and ATP in astrocytes. Long-term exposure of cells to pertussis toxin (PTX) attenuated the PI response to ET in astrocytes and C6-gliomas, but not in granule cells. Thus, phospholipase C-coupled ET receptors are expressed in both neurons and glial cells, but they differ considerably in their pharmacological selectivity and signal transduction mechanisms in stimulating PI hydrolysis.  相似文献   

3.
Phosphoinositide hydrolysis was studied in primary cultures of rat cerebellar astrocytes pre-labeled with [3H]myo-inositol. Among the agonists examined, the rank order of efficacies in causing phosphoinositide hydrolysis was bradykinin > endothelin-1 > ATP > norepinephrine. The bradykinin response was robust (24-fold increase) with EC50 value of 30 nM and saturating concentration of 1 μM. Preincubation of cells with pertussis toxin did not affect the activation of phosphoinositide turnover by bradykinin. Although short-term (within 90 min) treatment of cells with phorbol dibutyrate attenuated bradykinin-induced phosphoinositide breakdown, the inhibitory effect was lost after 3–6 h of phorbol dibutyrate treatment. Extended (24 h) preincubation resulted in a potentiation of bradykinin response. Homologous desensitization of bradykinin response was observed in cells prestimulated with bradykinin for up to 6 h. However, similar to the effect of phorbol dibutyrate. 24-h pretreatment with bradykinin selectively sensitized the response to bradykinin. Up-regulation of the bradykinin response was also observed in cells prestimulated with endothelin-1 or norepinephrine for 24 h, although these treatments resulted in only homologous desensitization to their own response. Our results suggest that cultured cerebellar astrocytes express bradykinin receptors coupled to phospholipase C and in these cells protein kinase C plays a more prominent role in the negative-feedback regulation of bradykinin-evoked phosphoinositide response.  相似文献   

4.
Cultures of astrocytes and oligodendrocytes were prelabeled with 3H-inositol and the accumulation of 3H-inositol phosphates was determined following stimulation with a number of neuroactive substances. In astrocytes, norepinephrine (NE) produced the greatest stimulation with significant increase also observed with bradykinin. In oligodendrocytes, the greatest stimulation was produced by carbachol with significant increase also produced by bradykinin, histamine and NE. Carbachol was found to be ineffective in producing stimulation in astrocytes. The accumulation of 3H-inositol phosphates in astrocytes in response to NE was found to be dependent on the presence of Li+. The NE stimulation in astrocytes was dose-dependent and had an EC50 of 1.2 microM. This stimulation was blocked by the low concentration of the alpha 1-adrenergic antagonist prazosin but not by the alpha 2-adrenergic antagonist yohimbine. The NE-stimulated accumulation of 3H-inositol phosphates in astrocytes was inhibited by the cyclic nucleotide phosphodiesterase inhibitor isobutylmethylxanthine as well as by the cAMP analog dibutyryl cAMP.  相似文献   

5.
The metabotropic glutamate receptor 5 (mGluR5) exhibits a rapid loss of receptor responsiveness to prolonged or repeated agonist exposure. This receptor desensitization has been seen in a variety of native and recombinant systems, and is thought to result from receptor-mediated, protein kinase C (PKC)-dependent phosphorylation of the receptor, uncoupling it from the G protein in a negative feedback regulation. We have investigated the rapid PKC-mediated desensitization of mGluR5 in cortical cultured astrocytes by measuring downstream signals from activation of mGluR5. These include activation of phosphoinositide (PI) hydrolysis, intracellular calcium transients, and extracellular signal-regulated kinase 2 (ERK2) phosphorylation. We present evidence that PKC plays an important role in rapid desensitization of PI hydrolysis and calcium signaling, but not in ERK2 phosphorylation. This differential regulation of mGluR5-mediated responses suggests divergent signaling and regulatory pathways which may be important mechanisms for dynamic integration of signal cascades.  相似文献   

6.
In cultured human 1321N1 astrocytoma cells, muscarinic receptor stimulation leads to phosphoinositide hydrolysis, formation of inositol phosphates, and mobilization of intracellular Ca2+. Treatment of these cells with 1 microM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) completely blocks the carbachol-stimulated formation of [3H]inositol mono-, bis-, and trisphosphate ( [3H]InsP, [3H]InsP2, and [3H]InsP3). The concentrations of PMA that give half-maximal and 100% inhibition of carbachol-induced [3H]InsP formation are 3 nM and 0.5 microM, respectively. Inactive phorbol esters (4 alpha-phorbol 12,13-didecanoate and 4 beta-phorbol), at 1 microM, do not inhibit carbachol-stimulated [3H]InsP formation. The KD of the muscarinic receptor for [3H]N-methyl scopolamine is unchanged by PMA treatment, while the IC50 for carbachol is modestly increased. PMA treatment also abolishes carbachol-induced 45Ca2+ efflux from 1321N1 cells. The concomitant loss of InsP3 formation and Ca2+ mobilization is strong evidence in support of a causal relationship between these two responses. In addition, our finding that PMA blocks hormone-stimulated phosphoinositide turnover suggests that there may be feedback regulation of phosphoinositide metabolism through the Ca2+- and phospholipid-dependent protein kinase.  相似文献   

7.
We previously reported that sphingosine 1-phosphate (S-1-P), a sphingomyelin metabolite, activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in aortic smooth-muscle A10 cells. In the present study, we investigated the effect of sphingomyelin metabolites on phospholipase C-catalyzing phosphoinositide hydrolysis induced by arginine vasopressin (AVP) in A10 cells. C(2)-ceramide and sphingosine had little effect on inositol phosphate (IP) formation stimulated by AVP. S-1-P, which alone slightly stimulated the IPs formation, dose-dependently amplified the AVP-induced formation of IPs. Tumor necrosis factor-alpha enhanced the AVP-induced formation of IPs. However, S-1-P did not enhance the formation of IPs by NaF, a heterotrimeric GTP-binding protein activator. Pertussis toxin inhibited the effect of S-1-P. PD98059, an inhibitor of the upstream kinase that activates p44/p42 MAP kinase, had little effect on the enhancement by S-1-P. SB203580, an inhibitor of p38 MAP kinase, suppressed the effect of S-1-P on the formation of IPs by AVP. SB203580 inhibited the AVP-induced phosphorylation of p38 MAP kinase. Pertussis toxin suppressed the phosphorylation of p38 MAP kinase by S-1-P. These results indicate that S-1-P amplifies AVP-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in vascular smooth-muscle cells.  相似文献   

8.
K Hirata  H Akita  M Yokoyama 《FEBS letters》1991,287(1-2):181-184
Vascular endothelial cells, in response to various neurohumoral and physical stimuli, produce an endothelium-derived relaxing factor, a substance which regulates vascular tone. We have demonstrated that oxidized low density lipoprotein (LDL) inhibits endothelium-dependent relaxation. We studied the effect of oxidized LDL on inositol phosphates formation stimulated with bradykinin (BK) in cultured bovine aortic endothelial cells. BK elicited a rapid generation of inositol phosphates from inositol phospholipids. Accumulation of inositol 1,4,5-trisphosphate (IP3) stimulated with BK (0.1 microM) was markedly inhibited by oxidized LDL. However, native LDL had little effect on BK-induced accumulation of IP3. From these results, oxidized LDL inhibits receptor-mediated phosphoinositides hydrolysis and modulates the endothelial function.  相似文献   

9.
In the gluconeogenic pathway, fructose-1,6-bisphosphatase (EC 3.1.3.11) is the last key-enzyme before the synthesis of glucose-6-phosphate. The extreme diversity of cells present in the whole brain does not facilitate in vivo study of this enzyme and makes it difficult to understand the regulatory mechanisms of the related carbohydrate metabolism. It is for instance difficult to grasp the actual effect of ions like potassium, magnesium and manganese on the metabolic process just as it is difficult to grasp the effect of different pH values and the influence of glycogenic compounds such as methionine sulfoximine. The present investigation attempts to study the expression and regulation of fructose-1,6-bisphosphatase in cultured astrocytes. Cerebral cortex of new-born rats was dissociated into single cells that were then plated. The cultured cells were flat and roughly polygonal and were positively immunostained by anti-glial fibrillary acidic protein antibodies. Cultured astrocytes are able to display the activity of fructose-1,6-bisphosphatase. This activity was much higher than that in brain tissue in vivo. Fructose-1,6-bisphosphatase in cultured astrocytes did not require magnesium ions for its activity. The initial velocity observed when the activity was measured in standard conditions was largely increased when the enzyme was incubated with Mn2+. This increase was however followed by a decrease in absorbance resulting in the induction, by the manganese ions, of a singular kinetics in the enzyme activity. Potassium ions also stimulated fructose-1,6-bisphosphatase activity. When the enzyme was exposed to different pH values ranging from 6 to 9 units, the highest activity was observed at pH 6. When the cultured astrocytes were incubated with methionine sulfoximine, the fructose-1,6-bisphosphatase activity increased. This increase was quick and depended on the dose of methionine sulfoximine. These results show that cultured astrocytes are able to maintain fructose-1,6-bisphosphatase activity. With the exception of the higher level activity associated acidic pH ranges, the properties of the enzyme resemble those of the in vivo enzyme. Methionine sulfoximine has a direct effect on astrocytes in its activation of fructose-1,6-bisphosphatase. It is concluded that the expression and the regulation of fructose-1,6-bisphosphatase activity in cultured astrocytes look like those in the brain. Astrocytes are probably the principal cells that express this activity in the brain in vivo.  相似文献   

10.
The effect of 5-hydroxytryptamine (5-HT) on phospholipase C (PLC)-mediated phosphoinositide (PI) hydrolysis and intracellular Ca2+ ([Ca2+]i) changes was investigated in canine cultured aorta smooth muscle cells (ASMCs). 5-HT-stimulated inositol phosphate (IP) accumulation was time and concentration dependent with a half-maximal response (pEC50) and a maximal response at 6.4 and 10 microM, n = 6, respectively. Stimulation of ASMCs by 5-HT produced an initial transient peak followed by a sustained, concentration-dependent elevation in [Ca+]i. The half-maximal response (pEC50) values of 5-HT for the peak and sustained plateau were 7.1 and 6.9, respectively. Ketanserin and mianserin (1 and 3 nM), 5-HT2A antagonists, were equipotent and had high affinity in antagonising the 5-HT-induced IP accumulation and [Ca2+]i change with pK(B) values of 8.6-9.1 and 8.6-9.4, respectively. In contrast, the concentration-effect curves of 5-HT-induced IP and [Ca2+]i responses were not shifted until the concentrations of NAN-190 and metoctopramide (5-HT1A and 5-HT3 receptor antagonists, respectively) were increased to as high as 1 microM with pK(B) values of 5.7-6.3 and 6.1-6.6, respectively, indicating that the 5-HT receptor-mediated responses had low affinity for these antagonists. Pre-treatment of ASMCs with pertussis toxin (100 ng/mL, 24 h) caused a significant inhibition of 5-HT-induced IP accumulation and [Ca2+]i change in ASMCs. Depletion of external Ca2+ or removal of Ca2+ by addition of EGTA led to a significant attenuation of IP accumulation and [Ca2+]i change induced by 5-HT. Influx of external Ca2+ was required for the 5-HT-induced responses, because Ca2+-channel blockers--verapamil, nifedipine and Ni2+--partly inhibited the 5-HT-induced IP accumulation and Ca2+ mobilisation. The sustained elevation of [Ca2+]i response to 5-HT was dependent on the presence of external Ca2+. Removal of external Ca2+ by addition of 5 mM EGTA during the sustained phase caused a rapid decline in [Ca2+]i to lower than the resting level. The sustained elevation of [Ca2+]i could then be evoked by addition of 1.8 mM Ca2+ in the continued presence of 5-HT. These results demonstrate that 5-HT directly stimulates PLC-mediated PI hydrolysis and Ca2+ mobilisation, at least in part, through a pertussis toxin-sensitive G protein in canine ASMCs. 5-HT2A receptors may be predominantly mediating IP accumulation, and subsequently IP-induced Ca2+ mobilisation may function as the transducing mechanism for 5-HT-stimulated contraction of aorta smooth muscle.  相似文献   

11.
The lipid mediator sphingosine 1-phosphate (S1P) may alter the proliferation of mesangial cells during pathophysiological processes. Here, S1P stimulated proliferation of rat mesangial cells and phosphorylation of MAPKs at subconfluent cell density. Both effects were inhibited by pertussis toxin treatment. Mesangial cells expressed several S1P receptors of the endothelial differentiation gene family: EDG-1, -3, -5, and -8. Conversely, S1P induced apoptosis at low cell density (2 x 10(4) cells/cm(2)), which was demonstrated by flow cytometry and Hoechst staining. Apoptosis was observed also in quiescent or growing cells and was not reverted by lysophosphatidic acid or platelet-derived growth factor. S1P enhanced phosphorylation of SAPKs. Incubation with [(33)P]S1P, [(3)H]S1P, and [(3)H]sphingosine demonstrated increased S1P hydrolysis, resulting in enhanced intracellular sphingosine levels and decreased S1P levels. A rise in total ceramide levels was also observed; however, ceramide did not originate from [(3)H]sphingosine, and S1P-induced apoptosis was not inhibited by fumonisin B, precluding involvement of de novo ceramide synthesis in apoptosis. Therefore, we suggest that sphingosine accumulation and decreased S1P are primarily responsible for S1P-induced apoptosis. In conclusion, incubation of low-density mesangial cells with S1P results in apoptosis, presumably due to increased S1P hydrolysis.  相似文献   

12.
We previously showed that sphingosine inhibits prostaglandin F(2alpha) (PGF(2alpha))-stimulated interleukin-6 synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine on phospholipase C-catalyzing phosphoinositide hydrolysis induced by PGF(2alpha) in these cells. Sphingosine inhibited the inositol phosphates formation by PGF(2alpha) or NaF, a GTP-binding protein activator. Sphingosine induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase but did not affect the phosphorylation of p42/p44 MAP kinase. SB203580 and PD169316, inhibitors of p38 MAP kinase, rescued the inhibitory effect of sphingosine on the formation of inositol phosphates by PGF(2alpha) or NaF. These results indicate that sphingosine inhibits PGF(2alpha)-induced phosphoinositide hydrolysis by phospholipase C via p38 MAP kinase in osteoblasts.  相似文献   

13.
Phospholipase C delta (PLC delta) is strongly inhibited by sphingomyelin (SM). The inhibition occurs in both the presence and the absence of spermine, an activator of PLC delta. Phosphatidylethanolamine (PE), phosphatidylcholine (PC), phosphatidylserine (PS), and phosphatidylinositol (PI) also inhibit PLC delta in the presence of spermine but are much less effective than SM. PE and PC activate and PS and PI inhibit PLC delta in the absence of spermine. Again, the inhibition by PS and PI is much weaker than the inhibition observed with SM. Similar or identical effects are observed in detergent micelle and liposome assays. Comparisons of physiological concentrations of SM with concentrations yielding 50% inhibition of PLC delta in vitro indicate that SM is likely to be a major factor in regulating the activity of PLC delta by inhibition. It is proposed that, in vivo, sphingomyelin acts as an inhibitor of PLC delta, which enables the enzyme to be regulated by activation. In certain circumstances, there is a substantial decline in SM and this may lead to a partial relief of the inhibition. PLC delta is activated by sphingosine in the absence of spermine. However, this activation occurs at unphysiologically high concentrations of sphingosine. The effects of SM and sphingosine on PLC delta in marked contrast to those observed with protein kinase C, which is unaffected by sphingomyelin and inhibited by sphingosine.  相似文献   

14.
The relationship between occupancy of thrombin receptors on platelets and enhanced phosphoinositide hydrolysis was analysed by examination of the dose-response relationship, the effects of thrombin inhibitors and the contribution of secondary effects. Washed human platelets were labelled with [3H]inositol, and agonist-induced accumulation of labelled inositol phosphates was measured. The dose-response curves and the time courses for alpha-thrombin- or gamma-thrombin-induced accumulation of inositol phosphates were similar to those for dense-granule secretion. Addition of the thrombin inhibitor hirudin to thrombin-activated platelets revealed that the continuous presence of active thrombin was required to maintain the accumulation of labelled inositol phosphates; the total production of inositol phosphates increased with longer periods of exposure to thrombin, reaching a maximum between 5 and 10 min. After activation with thrombin, the ability of a second, greater, addition of thrombin to induce additional phosphoinositide hydrolysis decreased with time; it was absent within 10 min after the first addition. The failure to sustain accumulation of labelled inositol phosphates or to respond to a second addition of thrombin beyond 10 min was not due to depletion of the pool of labelled precursors, because the platelets retained their ability to respond to collagen. Addition of ADP-consuming enzymes decreased sensitivity to thrombin, but inhibition of cyclo-oxygenase with indomethacin did not impair the thrombin-induced hydrolysis of phosphoinositides. It was concluded that thrombin-induced hydrolysis of phosphoinositides has characteristics consistent with mediation by a receptor that is similar to that that triggers dense-granule secretion, requires continuous presence of active thrombin to be maintained, is mediated by a receptor that displays thrombin-induced desensitization, and is only partially enhanced by secondary agents.  相似文献   

15.
Batrachotoxin (BTX), veratridine and monensin induced a time- and dose-dependent increase of [3H]-inositol monophosphate (3H-IP1) accumulation in the presence of lithium in prelabeled neurohybrid NCB-20 cells. A decrease of NaCl concentration to less than 30 mM markedly increased basal3H-IP1 accumulation; however, the percentage of stimulation induced by these three agents remained unchanged even in the complete absence of sodium. The stimulation of phosphoinositide hydrolysis induced by these agents was detected in the absence of lithium but was largely prevented in the calcium-free medium. Tetradotoxin (TTX) blocked effects of BTX and veratridine (IC5020nM), but not that stimulated by monensin. Thus, calcium-dependent activation of phospholipase C by these agents did not involve the entry of sodium or lithium. BTX and monensin also induced greater than additive effects on carbachol-induced3H-IP1 accumulation. These effects were also TTX-sensitive and involved an increase in the Vmax and a decrease in the EC50 for carbachol. Veratridine provoked strikingly different effects on carbachol-dependent phosphoinositide turnover, depending on the passage number of the cells.  相似文献   

16.
Wu D  Zhang XH  Zhu PH 《生理学报》1999,51(4):459-462
本工作研究了去细胞外钙对取自9天来亨鸡胚的培养肌管磷脂酰肌醇水解的影响,80mmol/LK^+暴露可以显著和蔼同磷脂酰肌醇的水解。在暴露于无钙任氏液的肌管中,磷脂酰肌醇的水解随时间延长而呈指数递减。时间常数约为26分钟。在胞外无钙时,80mmol/LK引起的磷胆酰肌醇水解与对照相比略有下降,结果表明,高钾暴露能够增强培养肌管的磷脂酰醇的水解;但与成熟的肌纤维不同,细胞外钙是必须的。  相似文献   

17.
A short-term treatment with phorbol 12,13-dibutyrate (PDBu) was found to inhibit totally the epidermal growth factor (EGF)-stimulated phosphoinositide hydrolysis in A431 cells, whereas long-term pretreatment with PDBu, which is known to down regulate protein kinase C, induced a greater accumulation of the EGF-triggered inositol phosphate accumulation, particularly of Ins(1,3,4,5)P4. The increased Ins(1,4,5)P3/Ins(1,3,4,5)P4 formation in the PDBu long-term pretreated cells was coincident with the increased Ca2+ influx stimulated by EGF in the same cells. Since long-term pretreatment with PDBu was found to enhance the EGF signals, an explanation for the synergism between EGF and phorbol esters in the induction of DNA synthesis is provided.  相似文献   

18.
The effect of forskolin on 5-hydroxytryptamine (5-HT)-induced inositol phosphate (IP) and Ca2+ mobilisation was investigated in canine cultured aorta smooth muscle cells (ASMCs). Pretreatment of ASMCs with forskolin attenuated 5-HT-induced IP accumulation and Ca2+ mobilisation in a time- and concentration-dependent manner. The half-maximal effects (pEC50) of forskolin to attenuate IP and Ca2+ responses to 5-HT occurred at concentrations of 6.28 and 6.64, respectively. Pretreatment of ASMCs with cholera toxin caused a similar inhibition on 5-HT-induced responses. Even after treatment with forskolin for 24 h, the 5-HT-induced responses were still inhibited. The inhibitory effect of forskolin resulted from both a depression of the maximal response and a shift to the right of the concentration-effect curves of 5-HT in these responses. The water-soluble forskolin analogue L-858051 [7-deacetyl-7beta-(gamma-N-methylpiperazino)-butyryl forskolin] significantly inhibited the 5-HT-stimulated IP accumulation. In contrast, the addition of 1,9-dideoxy forskolin, an inactive forskolin analogue, had little effect on IP response. Moreover, SQ-22536 [9-(tetrahydro-2-furanyl)-9-H-purin-6-amine], an inhibitor of adenylate cyclase, and both H-89 [N-(2-aminoethyl)-5-iosquinolinesulphonamide] and HA-1004 [N-(2-guanidinoethyl)-5-iosquinolinesulphonamide], inhibitors of cAMP-dependent protein kinase (PKA), attenuated the ability of forskolin to inhibit the 5-HT-stimulated accumulation of IP in ASMCs. These results indicate that activation of cAMP/PKA might inhibit the 5-HT-stimulated IP accumulation and consequently reduce Ca2+ mobilisation, or inhibit both responses independently.  相似文献   

19.
Regulation of the increase in inositol phosphate (IP) production and intracellular Ca2+ concentration ([Ca2+]i by protein kinase C (PKC) was investigated in cultured rat vascular smooth muscle cells (VSMCs). Pretreatment of VSMCs with phorbol 12-myristate 14-acetate (PMA, 1 microM) for 30 min almost abolished the BK-induced IP formation and Ca2+ mobilisation. This inhibition was reduced after incubating the cells with PMA for 4 h, and within 24 h the BK-induced responses were greater than those of control cells. The concentrations of PMA giving a half-maximal (pEC50) and maximal inhibition of BK induced an increase in [Ca2+]i, were 7.8 +/- 0.3 M and 1 microM, n = 8, respectively. Prior treatment of VSMCs with staurosporine (1 microM), a PKC inhibitor, inhibited the ability of PMA to attenuate BK-induced responses, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Paralleling the effect of PMA on the BK-induced IP formation and Ca2+ mobilisation, the translocation and downregulation of PKC isozymes were determined by Western blotting with antibodies against different PKC isozymes. The results revealed that treatment of the cells with PMA for various times, translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta isozymes from the cytosol to the membrane were seen after 5 min, 30 min, 2 h, and 4 h of treatment. However, 24-h treatment caused a partial downregulation of these PKC isozymes in both fractions. Treatment of VSMCs with 1 microM PMA for either 1 or 24 h did not significantly change the K(D) and Bmax of the BK receptor for binding (control: K(D) = 1.7 +/- 0.2 nM; Bmax = 47.3 +/- 4.4 fmol/mg protein), indicating that BK receptors are not a site for the inhibitory effect of PMA on BK-induced responses. In conclusion, these results demonstrate that translocation of PKC-alpha, betaI, betaII, delta, epsilon, and zeta induced by PMA caused an attenuation of BK-induced IPs accumulation and Ca2+ mobilisation in VSMCs.  相似文献   

20.
We examined the relationship between phosphatidylcholine (PC) hydrolysis, phosphoinositide hydrolysis, and diacylglycerol (DAG) formation in response to muscarinic acetylcholine receptor (mAChR) stimulation in 1321N1 astrocytoma cells. Carbachol increases the release of [3H]choline and [3H]phosphorylcholine ([3H]Pchol) from cells containing [3H]choline-labeled PC. The production of Pchol is rapid and transient, while choline production continues for at least 30 min. mAChR-stimulated release of Pchol is reduced in cells that have been depleted of intracellular Ca2+ stores by ionomycin pretreatment, whereas choline release is unaffected by this pretreatment. Phorbol 12-myristate 13-acetate (PMA) increases the release of choline, but not Pchol, from 1321N1 cells, and down-regulation of protein kinase C blocks the ability of carbachol to stimulate choline production. Taken together, these results suggest that Ca2+ mobilization is involved in mAChR-mediated hydrolysis of PC by a phospholipase C, whereas protein kinase C activation is required for mAChR-stimulated hydrolysis of PC by a phospholipase D. Both carbachol and PMA rapidly increase the formation of [3H]phosphatidic acid ([3H]PA) in cells containing [3H]myristate-labeled PC. [3H]Diacylglycerol ([3H]DAG) levels increase more slowly, suggesting that the predominant pathway for PC hydrolysis is via phospholipase D. When cells are labeled with [3H]myristate and [14C]arachidonate such that there is a much greater 3H/14C ratio in PC compared with the phosphoinositides, the 3H/14C ratio in DAG and PA increases with PMA treatment but decreases in response to carbachol. By analyzing the increase in 3H versus 14C in DAG, we estimate that the DAG that is formed in response to PMA arises largely from PC. Muscarinic receptor activation also causes formation of DAG from PC, but approximately 20% of carbachol-stimulated DAG appears to arise from hydrolysis of the phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号