首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2-Nitropropane dioxygenase (EC 1.13.11.32) catalyzes the oxidation of nitroalkanes into their corresponding carbonyl compounds and nitrite. In this study, the ncd-2 gene encoding for the enzyme in Neurospora crassa was cloned, expressed in Escherichia coli, and the resulting enzyme was purified. Size exclusion chromatography, heat denaturation, and mass spectroscopic analyses showed that 2-nitropropane dioxygenase is a homodimer of 80 kDa, containing a mole of non-covalently bound FMN per mole of subunit, and is devoid of iron. With neutral nitroalkanes and anionic nitronates other than propyl-1- and propyl-2-nitronate, for which a non-enzymatic free radical reaction involving superoxide was established using superoxide dismutase, substrate oxidation occurs within the enzyme active site. The enzyme was more specific for nitronates than nitroalkanes, as suggested by the second order rate constant k(cat)/K(m) determined with 2-nitropropane and primary nitroalkanes with alkyl chain lengths between 2 and 6 carbons. The steady state kinetic mechanism with 2-nitropropane, nitroethane, nitrobutane, and nitrohexane, in either the neutral or anionic form, was determined to be sequential, consistent with oxygen reacting with a reduced form of enzyme before release of the carbonyl product. Enzyme-monitored turnover with ethyl nitronate as substrate indicated that the catalytically relevant reduced form of enzyme is an anionic flavin semiquinone, whose formation requires the substrate, but not molecular oxygen, as suggested by anaerobic substrate reduction with nitroethane or ethyl nitronate. Substrate deuterium kinetic isotope effects with 1,2-[(2)H(4)]nitroethane and 1,1,2-[(2)H(3) ethyl nitronate at pH 8 yielded normal and inverse effects on the k(cat)/K(m) value, respectively, and were negligible on the k(cat) value. The k(cat)/K(m) and k(cat) pH profiles with anionic nitronates showed the requirement of an acid, whereas those for neutral nitroalkanes were consistent with the involvement of both an acid and a base in catalysis. The kinetic data reported herein are consistent with an oxidasestyle catalytic mechanism for 2-nitropropane dioxygenase, in which the flavin-mediated oxidation of the anionic nitronates or neutral nitroalkanes and the subsequent oxidation of the enzyme-bound flavin occur in two independent steps.  相似文献   

2.
The secondary nitroalkanes 2-nitropropane, 2-nitrobutane, 3-nitropentane and nitrocyclopentane, as well as their anionic forms (nitronates); the primary nitroalkanes 1-nitropropane, 1-nitrobutane, and 1-nitropentane and their respective nitronates; the nitrocarbinols 2-nitro-1-propanol, 2-nitro-1-butanol, 3-nitro-2-butanol, and 3-nitro-2-pentanol and their respective nitronates; 2-methyl-2-nitropropane, and 2-nitroso-2-nitropropane were tested in the Ames Salmonella assay using strains TA98, TA100 and TA102. Nitronates of the secondary nitroalkanes 2-nitropropane, 2-nitrobutane, 3-nitropentane, and nitrocyclopentane were significantly mutagenic in Salmonella strains TA100 and TA102 at 10-80 mumoles/plate, but the parent compounds were mutagenic at only a single dose level or were not mutagenic at all in the same dose range. The primary nitroalkanes and the nitrocarbinols were not mutagenic, or only marginally so, at the concentrations tested. The nitronates of the primary nitroalkanes and the nitrocarbinols reprotonated too rapidly under the conditions of the assay for adequate evaluation of mutagenicity. 2-Methyl-2-nitropropane was not mutagenic in strains TA100 and TA102; 2-nitroso-2-nitropropane was also not mutagenic in strains TA100 and TA102, but induced an equivocal mutagenic response in TA98. The positive Salmonella mutation data for the nitronates of the secondary nitroalkanes studied correlate very well with the very slow rate of reprotonation of secondary nitroalkane nitronates at pH 7.7 (Conaway et al. (1991) Cancer Res., 51, 3143), and provide further evidence that nitronates of secondary nitroalkanes, rather than the neutral parent forms with which they may be in equilibrium, are the more proximate mutagenic species.  相似文献   

3.
2-Nitropropane (2-NP) is an industrial chemical with hepatotoxic and genotoxic properties. It exists in chemical equilibrium with propane-2-nitronate, which is much more genotoxic than 2-NP. In this work the link between toxicity and metabolism of 2-NP and its nitronate was investigated. To that end 2-NP or propane-2-nitronate were incubated with murine hepatic microsomes at concentrations of up to 10 mM, and generation of nitrite was measured as product of metabolic oxidation of the two species. Under the acidic reaction conditions of the colorimetric nitrite assay propane-2-nitronate decomposed chemically to nitrite. Therefore an ion-pair HPLC assay at neutral pH was developed which enabled determination of nitrite formed from the nitronate. The rate of metabolic nitrite generation from propane-2-nitronate was 5-10-fold that obtained with 2-NP. Metabolism of either species to nitrite was dependent on the presence in the incubate of viable microsomes and of NADPH, and it was inhibited in the presence of carbon monoxide or the cytochrome P-450 inhibitor SKF525A. Acetone could also be measured as a metabolite of 2-NP. Optical difference spectra were recorded in mixtures of propane-2-nitronate with liver microsomes from phenobarbital-pretreated rats. The spectral dissociation constant was found to be 30 mM, which compares with 10 mM reported for 2-NP. 2-NP and propane 2-nitronate were incubated with mouse hepatocytes in suspension and cytotoxicity was determined by measurement of leakage of cellular lactate dehydrogenase into the medium. Both species were hardly toxic, as concentrations of 20 mM were required to elicit significant damage to the cells. The results demonstrate that propane-2-nitronate, like 2-NP, undergoes microsomal oxidative denitrification, probably catalysed by cytochrome P-450. Metabolism of both species occurs at markedly different rates, but the difference in metabolism is not reflected by a difference in hepatocytotoxic potential.  相似文献   

4.
Nitronate monooxygenase (NMO; E.C. 1.13.12.16) oxidizes alkyl nitronates to aldehydes and nitrite. Although the biochemistry of the enzyme from fungal sources has been studied extensively, the physiological role is unknown. The ability of NMO to detoxify propionate-3-nitronate was tested by measuring growth of recombinant Escherichia coli containing the gene encoding for the enzyme in either the absence or presence of the nitronate and its conjugate acid 3-nitropropionate. The mixture propionate-3-nitronate/3-nitropropionate is toxic to E. coli cells lacking expression of NMO, but the toxicity is overcome through either induction of the gene for NMO or through addition of exogenous enzyme to the cultures. Both Williopsis saturnus and Neurospora crassa were able to grow in the presence of 0.4mM propionate-3-nitronate and 19.6mM 3-nitropropionate, while a knockout mutant of N. crassa lacking NMO was inhibited by concentrations of propionate-3-nitronate and 3-nitropropionate >0.3 and 600μM, respectively. These results strongly support the conclusion that NMO functions to protect the fungi from the environmental occurrence of the metabolic toxin.  相似文献   

5.
Nitronate monooxygenase (NMO), formerly referred to as 2-nitropropane dioxygenase, is an FMN-dependent enzyme that uses molecular oxygen to oxidize (anionic) alkyl nitronates and, in the case of the enzyme from Neurospora crassa, (neutral) nitroalkanes to the corresponding carbonyl compounds and nitrite. Over the past 5 years, a resurgence of interest on the enzymology of NMO has driven several studies aimed at the elucidation of the mechanistic and structural properties of the enzyme. This review article summarizes the knowledge gained from these studies on NMO, which has been emerging as a model system for the investigation of anionic flavosemiquinone intermediates in the oxidative catalysis of organic molecules, and for the effect that branching of reaction intermediates has on both the kinetic parameters and isotope effects associated with enzymatic reactions. A comparison of the catalytic mechanism of NMO with other flavin-dependent enzymes that oxidize nitroalkane and nitronates is also presented.  相似文献   

6.
2-Nitropropane dioxygenase from Hansenula mrakii was expressed in Escherichia coli cells and purified in active and stable form using 60% saturation of ammonium sulfate and a single chromatographic step onto a DEAE column. MALDI-TOF mass spectrometric and spectrophotometric analyses of the flavin extracted by heat or acid denaturation of the enzyme indicated that FMN, and not FAD as erroneously reported previously, is present in a 1:1 stoichiometry with the protein. Inductively coupled plasma mass spectrometric analysis of the enzyme established that H. mrakii 2-nitropropane dioxygenase contains negligible amounts of iron, manganese, zinc, and copper ions, which are not catalytically relevant. Anaerobic substrate reduction and kinetic data using a Clark oxygen electrode to measure rates of oxygen consumption indicated that the enzyme is active on a broad range of alkyl nitronates, with a marked preference for unbranched substrates over propyl-2-nitronate. Interestingly, the enzyme reacts poorly, if at all, with nitroalkanes, as suggested by lack of both anaerobic reduction of the enzyme-bound flavin and consumption of oxygen with nitroethane, nitrobutane, and 2-nitropropane. Finally, both the tight binding of sulfite (Kd = 90 μM, at pH 8 and 15 °C) to the enzyme and the formation of the anionic flavosemiquinone upon anaerobic incubation with alkyl nitronates are consistent with the presence of a positively charged group in proximity of the N(1)C(2)O atoms of the FMN cofactor.  相似文献   

7.
The superoxide radical O2.-, whether produced by the xanthine/xanthine oxidase reaction or infused as KO2, solubilized by a crown ether in dry dimethyl sulphoxide, initiated a free-radical chain oxidation of anionic 2-nitropropane. Superoxide dismutase, but not catalase, inhibited oxidation of the nitroalkane. Xanthine oxidase suffered a syncatalytic inactivation, during the co-oxidation of 2-nitropropane, which was reversed by dialysis. Cyanide exacerbated this syncatalytic inactivation and rendered it irreversible. The frequently observed oxidations of nitroalkanes by flavoenzymes now need to be re-examined to clarify the extent to which O2.--initiated free-radical chain oxidation contributed to the overall nitroalkane oxidation.  相似文献   

8.
Nitroalkane oxidase (NAO) catalyzes neutral nitroalkanes to their corresponding aldehydes or ketones, hydrogen peroxide and nitrite. The crystal structure of NAO from Streptomyces ansochromogenes was determined; it consists of two domains, a TIM barrel domain bound to FMN and C-terminal domain with a novel folding pattern. Site-directed mutagenesis of His179, which is spatially adjacent to FMN, resulted in the loss of enzyme activity, demonstrating that this amino acid residue is important for catalysis. The crystal structure of mutant H179D-nitroethane was also analyzed. Interestingly, Sa-NAO shows the typical function as nitroalkane oxidase but its structure is similar to that of 2-nitropropane dioxygenase. Overall, these results suggest that Sa-NAO is a novel nitroalkane oxidase with TIM barrel structure.  相似文献   

9.
A nitroalkane-oxidizing enzyme, which was inducibly formed by addition of nitroethane to the medium was purified to homogeneity from an extract of Fusarium oxysporum (IFO 5942) with an overall yield of about 20%. The enzyme catalyzed the oxidative denitrification of 1-nitropropane as follows: CH2(NO2)CH2CH3 + O2 + H2O leads to OHCCH2CH3 + HNO2 + H2O2. In addition to 1-nitropropane, 3-nitro-2-pentanol, 2-nitropropane, and nitrocyclohexane are good substrates; the enzyme is designated "nitroalkane oxidase" (EC class 1.7.3). The enzyme has a molecular weight of approximately 185,000 and consists of four subunits identical in molecular weight (47,000). Flavin adenine dinucleotide was required for the enzyme activity and could be replaced in part by riboflavin 5'-phosphate. The maximum reactivity was found at about pH 8.0. The enzyme was inhibited significantly by HgCl2, KCN, p-chloromercuribenzoate, and N-ethylmaleimide. The Michaelis constants are as follows: 1-nitropropane, 1.54 mM; 2-nitropropane, 7.40 mM; nitroethane, 1.00 mM; 3-nitro-2-pentanol, 3.08 mM; nitrocyclohexane, 0.90 mM; and flavin adenine dinucleotide, 1.33 micrometer.  相似文献   

10.
T Kido  T Yamamoto    K Soda 《Journal of bacteriology》1976,126(3):1261-1265
A nitroalkane-oxidizing enzyme was purified about 1,300-fold from a cell extract of Hansenula mrakii grown in a medium containing nitroethane as the sole nitrogen source by ammonium sulfate fractionation, diethylaminoethyl-cellulose column chromatography, hydroxyapatite column chromatography, and Bio-Gel P-150 column chromatography. The enzyme was shown to be homogeneous upon acrylamide gel electrophoresis and ultracentrifugation. The enzyme exhibits absorption maxima at 274, 370, 415, and 440 nm and a shoulder at 470 nm. Balance studies showed that 2 mol of 2-nitropropane is converted into an equimolar amount of acetone and nitrite with the consumption of 1 mol of oxygen. Hydrogen peroxide is not formed in the enzyme reaction. In addition to 2-nitropropane, 1-nitropropane and nitroethane are oxidatively dentrified by the enzyme, but nitromethane is inert to the enzyme. The nitroalkanes are not oxidized under anaerobic conditions.  相似文献   

11.
Francis K  Gadda G 《Biochemistry》2006,45(46):13889-13898
Among the enzymes that catalyze the oxidative denitrification of nitroalkanes to carbonyl compounds, 2-nitropropane dioxygenase is the only one known to effectively utilize both the neutral and anionic (nitronate) forms of the substrate. A recent study has established that the catalytic pathway is common to both types of substrates, except for the initial removal of a proton from the carbon of the neutral substrates [Francis, K., Russell, B., and Gadda, G. (2005) J. Biol. Chem. 280, 5195-5204]. In the present study, the mechanistic properties of the enzyme have been investigated with solvent viscosity, pH, and kinetic isotope effects. With nitroethane or ethylnitronate, the kcat/Km and kcat values were independent of solvent viscosity, consistent with the substrate and product binding to the enzyme in rapid equilibrium. The abstraction of the proton from the alpha carbon of neutral substrates was investigated by measuring the pH dependence of the D(kcat/KNE) value with 1,1-[2H2]-nitroethane. The formation of the enzyme-bound flavosemiquinone formed during catalysis was examined by determining the pH dependence of the kcat/Km values with ethylnitronate and nitroethane and the inhibition by m-nitrobenzoate. Finally, alpha-secondary kinetic isotope effects with 1-[2H]-ethylnitronate were used to propose a non-oxidative tautomerization pathway, in which the enzyme catalyzes the interconversion of nitroalkanes between their anionic and neutral forms. The data presented suggest that enzymatic turnover of 2-nitropropane dioxygenase with neutral substrates is limited by the cleavage of the substrate CH bond at low pH, whereas that with anionic substrates is limited by the non-oxidative tautomerization of ethylnitroante to nitroethane at high pH.  相似文献   

12.
A series of monovalent, inorganic anions and aliphatic aldehydes were tested as inhibitors for Hansenula mrakii and Neurospora crassa nitronate monooxygenase, formerly known as 2-nitropropane dioxygenase, to investigate the structural features that contribute to the binding of the anionic nitronate substrates to the enzymes. A linear correlation between the volumes of the inorganic anions and their effectiveness as competitive inhibitors of the enzymes was observed in a plot of pKis versus the ionic volume of the anion with slopes of 0.041 ± 0.001 mM/Å3 and 0.027 ± 0.001 mM/Å3 for the H. mrakii and N. crassa enzymes, respectively. Aliphatic aldehydes were weak competitive inhibitors of the enzymes, with inhibition constants that are independent of their alkyl chain lengths. The reductive half reactions of H. mrakii nitronate monooxygenase with primary nitronates containing two to four carbon atoms all showed apparent Kd values of 5 mM. These results are consistent with the presence of an anion binding pocket in the active site of nitronate monooxygenase that interacts with the nitro group of the substrate, and suggest a minimal contribution of the hydrocarbon chain of the nitronates to the binding of the ligands to the enzyme.  相似文献   

13.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to aldehydes with production of hydrogen peroxide and nitrite. The substrate specificity of the FAD-containing enzyme has been determined as a probe of the active site structure. Nitroalkane oxidase is active on primary and secondary nitroalkanes, with a marked preference for unbranched primary nitroalkanes. The V/K values for primary nitroalkanes increase with increasing length of the alkyl chain, reaching a maximum with 1-nitrobutane, suggesting a hydrophobic binding site sufficient to accommodate a four carbon chain. Each methylene group of the substrate contributes approximately 2.6 kcal mol-1 in binding energy. The V/K values for substrates containing a hydroxyl group are two orders of magnitude smaller than those of the corresponding nitroalkanes, also consistent with a hydrophobic binding site. 3-Nitro-1-propionate is a competitive inhibitor with a Kis value of 3.1 +/- 0.2 mM.  相似文献   

14.
The flavoprotein nitroalkane oxidase catalyzes the oxidative denitrification of primary or secondary nitroalkanes to the corresponding aldehydes or ketones with production of hydrogen peroxide and nitrite. The enzyme is irreversibly inactivated by treatment with N-ethylmaleimide at pH 7. The inactivation is time-dependent and shows first-order kinetics for three half-lives. The second-order rate constant for inactivation is 3.4 +/- 0.06 m(-)(1) min(-)(1). The competitive inhibitor valerate protects the enzyme from inactivation, indicating an active site-directed modification. Comparison of tryptic maps of enzyme treated with N-[ethyl-1-(14)C]maleimide in the absence and presence of valerate shows a single radioactive peptide differentially labeled in the unprotected enzyme. The sequence of this peptide was determined to be LLNEVMCYPLFDGGNIGLR using Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The cysteine residue was identified as the site of alkylation by ion trap mass spectrometry.  相似文献   

15.
Nitroalkane compounds are widely used in chemical industry and are also produced by microorganisms and plants. Some nitroalkanes have been demonstrated to be carcinogenic, and enzymatic oxidation of nitroalkanes is of considerable interest. 2-Nitropropane dioxygenases from Neurospora crassa and Williopsis mrakii (Hansenula mrakii), members of one family of the nitroalkane-oxidizing enzymes, contain FMN and FAD, respectively. The enzymatic oxidation of nitroalkanes by 2-nitropropane dioxygenase operates by an oxidase-style catalytic mechanism, which was recently shown to involve the formation of an anionic flavin semiquinone. This represents a unique case in which an anionic flavin semiquinone has been experimentally observed in the catalytic pathway for oxidation catalyzed by a flavin-dependent enzyme. Here we report the first crystal structure of 2-nitropropane dioxygenase from Pseudomonas aeruginosa in two forms: a binary complex with FMN and a ternary complex with both FMN and 2-nitropropane. The structure identifies His(152) as the proposed catalytic base, thus providing a structural framework for a better understanding of the catalytic mechanism.  相似文献   

16.
The yield of nitric oxide from 1 mM sodium nitrite differs 200 times when the process was initiated by 10 mM sodium dithionite in the solution of 5 or 150 mM HEPES-buffer (pH 7.4). Dithionite acted both as a strong reductant and an agent that induced a local acidification of solutions without notable change in pH value. The amount of nitric oxide was estimated by the EPR method by measuring the incorporation of nitric oxide to water-soluble complexes of Fe with N-methyl-D-glucamine dithiocarbamate (MGD), which led to the formation of EPR-detectable mononitrosyl iron complexes with MGD (MNIC-MGD). Ten seconds after dithionite addition, the concentration of MNIC - MGD complexes reached 2 microM in 5 mM HEPES-buffer in contrast to 0.01 microM in 150 mM HEPES-buffer. The difference was suggested to be due to a higher life-time of zones with decreased pH values in a weaker weak buffer solution. The life-time was high enough to ensure the protonation of a part of nitrite. The resulting nitrous acid was decomposed to form nitric oxide. The difference in the formation of nitric oxide from nitrite was also observed in weak and strong buffer solutions in the presence of hemoglobin (0.3 mM) or serum albumin (0.5 mM). However, the ratios of nitric oxide yields in weak and strong buffer did not exceed 3-4 times. The increase in the formation of nitric oxide from nitrite was characteristic for the solutions containing both proteins. Large amounts of nitric oxide formed from nitrite was observed in mouse liver preparation subjected to freezing-thawing procedure followed by incubation in 150 mM HEPES-buffer (pH 7.4) and addition of dithionite. The proposition was made that the presence of zones with low pH value in cells and tissues can ensure the predominant operation of the acid mechanism formation of nitric oxide from nitrite. The contribution of the formation of nitric oxide from nitrite catalyzing with heme-containing proteins nitrite reductases can be minor one under these conditions.  相似文献   

17.
The flavoprotein nitroalkane oxidase from Fusarium oxysporum catalyzes the oxidation of nitroalkanes to the respective aldehydes or ketones with production of nitrite and hydrogen peroxide. The enzyme is irreversibly inactivated by incubation with tetranitromethane, a tyrosine-directed reagent, at pH 7.3. The inactivation is time-dependent and shows first-order kinetics for two half-lives of inactivation. Further inactivation can be achieved upon a second addition of tetranitromethane. A saturation kinetic pattern is observed when the rate of inactivation is determined versus the concentration of tetranitromethane, indicating that a reversible enzyme-inhibitor complex is formed before irreversible inactivation occurs. Values of 0.096 +/- 0.013 min(-1) and 12.9 +/- 3.8 mM were determined for the first-order rate constant for inactivation and the dissociation constant for the reversibly formed complex, respectively. The competitive inhibitor valerate protects the enzyme from inactivation by tetranitromethane, suggesting an active-site-directed inactivation. The UV-visible absorbance spectrum of the inactivated enzyme is perturbed with respect to that of the native enzyme, suggesting that treatment with tetranitromethane resulted in nitration of the enzyme. Comparison of tryptic maps of nitroalkane oxidase treated with tetranitromethane in the presence and absence of valerate shows a single peptide differentially labeled in the inactivated enzyme. The spectral properties of the modified peptide are consistent with nitration of a tyrosine residue. The amino acid sequence of the nitrated peptide is L-L-N-E-V-M-C-(NO(2)-Y)-P-L-F-D-G-G-N-I-G-L-R. The possible role of this tyrosine in substrate binding is discussed.  相似文献   

18.
The yields of nitric oxide from 1 mM and 10 mM sodium dithionite in 5 or 150 mM solutions of HEPES buffer (pH 7.4) differed by a factor of 200. Dithionite acted as both a strong reducing agent and an agent responsible for local acidification of the solutions without significant changes in pH. The concentration of nitric oxide was estimated by electron paramagnetic resonance (EPR) by monitoring its incorporation into water-soluble complexes of Fe with N-methyl-D-glucamine dithiocarbamate (MGD), which resulted in the formation of EPR-detectable mononitrosyl complexes of iron. Ten seconds after dithionite addition, the concentration of mononitrosyl iron complexes reached 2 μM, whereas it did not become greater than 0.01 μM in 5 mM HEPES buffer. It has been suggested that this difference results from a longer lifetime of a localized decrease in pH in a weaker buffer solution. This time could be long enough for the protonation of some nitrite molecules. Nitrous acid thus formed decomposed to nitric oxide. A difference in nitric oxide formation from nitrite in weak and strong buffer solutions was also observed in the presence of hemoglobin (0.3 mM) or serum albumin (0.5 mM). However, in the weak buffer the nitric oxide yield was only three-four times greater than in the strong buffer. An increase in the nitric oxide yield from nitrite was observed in solutions containing both proteins. A significant amount of nitric oxide from nitrite was formed in mouse liver preparation subjected to freezing and thawing procedure followed by slurrying in 150 mM HEPES buffer (pH 7.4) and dithionite addition (10 mM). We suggest that the presence of zones with lowered pH values in cells and tissues may be responsible for the predominance of the acidic mechanism of nitric oxide formation from nitrite. The contribution of nitric oxide formation from nitrite catalyzed by heme-containing proteins as nitrite reductases may be minor under these conditions.  相似文献   

19.
A nitroalkane-oxidizing enzyme was purified to homogeneity from Neurospora crassa. The enzyme is composed of two subunits; the molecular weight of each subunit is approximately 40,000. The enzyme catalyzes the oxidation of nitroalkanes to produce the corresponding carbonyl compounds. It acts on 2-nitropropane better than on nitroethane and 1-nitropropane, and anionic forms of nitroalkanes are much better substrates than are neutral forms. The enzyme does not act on aromatic compounds. When the enzyme reaction was conducted in an 18O2 atmosphere with the anionic form of 2-nitropropane as the substrate, acetone (with a molecular mass of 60 Da) was produced. This indicates that the oxygen atom of acetone was derived from molecular oxygen, not from water; hence, the enzyme is an oxygenase. The reaction stoichiometry was 2CH3CH(NO2)-CH3 + O2→2CH3COCH3 + 2HNO2, which is identical to that of the reaction of 2-nitropropane dioxygenase from Hansenula mrakii. The reaction of the Neurospora enzyme was inhibited by superoxide anion scavengers in the same manner as that of the Hansenula enzyme. Both of these enzymes are flavoenzymes; however, the Neurospora enzyme contains flavin mononucleotide as a prosthetic group, whereas the Hansenula enzyme contains flavin adenine dinucleotide.  相似文献   

20.
The reactivities of anionic nitroalkanes with 2-nitropropane dioxygenase of Hansenula mrakii, glucose oxidase of Aspergillus niger, and mammalian d-amino acid oxidase have been compared kinetically. 2-Nitropropane dioxygenase is 1200 and 4800 times more active with anionic 2-nitropropane than d-amino acid oxidase and glucose oxidase, respectively. The apparent Km values for anionic 2-nitropropane are as follows: 2-nitropropane dioxygenase, 1.61 mm; glucose oxidase, 16.7 mm; and d-amino acid oxidase, 11.1 mm. Anionic 2-nitropropane undergoes an oxygenase reaction with 2-nitropropane dioxygenase and glucose oxidase, and an oxidase reaction with d-amino acid oxidase. In contrast, anionic nitroethane is oxidized through an oxygenase reaction by 2-nitropropane dioxygenase, and through an oxidase reaction by glucose oxidase. All nitroalkane oxidations by these three flavoenzymes are inhibited by Cu and Zn-superoxide dismutase of bovine blood, Mn-superoxide dismutases of bacilli, Fe-superoxide dismutase of Serratia marcescens, and other O2? scavengers such as cytochrome c and NADH, but are not affected by hydroxyl radical scavengers such as mannitol. None of the O2? scavengers tested affected the inherent substrate oxidation by glucose oxidase and d-amino acid oxidase. Furthermore, the generation of O2? in the oxidation of anionic 2-nitropropane by 2-nitropropane dioxygenase was revealed by ESR spectroscoy. The ESR spectrum of anionic 2-nitropropane plus 2-nitropropane dioxygenase shows signals at g1 = 2.007 and g11 = 2.051, which are characteristic of O2?. The O2? generated is a catalytically essential intermediate in the oxidation of anionic nitroalkanes by the enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号