首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The T cell receptor (TcR) heterodimer of alpha/beta glycoprotein is noncovalently associated with CD3 glycoprotein forming TcR/CD3 complex. The TcR have been shown to recognize antigen, and CD3 antigen is responsible for signal transduction. In this study we compared the effects of WT31 (defining alpha/beta TcR) monoclonal antibody (MoAb) and anti-CD3 MoAb on various steps of human T cell activation. Both antibodies depolarized plasma membranes, increased cell volume, induced IL-2 production and the expression of IL-2 receptors (CD25 antigen) and induced DNA synthesis. Furthermore, the two antibodies showed no synergistic effect on any of these parameters. However, both MoAb showed synergism with phorbol ester (PMA). WT31-induced T cell activation was Ca(2+)-dependent because the addition of EGTA to the medium inhibited DNA synthesis and CD25 antigen expression. The blockers of protein kinase C (PKC), 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7) and staurosporin, in a dose-dependent manner inhibited WT31-induced DNA synthesis. Cholera toxin but not the pertussis toxin inhibited WT31-induced T cell activation, suggesting involvement of G protein in WT31-induced T cell activation. These data indicate that WT31 antibody activates human T cells by a pathway that is similar to that of anti-CD3-induced T cell activation.  相似文献   

2.
The determination of the location and conformation of a natural ligand bound to a protein receptor is often a first step in the rational design of molecules that can modulate receptor function. NMR observables, including NOEs, often provide the basis for these determinations. However, when ligands are carbohydrates, interactions mediated by extensive hydrogen-bonding networks often reduce or eliminate NOEs between ligand and protein protons. In these cases, it is useful to look to other distance- and orientation-dependent observables that can constrain the geometry of ligand-protein complexes. Here we illustrate the use of paramagnetism-based NMR constraints, including pseudo-contact shifts (PCS) and field-induced residual dipolar couplings (RDCs). When a paramagnetic center can be attached to the protein, field-induced RDCs and PCS reflect only bound-state properties of the ligand, even when averages over small fractions of bound states and large fractions of free states are observed. The effects can also be observed over a long range, making it possible to attach a paramagnetic center to a remote part of the protein. The system studied here is a Galectin-3-lactose complex. A lanthanide-binding peptide showing minimal flexibility with respect to the protein was integrated into the C terminus of an expression construct for the Galectin-3-carbohydrate-binding domain. Dysprosium ion, which has a large magnetic susceptibility anisotropy, was complexed to the peptide, making it possible to observe both PCSs and field-induced RDCs for the protein and the ligand. The structure determined from these constraints shows agreement with a crystal structure of a Galectin-3-N-acetyllactosamine complex.  相似文献   

3.
Longitudinal relaxation rates of the protons of the 3,8-dimethyl-N-methyl-phenanthrolinium (DMP) cation in solutions containing DNA are strongly affected by the addition of the paramagnetic manganese (II) ions due to the electron-nuclear dipolar interaction in the ternary Mn-DNA-DMP complex. Two possible models for the DMP-DNA intercalation complex are examined and one of them is unequivocally discriminated on the basis of the proton relaxation data. It is concluded that in the intercalation complex the long axis of the DMP molecule is almost perpendicular to the hydrogen bonds of the DNA base-pairs.  相似文献   

4.
Summary The NMR solution structure of the activation domain isolated from porcine procarboxypeptidase B is compared with the X-ray crystal structure of the corresponding segment in the intact proenzyme. For the region of the polypeptide chain that has a well-defined three-dimensional structure in solution, i.e., the backbone atoms of residues 11–76 and 25 amino acid side chains in this segment that form a hydrophobic core in the activation domain, the root-mean-square distance between the two structures is 1.1 Å. There are no significant differences in average atom positions between the two structures, but only the NMR structure shows increased structural disorder in three outlying loops located along the same edge of the activation domain. These regions of increased structural disorder in the free domain coincide only partially with the interface to the enzyme domain in the proenzyme.  相似文献   

5.
Rotational-echo double resonance solid-state (31)P[(19)F] and (13)C[(19)F] NMR spectra have been used to locate the binding of a fluoroquinobenzoxazine to a DNA G-quadruplex labeled by phosphorothioation and [methyl-(13)C]thymidine.  相似文献   

6.
T cell hyperactivation and complement consumption are prominent features of the immunopathology of systemic lupus erythematosus. Although complement activation is secondary to autoantibodies that form immune complexes (ICs), the trigger for alterations in human peripheral blood T cells is poorly understood. To study the impact (on T cells) of several types of preformed ICs and terminal complement complex, also referred to as C5b-9, we incubated these immune reactants with peripheral blood naive CD4(+) T cells as well as Jurkat cells and analyzed their effects on cellular behavior. We first assembled the C5b-9 in situ on the membrane and observed its assembly primarily on a single site where it promoted aggregation of membrane rafts and recruitment of the CD3 signaling complex. However, C5b-9 alone did not initiate proliferation or commencement of downstream signaling events associated with T cell activation. When T cells were treated with ICs together with nonlytic C5b-9, changes associated with T cell activation by possible antigen engagement then occurred. T cell antigen receptor signaling proteins, including ζ-chain, ZAP-70, Syk, Src, and Lck, were phosphorylated and organized in a synapse-like structure. The cytoskeleton formed F-actin spindles and a distal pole complex, resulting in a bipolar distribution of phosphorylated ezrin-radixin-moesin and F-actin. Furthermore, ICs and nonlytic C5b-9 induced T cell proliferation and IFN-γ production. These results raise the possibility that ICs and the nonlytic C5b-9 modulate T cell-mediated responses in systemic lupus erythematosus and other related chronic inflammatory disorders.  相似文献   

7.
T cell activation depends not only on the expression of a TCR, but also on that of accessory molecules that function in cell-cell adhesion and/or signal transduction. The subject of this report is the biochemical and functional characterization of what appears to be a novel murine lymphocyte cell surface antigen, provisionally termed sgp-60. Extensive, higher-order cross-linking of this glycoprotein with an anti-sgp-60 mAb and a second-step antibody reagent results in the activation of resting CD4+ T cells in the presence of a second signal. Monovalent or bivalent engagement of sgp-60 by the anti-sgp-60 antibody results in profound and direct inhibition of anti-CD3- or Con A-driven T cell activation, whereas alternative T cell activation via the phosphatidylinositol-linked proteins Thy-1 and TAP/Ly-6A is not affected. These findings raise the possibility that the sgp-60 molecule may be specifically involved in signal transduction through the TCR/CD3 complex and thus point to an important physiologic role for this protein in CD4+ T cells.  相似文献   

8.
9.
Longitudinal relaxation rates of the protons of the 3,8-dimethyl-N-methyl-phenanthrolinium (DMP) cation in solutions containing DNA are strongly affected by the addition of the paramagnetic manganese (II) ions due to the electron-nuclear dipolar interaction in the ternary Mn-DNA-DMP Complex. Two possible models for the DMP-DNA intercalation complex are examined and one of them is unequivocally discriminated on the basis of the proton relaxation data. It is concluded that in the intercalation complex the long axis of the DMP molecule is almost perpendicular to the hydrogen bonds of the DNA base-pairs.  相似文献   

10.
In this study we analyzed the interaction of prion protein PrPC with components of glycosphingolipid-enriched microdomains in lymphoblastoid T cells. PrPC was distributed in small clusters on the plasma membrane, as revealed by immunoelectron microscopy. PrPC is present in microdomains, since it coimmunoprecipitates with GM3 and the raft marker GM1. A strict association between PrPC and Fyn was revealed by scanning confocal microscopy and coimmunoprecipitation experiments. The phosphorylation protein ZAP-70 was immunoprecipitated by anti-PrP after T cell activation. These results demonstrate that PrPC interacts with ZAP-70, suggesting that PrPC is a component of the multimolecular signaling complex within microdomains involved in T cell activation.  相似文献   

11.
Summary A new method, a restrained Monte Carlo (rMC) calculation, is demonstrated for generating high-resolution structures of DNA oligonucleotides in solution from interproton distance restraints and bounds derived from complete relaxation matrix analysis of two-dimensional nuclear Overhauser effect (NOE) spectral peak intensities. As in the case of restrained molecular dynamics (rMD) refinement of structures, the experimental distance restraints and bounds are incorporated as a pseudo-energy term (or penalty function) into the mathematical expression for the molecular energy. However, the use of generalized helical parameters, rather than Cartesian coordinates, to define DNA conformation increases efficiency by decreasing by an order of magnitude the number of parameters needed to describe a conformation and by simplifying the potential energy profile. The Metropolis Monte Carlo method is employed to simulate an annealing process. The rMC method was applied to experimental 2D NOE data from the octamer duplex d(GTA-TAATG)·d(CATTATAC). Using starting structures from different locations in conformational space (e.g. A-DNA and B-DNA), the rMC calculations readily converged, with a root-mean-square deviation (RMSD) of <0.3 Å between structures generated using different protocols and starting structures. Theoretical 2D NOE peak intensities were calculated for the rMC-generated structures using the complete relaxation matrix program CORMA, enabling a comparison with experimental intensities via residual indices. Simulation of the vicinal proton coupling constants was carried out for the structures generated, enabling a comparison with the experimental deoxyribose ring coupling constants, which were not utilized in the structure determination in the case of the rMC simulations. Agreement with experimental 2D NOE and scalar coupling data was good in all cases. The rMC structures are quite similar to that refined by a traditional restrained MD approach (RMSD<0.5 Å) despite the different force fields used and despite the fact that MD refinement was conducted with additional restraints imposed on the endocyclic torsion angles of deoxyriboses. The computational time required for the rMC and rMD calculations is about the same. A comparison of structural parameters is made and some limitations of both methods are discussed with regard to the average nature of the experimental restraints used in the refinement.Abbreviations MC Monte Carlo - rMC restrained Monte Carlo - MD molecular dynamics - rMD restrained molecular dynamics - DG distance geometry - EM energy minimization - 2D NOE two-dimensional nuclear Overhauser effect - DQF-COSY double-quantum-filtered correlation spectroscopy - RMSD root-mean-square deviation To whom correspondence should be addressed.  相似文献   

12.
Maintenance of normal core body temperature is vigorously defended by long conserved, neurovascular homeostatic mechanisms that assist in heat dissipation during prolonged, heat generating exercise or exposure to warm environments. Moreover, during febrile episodes, body temperature can be significantly elevated for at least several hours at a time. Thus, as blood cells circulate throughout the body, physiologically relevant variations in surrounding tissue temperature can occur; moreover, shifts in core temperature occur during daily circadian cycles. This study has addressed the fundamental question of whether the threshold of stimulation needed to activate lymphocytes is influenced by temperature increases associated with physiologically relevant increases in temperature. We report that the need for co-stimulation of CD4+ T cells via CD28 ligation for the production of IL-2 is significantly reduced when cells are exposed to fever-range temperature. Moreover, even in the presence of sufficient CD28 ligation, provision of extra heat further increases IL-2 production. Additional in vivo and in vitro data (using both thermal and chemical modulation of membrane fluidity) support the hypothesis that the mechanism by which temperature modulates co-stimulation is linked to increases in membrane fluidity and membrane macromolecular clustering in the plasma membrane. Thermally-regulated changes in plasma membrane organization in response to physiological increases in temperature may assist in the geographical control of lymphocyte activation, i.e., stimulating activation in lymph nodes rather than in cooler surface regions, and further, may temporarily and reversibly enable CD4+ T cells to become more quickly and easily activated during times of infection during fever.  相似文献   

13.
14.
The ability to monitor the activation state of T‐cells during immunotherapy is of great importance. Although specific activation markers do exist, their abundance and complicated regulation cannot definitely define the activation state of the cells. Previous studies have shown that Third Harmonic Generation (THG) imaging could distinguish between activated versus resting microglia and healthy versus cancerous cells, mainly based on their lipid‐body profiles. In the present study, mitogen or antigen‐stimulated T‐cells were subjected to THG imaging microscopy. Qualitative and quantitative analysis showed statistically significant increase of THG mean area and intensity in activated versus resting T‐cells. The connection of THG imaging to chemical information was achieved using Raman spectroscopy, which showed significant differences between the activation processes and controls, correlating of THG signal area with cholesterol and lipid compounds, but not with triglycerides. The obtained results suggested a potential employment of nonlinear microscopy in evaluating of T‐cell activation, which is expected to be largely appreciated in the clinical practice.   相似文献   

15.
NF-kappaB is a critical target of signaling downstream of the T cell receptor (TCR) complex, but how TCR signaling activates NF-kappaB is poorly understood. We have developed an expression cloning strategy that can identify catalytic and noncatalytic molecules that participate in different pathways of NF-kappaB activation. Screening of a mouse thymus cDNA library yielded CARD11, a membrane-associated guanylate kinase (MAGUK) family member containing CARD, PDZ, SH3 and GUK domains. Using a CARD-deleted variant of CARD11 and RNA interference (RNAi), we demonstrate that CARD11 mediates NF-kappaB activation by alphaCD3/alphaCD28 cross-linking and PMA/ionomycin treatment, but not by TNFalpha or dsRNA. CARD11 is not required for TCR-mediated induction of NFAT or AP-1. CARD11 functions upstream of the IkappaB-kinase (IKK) complex and cooperates with Bcl10 in a CARD domain-dependent manner. RNAi-rescue experiments suggest that the CARD, coiled-coil, SH3 and GUK domains of CARD11 are critical for its signaling function. These results implicate CARD11 in factor- specific activation of NF-kappaB by the TCR complex and establish a role for a MAGUK family member in antigen receptor signaling.  相似文献   

16.
The T cell, Ig domain, and mucin domain-1 (TIM-1) gene is associated with Th2 T cell responses and human atopic diseases. The mechanism by which TIM-1 influences T cell responses remains unknown. We demonstrate that TIM-1 is recruited to the TCR-signaling complex via association with CD3. TIM-1 up-regulates TCR-associated signaling events, including phosphorylation of Zap70 and IL-2-inducible T cell kinase. This activity requires TIM-1 tyrosine phosphorylation. TIM-1 expression induces formation of a novel complex that includes PI3K and ITK. Finally, the consequences of TIM-1 activation include increased expression of effector cytokines. These results demonstrate that TIM-1 is a critical component of the human T cell response and provide a mechanistic hypothesis for the role of TIM-1 in disease.  相似文献   

17.
A novel triggering signal for human proliferating and cytotoxic T lymphocytes defined by a 103 kD T cell-specific activation antigen (Tp103) is described. Tp103 is expressed on all proliferating normal T cells but is not present, or present only in low amounts, on resting peripheral blood T lymphocytes. Cross-linking of T cell and Fc receptor-positive accessory or target cells by an antibody against Tp103 leads to activation of the T cell. The proliferative response is due to an autocrine IL 2-dependent mechanism and can be inhibited by antibodies against the IL 2 receptor or by Cyclosporin A. Resting Tp103-positive T cells also respond to anti-Tp103. Although Tp103 is not linked to the antigen receptor/T3 complex, triggering via Tp103 can be inhibited by modulation of the T3 molecule. Thus, Tp103 defines a new antigen-independent pathway of T cell activation that can be regulated via other T cell surface structures.  相似文献   

18.
19.
We constructed chimeric receptor chains in which an immunoglobulin heavy chain variable region (VH) from a phosphorylcholine-specific antibody is substituted for T cell receptor (Tcr) alpha and beta V regions. We demonstrate that the VH region joined to either the C alpha or the C beta region can form stable chimeric proteins in EL4 T cells. Both chimeric receptor chains associate with CD3 polypeptides in functional receptor complexes and respond to phosphorylcholine coupled to Sepharose beads. The VH-C alpha chimeric chain associates with the EL4 beta chain, while the VH-C beta chimeric protein appears to form either a homodimer or a heterodimer with the native EL4 beta chain. Thus, functional receptor complexes can be formed using two C beta regions, and the C alpha region may not be required for CD3 association and surface expression of Tcr complexes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号