首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rabbit VX2 tumour cells in culture produced a collagenolytic activity which was shown to be immunologically identical to collagenase from rabbit articular chondrocytes and bone. VX2 cells degraded type I collagen films spontaneously and did not produce detectable levels of the tissue inhibitor of metalloproteinases (TIMP). Chondrocytes, however, required both stimulation of collagenase synthesis and activation to effect lysis and were observed to make appreciable amounts of TIMP. The degradation of type I collagen films by VX2 tumour cells was significantly inhibited by both a specific antibody to rabbit collagenase and by purified TIMP, thus demonstrating the unequivocal role of collagenase in this model system.  相似文献   

2.
A fibrosarcoma cell line transfected with the matrix metalloproteinase MT1 MMP showed an enhanced ability to degrade 14C-labelled collagen films. As previously shown for proMMP 2 activation, TIMP 1 was an ineffective inhibitor of the process of collagenolysis whereas TIMP 2 was efficient and completely prevented collagen degradation. In the presence of the calcium ionophore, ionomycin, proteolytic processing of MT1 MMP was restricted and collagenolysis did not occur indicating that the 63 kDa form of the enzyme is not a functional collagenase. The collagenolytic activity of MT1 MMP was shown to be enhanced by the addition of proMMP 2, but TIMP 1 inhibition remained poor relative to that of TIMP 2. The study demonstrated that synergy between two non-conventional collagenases effectively degrades insoluble pericellular collagen. Due to the membrane localisation of MT1 MMP, this could potentially occur in a highly localised manner.  相似文献   

3.
The actions of interleukin 1 (IL1) and tumor necrosis factor alpha (TNF alpha) on several parameters of the collagen metabolism of rabbit articular chondrocytes were studied by comparing the responses of either differentiated chondrocytes in primoculture or dedifferentiated cells in late passage culture to human recombinant (hr) IL1 alpha, hr-TNF alpha and cytokine-enriched fractions of rabbit macrophage-conditioned media. In response to IL1 or TNF alpha, differentiated chondrocytes (i.e., producing the cartilage-specific collagens, types II and XI, but no type I), sharply reduced their synthesis of collagen, a reduction which involved both types II and XI collagens, without consistently changing their production of non-collagenous proteins; they also incorporated a smaller proportion of collagen into the matrix. Similar levels of response were obtained for hr-IL1 alpha at picomolar and for hr-TNF alpha at nanomolar concentrations. However, the action of TNF alpha, but not of IL1, was manifested only in the presence of serum. Simultaneously, IL1, but not TNF alpha, induced the chondrocyte production of procollagenase (a difference which contrasted with the similar levels of procollagenase induced by both cytokines in synovial and skin fibroblasts) but neither cytokine influenced the accumulation of the collagenase inhibitor TIMP. These effects were not affected by indomethacin and are thus unlikely to be prostaglandin-mediated. During their dedifferentiation in monolayer subcultures, chondrocytes became more sensitive to the procollagenase-inducing ability of IL1 and TNF alpha, but their response to TNF alpha was lower than to IL1. They also increased their production of TIMP, which remained unaffected by the cytokines. Simultaneously, they decreased their production of collagen and substituted progressively the synthesis of fibroblast-specific collagens, types I, III and V, for types II and XI. Acting on dedifferentiated cells, even in the presence of indomethacin, IL1 and TNF alpha further decreased the synthesis of collagen, reducing the production of both typical type I (i.e. [alpha 1(I)]2 x alpha 2(I) molecules) and type V collagens as well as their incorporation into the matrix, but increasing the synthesis of type III collagen. Therefore not only IL1, but also TNF alpha can exert profound influences on the collagen degradation and repair processes occurring in the pathology of articular cartilage.  相似文献   

4.
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.  相似文献   

5.
As a degenerative joint disease, osteoarthritis (OA) constitutes a major cause of disability that seriously affects the quality of life of a large population of people worldwide. However, effective treatment that can successfully reverse OA progression is lacking until now. The present study aimed to determine whether two small non-coding RNAs miR-29a and miR-140, which are significantly down-regulated in OA, can be applied together as potential therapeutic targets for OA treatment. MiRNA synergy score was used to screen the miRNA pairs that potentially synergistically regulate OA. An in vitro model of OA was established by treating murine chondrocytes with IL-1β. Transfection of miR-29a and miR-140 via plasmids was investigated on chondrocyte proliferation and expression of nine genes such as ADAMTS4, ADAMTS5, ACAN, COL2A1, COL10A1, MMP1, MMP3, MMP13 and TIMP metal-lopeptidase inhibitor 1 (TIMP1). Western blotting was used to determine the protein expression level of MMP13 and TIMP1, and ELISA was used to detect the content of type II collagen. Combined use of miR-29a and miR-140 successfully reversed the destructive effect of IL-1β on chondrocyte proliferation, and notably affected the MMP13 and TIMP1 gene expression that regulates extracellular matrix. Although co-transfection of miR-29a and miR-140 did not show a synergistic effect on MMP13 protein expression and type II collagen release, but both of them can significantly suppress the protein abundance of MMP13 and restore the type II collagen release in IL-1β treated chondrocytes. Compared with single miRNA transfection, cotransfection of both miRNAs exceedingly abrogated the suppressed the protein production of TIMP1 caused by IL-1β, thereby suggesting potent synergistic action. These results provided novel insights into the important function of miRNAs’ collaboration in OA pathological development. The reduced MMP13, and enhanced TIMP1 protein production and type II collagen release also implies that miR-29a and miR-140 combination treatment may be a possible treatment for OA.  相似文献   

6.
Mouse calvarial osteoblasts grown on native type I collagen films degrade collagen in response to 1,25 (OH) 2vitD3. Collagen degradation is accompanied by increased latent collagenase and gelatinase secretion and by a reduction in free TIMP. Exogenous human recombinant TIMP abolished 1,25 (OH) 2vitD3 stimulated collagen degradation and inhibited background collagenolysis. No active metalloproteinases were detectable in the culture medium suggesting sequestration of active enzyme at the site of action or inhibition by residual TIMP. Chondrocytes could not mimic osteoblasts in this system.  相似文献   

7.
This study analyzes the molecular response of articular chondrocytes to short-term mechanical loading with a special focus on gene expression of molecules relevant for matrix turnover. Porcine cartilage explants were exposed to static and dynamic unconfined compression and viability of chondrocytes was assessed to define physiologic loading conditions. Cell death in the superficial layer correlated with mechanical loading and occurred at peak stresses >or=6 MPa and a cartilage compression above 45%. Chondrocytes in native cartilage matrix responded to dynamic loading by rapid and highly specific suppression of collagen expression. mRNA levels dropped 11-fold (collagen 2; 6 MPa, P=0.009) or 14-fold (collagen 1; 3 and 6 MPa, P=0.009) while levels of aggrecan, tenascin-c, matrix metalloproteinases (MMP1, 3, 13, 14), and their inhibitors (TIMP1-3) did not change significantly. Thus, dynamic mechanical loading rapidly shifted the balance between collagen and aggrecan/tenascin/MMP/TIMP expression. A better knowledge of the chondrocyte response to mechanical stress may improve our understanding of mechanically induced osteoarthrits.  相似文献   

8.
Summary Embryonic chick sternal chondrocytes were cultured either within three dimensional gels of type I collagen, type II collagen or agar, or as monolayers on plastic dishes coated with air-dried films of these matrix macromolecules. It was observed that cell shape and cell growth varied markedly between the different culture conditions. Flattened monolayers of cells on plastic or films of type I or type II collagen, proliferated more rapidly and reached a higher final cell density per culture than the more rounded cells found in the cultures on agar films or within three-dimensional gels. Biosynthetic studies demonstrated that in addition to the synthesis of type II collagen, all the cultures were producing collagen types IX and X. Chondrocytes cultured on plastic or films of the different matrix macromolecules all showed a similar expression of types IX and X collagen, independent of whether they displayed a flattened or round cell morphology. In contrast, marked variations in the proportions of the minor collagens, particularly type X collagen, were observed when the cells were cultured within three-dimensional gels. The data suggest that direct interaction of the cell surface with matrix constituents displaying a particular spatial array could be an important aspect in the control of type IX and X collagen expression by chondrocytes. The financial support of the Arthritis & Rheumatism Council and the Medical Research Council is gratefully acknowledged.  相似文献   

9.
Epithelial-like chondrocytes obtained from chick embryo were transformed with Rous sarcoma virus. Cellular transformation was monitored looking at the morphology change, the cell growth, and the expression of plasminogen activator. Analysis on polyacrylamide gel of intracellular and secreted proteins showed: 1) a disappearance of the specific products of differentiated chondrocytes; 2) a switch in the collagen synthesis from the type II, the chondrocyte-specific type, to the type I, characteristic of fibroblasts and other cells of mesenchymal origin; 3) an enhancement of fibronectin synthesis. Analysis of the proteins from chondrocytes infected with Rous-associated virus 1, a virus unable to induce cell transformation in vitro, indicated that the altered expression of the differentiated proteins in Rous sarcoma virus-infected chondrocytes depended upon the action of src gene product.  相似文献   

10.
11.
12.
13.
The metalloproteinase 'gelatinase' stored in the granules of pig polymorphonuclear leucocytes has been purified in the latent form. The enzyme is secreted as an Mr 97,000 proenzyme that can be activated in the presence of 4-aminophenylmercuric acetate (APMA) by self-cleavage to generate lower-Mr species, of which an Mr 88,000 form was the most active. Trypsin-initiated activation generated different Mr gelatinases of much lower specific activity. Activation was slowed but not prevented by the presence of the tissue inhibitor of metalloproteinases, TIMP. The activated gelatinase formed a stable complex (Mr 144,000) with TIMP, in a Zn2+- and Ca2+-dependent manner, and complex formation was inhibited by the presence of the substrate gelatin. Similar to the human granulocyte gelatinase, the organomercurial-activated pig enzyme degraded gelatin and TCA and TCB fragments of type I collagen, as well as elastin and types IV and V collagen. The degradation of type IV collagen was shown, both by polyacrylamide-gel electrophoresis and by electron microscopic analysis, to generate 3/4 and 1/4 fragments as described for mouse tumour type IV collagenase. Furthermore, an antiserum raised to mouse type IV collagenase recognized the pig granulocyte gelatinase. An antiserum to the pig polymorphonuclear leucocyte gelatinase recognized other high-Mr gelatinases, including those from human granulocytes, pig monocytes and rabbit connective tissue cells, but not the Mr 72,000 enzyme from connective tissue cells. These data suggest that there are two distinct major forms of gelatinolytic activity that also cause specific cleavage of type IV collagen. These enzymes are associated with a wide variety of normal connective tissue and haemopoietic cells, as well as many tumour cells.  相似文献   

14.
15.
The purpose of this study was to evaluate the mechanism of crosstalk between the type II collagen and TGF-β1 signaling pathways in chondrocytic cells. Articular chondrocytes, isolated from porcine knee cartilage, and the SW1353 cell line were cultured on either type II collagen-coated or -uncoated plates in the presence or absence of TGF-β1. Expression of pSMAD 2, pSMAD 3, pFAKY397 and pFAKY925 in articular chondrocytes and the SW1353 cell line was analyzed by immunoblotting. Cell proliferation rates and glycosaminoglycan (GAG) content was determined after treatment with type II collagen or/and TGF-β1. For inhibition study, human FAK-specific RNA small interference (siFAK) in SW1353 cell line was performed. In this study, expression of pSMAD 2, pSMAD 3, pFAKY397 and pFAKY925 were synergistically increased by co-treatment with type II collagen and TGF-β1 in articular chondrocytes. The proliferation of porcine articular chondrocytes and GAG secretion in SW1353 cells were synergistically increased by co-stimulation with type II collagen and TGF-β1. Synergistically increased expression and nuclear translocation of pSMAD 2 and pSMAD 3 and GAG secretion of SW1353 cells were significantly inhibited by siFAK transfection. Therefore, we suggest that FAK-SMAD 2/3 mediates signal crosstalk between type II collagen and TGF-β1 and regulates GAG secretion in chondrocytic cells.  相似文献   

16.
The effect of insulin-like growth factor-1 (IGF-1) on the behavior of rabbit chondrocytes in cultured collagen (CL) gels initially seeded with 2 × 105 cells/ml was examined. On day 5, the frequency of migrating cells cultured in presence of 100 ng IGF-1/ml was 0.04, which was 54 % of the frequency in IGF-1-free culture. The presence of IGF-1 caused an increase in the frequency of dividing cells from 0.09 to 0.13. These results suggest that IGF-1 suppressed the migration of chondrocytes in the CL gels while stimulating cell division in the initial culture phase. The proteolytic migration of cells was thought to be suppressed by the down-regulation of membrane type 1 matrix metalloproteinase by IGF-1. This contributed to the formation of aggregates with spherical-shaped cells that produced collagen type II.  相似文献   

17.
18.
The effect of porcine relaxin on rabbit articular and growth plate chondrocytes in primary culture was investigated by measurement of total collagen production and analysis of the phenotypes of newly synthesized collagen chains. A 24-h treatment of monolayer articular and multilayer growth plate chondrocytes with 2 micrograms per ml relaxin had no effect on total DNA and did not significantly modify the amount of [3H]proline-labelled collagen chains secreted by the cells. However, polyacrylamide gel electrophoresis demonstrated relevant modifications in relaxin treated chondrocytes. A significant increase was observed in the proportion of type III collagen and in the intensity of the band corresponding to alpha 2I chains. Two-dimensional peptide mapping of CNBr-cleaved molecules indicated that the band that was identified as alpha 1II on monodimensional gels contained a significant proportion of alpha 1I collagen chains, as demonstrated by the presence of alpha 1I cyanogen bromide-digested peptides. The intensity of this band was increased by relaxin treatment. Furthermore, total RNA analysis by slot blot and Northern blot techniques showed a dose-dependent stimulation of alpha 1I and alpha 1III mRNA levels after incubation with increased relaxin concentrations, but no change in the amount of alpha 1II mRNA. These results suggested that when added to cartilage cells in vitro, relaxin modulated the expression of type I, type II and type III collagen genes by amplifying the dedifferentiation process.  相似文献   

19.
The effect of chick embryo extract on the phenotypic expression of differentiated chondrocytes has been studied in consideration of the fact that these cells are well characterized by certain specific cell products, such as type H proteochondroitin sulfate and type II collagen. In this study, we utilized floating chondrocytes derived from chick embryonic sterna, which can be cultured in suspension with no apparent change in the type of cell products for at least a period of eight weeks, as described in a previous paper (1). In the presence of chick embryo extract in the medium, the floating chondrocytes became attached to the bottom of the culture dish, and the attached cells took on a fibroblast-like appearance. Biochemical analyses of the proteochondroitin sulfate and collagen synthesized by the attached cells revealed that if the culture medium was renewed everyday, the cells having a fibroblast-like appearance continued to synthesize type H proteochondroitin sulfate and type II collagen. When however, the medium was replaced every other day, the synthesis of both proteochondroitin sulfate and collagen by the attached cells switched from the chondrocyte type to the fibroblast type, i.e. the synthesis of type M proteochondroitin sulfate and type I collagen, with little change in the fibroblast-like appearance. The results show that the morphological features of chondrocytes are not necessarily associated with the biochemical properties of these cells, and further suggest that, in chick embryo extract, there is no modulator capable of acting directly on the chondrocytes to bring about phenotypic changes with respect to the synthesis of collagen and proteoglycans.  相似文献   

20.
The distribution of type I, II, IX, XI and X collagens in and close to areas of asbestoid (amianthoid) fibers in thyroid cartilages of various ages was investigated in this study. Asbestoid fibers were first detected in thyroid cartilage from a 3-year-old male child. Areas of asbestoid fibers functionally appear to serve as guide rails for vascularization of thyroid cartilage. Alcian blue staining in the presence of 0.3 M MgCl2 revealed a loss of glycosaminoglycans in areas of asbestoid fibers. In addition, the fibers reacted positively with antibodies against collagen types II, IX and XI, but showed no staining with antibodies to collagen types I and X. Territorial matrix of adjacent chondrocytes showed the same staining pattern. In addition to staining for type II, IX and XI collagens, asbestoid fibers showed strong immunostaining for type I collagen after puberty but not for type X collagen. However, groups of chondrocytes within areas of asbestoid fibers reacted strongly with antibodies to type X collagen, suggesting that this collagen plays an important role in matrix of highly differentiated chondrocytes. The finding that these type X collagen-positive chondrocytes also revealed immunostaining for type I collagen confirms previous studies showing that hypertrophic chondrocytes can further differentiate into cells that are characterized by the synthesis of type X and I collagens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号