首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitope tagging is a valuable tool for quick detection, isolation, and analysis of protein-protein interaction, without prior knowledge of the target protein. The FLAG epitope tag, one of the most widely used tags, is an eight amino acid peptide that can be detected by anti-FLAG monoclonal antibody. In the present study, we have examined the detection sensitivity of a protein fused to three tandem FLAG epitopes by Western blot analysis, immunoprecipitation, and immunohistochemical analysis using anti-FLAG® M2 antibody. We find that the triple FLAG epitope significantly enhances the sensitivity of detection of fusion protein expressed in mammalian cells.  相似文献   

2.
Epitope tagging of expressed proteins is a versatile tool for the detection and purification of the proteins. This approach has been used in protein-protein interaction studies, protein localization, and immunoprecipitation. Among the most popular tag systems is the FLAG epitope tag, which is recognized by three monoclonal antibodies M1, M2, and M5. We describe novel approaches to the detection of epitope-tagged proteins via fluorescence resonance energy transfer on beads. We have synthesized and characterized biotinylated and fluorescein-labeled FLAG peptides and examined the binding of FLAG peptides to commercial streptavidin beads using flow cytometric analysis. A requirement of assay development is the elucidation of parameters that characterize the binding interactions between component systems. We have thus compiled a set of Kd values determined from a series of equilibrium binding experiments with beads, peptides, and antibodies. We have defined conditions for binding biotinylated and fluoresceinated FLAG peptides to beads. Site occupancies of the peptides were determined to be on the order of several million sites per bead and Kd values in the 0.3-2.0 nM range. The affinity for antibody attachment to peptides was determined to be in the low nanomolar range (less than 10 nM) for measurements on beads and solution. We demonstrate the applicability of this methodology to assay development, by detecting femtomole amounts of N-terminal FLAG-bacteria alkaline phosphatase fusion protein. These characterizations form the basis of generalizable and high throughput assays for proteins with known epitopes, for research, proteomic, or clinical applications.  相似文献   

3.
Müller M  Yong M  Peng XH  Petre B  Arora S  Ambudkar SV 《Biochemistry》2002,41(31):10123-10132
To enable cell surface localization of the human multidrug resistance protein (MRP1, ABCC1) and to assess the role of the extracellular domains of this transporter, the FLAG epitope tag was introduced into different extracellular loops of the three membrane-spanning domains (MSDs) of the transporter. We constructed and expressed various partially and fully glycosylation-deficient, FLAG-tagged MRP1 proteins in a Vaccinia virus-based transient expression system, and the cell surface expression level of MRP1 on intact cells was followed by flow cytometry, using the FLAG tag specific monoclonal antibody M2. We also expressed the wild-type MRP1 protein and some of the FLAG-tagged mutants in stably transfected HEK293 cells, and followed the cell surface expression and the transport function of MRP1 both by monitoring the efflux of fluorescent substrate and by their ability to confer resistance to HEK293 transfectants to anticancer agents such as daunorubicin and etoposide. When we inserted the FLAG epitope in extracellular loops of the MSD1 or MSD3, the tag was accessible upon removal of N-glycosylation sites (N --> Q at positions 17, 23, and 1006, respectively), whereas the FLAG epitope placed in the MSD2 was not accessible even after removal of all three N-glycosylation sites, indicating that MSD2 region is deeply buried in the plasma membrane. However, all FLAG tagged MRP1 mutants were expressed at the cell surface to the same extent as the wild-type protein and also exhibited normal transport function. Our results demonstrate that the accessibility of the external FLAG epitope is strongly dependent on the position of the tag and the glycosylation state of the different FLAG-tagged MRP1s, and the conformation of extracellular loops in MSD1 and MDS3 does not appear to contribute to the functional status of MRP1.  相似文献   

4.
In an effort to devise a safer and more effective vaccine delivery system, outer membrane vesicles (OMVs) were engineered to have properties of intrinsically low endotoxicity sufficient for the delivery of foreign antigens. Our strategy involved mutational inactivation of the MsbB (LpxM) lipid A acyltransferase to generate OMVs of reduced endotoxicity from Escherichia coli (E. coli) O157:H7. The chromosomal tagging of a foreign FLAG epitope within an OmpA-fused protein was exploited to localize the FLAG epitope in the OMVs produced by the E. coli mutant having the defined msbB and the ompA::FLAG mutations. It was confirmed that the desired fusion protein (OmpA::FLAG) was expressed and destined to the outer membrane (OM) of the E. coli mutant from which the OMVs carrying OmpA::FLAG are released during growth. A luminal localization of the FLAG epitope within the OMVs was inferred from its differential immunoprecipitation and resistance to proteolytic degradation. Thus, by using genetic engineering-based approaches, the native OMVs were modified to have both intrinsically low endotoxicity and a foreign epitope tag to establish a platform technology for development of multifunctional vaccine delivery vehicles.  相似文献   

5.
Here we describe the construction and application of six new tagging vectors allowing the fusion of two different types of tagging sequences, epitope and localization tags, to any Bacillus subtilis protein. These vectors are based on the backbone of pMUTIN2 and replace the lacZ gene with tagging sequences. Fusion of the tagging sequences occurs by PCR amplification of the 3' terminal part of the gene of interest (about 300 bp), insertion into the tagging vector in such a way that a fusion protein will be synthesized upon integration of the whole vector via homologous recombination with the chromosomal gene. Three of these tagging sequences (FLAG, hemagglutinin, and c-Myc) allow the covalent addition of a short epitope tag and thereby detection of the fusion proteins in immunoblots, while three other tags (green fluorescent protein(+), yellow fluorescent protein, and cyan fluorescent protein) are helpful in assigning proteins within one of the compartments of the cell. The versatility of these vectors was demonstrated by fusing these tags to the cytoplasmically located HtpG and the inner membrane protein FtsH.  相似文献   

6.
An epitope tag introduced to a gene of interest (GOI) greatly increases the ease of studying cellular proteins. Rapid PCR-based strategies for epitope tagging a protein's C-terminus at its native gene locus are widely used in yeast. C-terminal epitope tagging is not suitable for all proteins, however. Epitope tags fused to the C-terminus can interfere with function of some proteins or can even be removed by C-terminal protein processing. To overcome such problems, proteins can be tagged with epitopes at their amino-termini, but generating yeast strains expressing N-terminal epitope tagged genes under control of the endogenous promoter at the native locus is comparatively more difficult. Strategies to introduce N-terminal epitope tags have been reported previously but often introduce additional sequences other than the epitope tag into the genome. Furthermore, N-terminal tagging of essential genes by current methods requires formation of diploid strains followed by tetrad dissection or expression of an additional copy of the GOI from a plasmid. The strategies described here provide a quick, facile means of epitope tagging the N-terminus of both essential and nonessential genes in a two-step PCR-based procedure. The procedure has the significant advantage of leaving tagged genes under the control of their endogenous promoters, and no additional sequences other than the epitope tag encoding nucleotides are inserted into the genome.  相似文献   

7.
Wu WH  Pekosz A 《Journal of virology》2008,82(2):1059-1063
A carboxy-terminal epitope tag introduced into the coding region of the A/WSN/33 M2 protein resulted in a recombinant virus (rWSN M2myc) which replicated to titers similar to those of the parental virus (rWSN) in MDCK cells. The rWSN M2myc virus was attenuated in its ability to induce mortality and weight loss after the intranasal inoculation of BALB/c mice, indicating that the M2 cytoplasmic tail plays a role in virus virulence. Mice infected with rWSN M2myc were completely protected from subsequent challenge with rWSN, suggesting that epitope tagging of the M2 protein may be a useful way of attenuating influenza A virus strains.  相似文献   

8.
Here we describe the construction and application of six new tagging vectors allowing the fusion of two different types of tagging sequences, epitope and localization tags, to any Bacillus subtilis protein. These vectors are based on the backbone of pMUTIN2 and replace the lacZ gene with tagging sequences. Fusion of the tagging sequences occurs by PCR amplification of the 3′ terminal part of the gene of interest (about 300 bp), insertion into the tagging vector in such a way that a fusion protein will be synthesized upon integration of the whole vector via homologous recombination with the chromosomal gene. Three of these tagging sequences (FLAG, hemagglutinin, and c-Myc) allow the covalent addition of a short epitope tag and thereby detection of the fusion proteins in immunoblots, while three other tags (green fluorescent protein+, yellow fluorescent protein, and cyan fluorescent protein) are helpful in assigning proteins within one of the compartments of the cell. The versatility of these vectors was demonstrated by fusing these tags to the cytoplasmically located HtpG and the inner membrane protein FtsH.  相似文献   

9.
The envelope glycoproteins E1 and E2 of rubella virus (RV) were engineered to display the FLAG epitope tag and a polyhistidine tag, at their amino and carboxy termini, respectively. These modified envelope proteins were produced in Sf9 insect cells utilizing baculovirus expression vectors, the E1 and E2 vectors giving rise to protein products of about 58 and 42 kDa, respectively. The recombinant proteins were purified by immobilized metal-ion affinity chromatography and reconstituted into liposomes via their hydrophobic transmembrane anchors. The liposomes were prepared by detergent dialysis in the presence of europium-DTPA chelate, enabling the subsequent measurement of the binding of the resultant proteoliposomes to the antibodies by time resolved fluorescence. RV mimicking proteoliposomes were recognized by antibodies specific for the E1 and E2 proteins, as well as the FLAG epitope tag. This type of virosome may prove useful for studies on the basic biological events of an RV infection or as diagnostic reagents.  相似文献   

10.
We developed a method for efficient chromosome tagging in Pichia pastoris, using a useful tandem affinity purification (TAP) tag. The TAP tag, designated and used here as the THF tag, contains a thrombin protease cleavage site for removal of the TAP tag and a hexahistidine sequence (6× His) followed by three copies of the FLAG sequence (3× FLAG) for affinity purification. Using this method, THF-tagged RNA polymerases I, II, and III were successfully purified from P. pastoris. The method also enabled us to purify the tagged RNA polymerase II on a large scale, for its crystallization and preliminary X-ray crystallographic analysis. The method described here will be widely useful for the rapid and large-scale preparation of crystallization grade eukaryotic multi-subunit protein complexes.  相似文献   

11.
Affinity tag systems are an essential tool in biochemistry, biophysics, and molecular biology. Although several different tag systems have been developed, the epitope tag system, composed of a polypeptide “tag” and an anti-tag antibody, is especially useful for protein purification. However, almost all tag sequences, such as the FLAG tag, are added to the N- or C-termini of target proteins, as tags inserted in loops tend to disrupt the functional structure of multi-pass transmembrane proteins. In this study, we developed a novel “RIEDL tag system,” which is composed of a peptide with only five amino acids (RIEDL) and an anti-RIEDL monoclonal antibody (mAb), LpMab-7. To investigate whether the RIEDL tag system is applicable for protein purification, we conducted the purification of two kinds of RIEDL-tagged proteins using affinity column chromatography: whale podoplanin (wPDPN) with an N-terminal RIEDL tag (RIEDL-wPDPN) and human CD20 with an internal RIEDL tag insertion (CD20-169RIEDL170). Using an LpMab-7-Sepharose column, RIEDL-wPDPN and CD20-169RIEDL170 were efficiently purified in one-step purification procedures, and were strongly detected by LpMab-7 using Western blot and flow cytometry. These results show that the RIEDL tag system can be useful for the detection and one-step purification of membrane proteins when inserted at either the N-terminus or inserted in an internal loop structure of multi-pass transmembrane proteins.  相似文献   

12.
Ras proteins regulate signaling cascades crucial for cell proliferation and differentiation by switching between GTP- and GDP-bound conformations. Distinct Ras isoforms have unique physiological functions with individual isoforms associated with different cancers and developmental diseases. Given the small structural differences among isoforms and mutants, it is currently unclear how these functional differences and aberrant properties arise. Here we investigate whether the subtle differences among isoforms and mutants are associated with detectable dynamical differences. Extensive molecular dynamics simulations reveal that wild-type K-Ras and mutant H-Ras A59G are intrinsically more dynamic than wild-type H-Ras. The crucial switch 1 and switch 2 regions along with loop 3, helix 3, and loop 7 contribute to this enhanced flexibility. Removing the gamma-phosphate of the bound GTP from the structure of A59G led to a spontaneous GTP-to-GDP conformational transition in a 20-ns unbiased simulation. The switch 1 and 2 regions exhibit enhanced flexibility and correlated motion when compared to non-transitioning wild-type H-Ras over a similar timeframe. Correlated motions between loop 3 and helix 5 of wild-type H-Ras are absent in the mutant A59G reflecting the enhanced dynamics of the loop 3 region. Taken together with earlier findings, these results suggest the existence of a lower energetic barrier between GTP and GDP states of the mutant. Molecular dynamics simulations combined with principal component analysis of available Ras crystallographic structures can be used to discriminate ligand- and sequence-based dynamic perturbations with potential functional implications. Furthermore, the identification of specific conformations associated with distinct Ras isoforms and mutants provides useful information for efforts that attempt to selectively interfere with the aberrant functions of these species.  相似文献   

13.
A FLAG epitope tag was substituted within variable loop 1 (V1), 2 (V2), or 4 (V4) of the gp120 envelope glycoprotein of simian immunodeficiency virus strain 239 (SIV239) to evaluate the extent to which each variable loop may serve as a target for antibody-mediated neutralization. Two sites within each variable loop of SIV239 were chosen for individual epitope tag insertions. FLAG epitope substitutions were also made in the V1, V2, and V4 loops of a neutralization-sensitive derivative of SIV239, SIV316. Of the 10 FLAG-tagged recombinant viruses analyzed, three (SIV239FV1b, SIV239FV2b, and SIV239FV4a) replicated with kinetics similar to those of the parental strain, SIV239, in both CEMx174 cells and the immortalized rhesus monkey T-cell line 221. The SIV316FV1b and SIV316FV4a FLAG variants replicated with a substantial lag, and the five remaining recombinants did not replicate detectably. Both gp160 and gp120 from replication-competent FLAG variants could be immunoprecipitated from transfected 293T cells by the anti-gp120 rhesus monoclonal antibody (RhMAb) 3.11H, the anti-FLAG MAb M2, and CD4-immunoglobulin, whereas only unprocessed gp160 was detected in 293T cells transfected with replication-defective variants. Furthermore, gp120 was detectably incorporated only into virions that were infectious. SIV239FV1b was sensitive to neutralization by MAb M2, with a 50% inhibitory concentration of 1 mug/ml. Neither SIV239FV2b nor SIV239FV4a was sensitive to M2 neutralization. The ability of the M2 antibody to neutralize SIV239FV1b infectivity was associated with an increased ability of the M2 antibody to detect native, oligomeric SIV239FV1b envelope protein on the surfaces of cells relative to that for the other SIV FLAG variants. Furthermore, SIV239FV1b was globally more sensitive to antibody-mediated neutralization than was parental SIV239 when these strains were screened with a panel of anti-SIV MAbs of various specificities. These results indicate that the V1 loop can serve as an effective target for neutralization on SIV239FV1b. However, antibody-mediated neutralization of this variant, similar to that of other SIV239 variants that have been studied previously, was associated with a global increase in neutralization sensitivity. These results suggest that the variable loops on the neutralization-resistant SIV239 strain are difficult for antibodies to access effectively and that mutations that allow neutralization have global effects on the trimeric envelope glycoprotein structure and accessibility.  相似文献   

14.
This report describes the identification of a novel linear B-cell epitope at the C-terminus of the membrane (M) protein of avian infectious bronchitis virus (IBV). A monoclonal antibody (MAb) (designated as 15E2) against the IBV M protein was prepared and a series of 14 partially-overlapping fragments of the IBV M gene were expressed with a GST tag. These peptides were subjected to enzyme-linked immunosorbent assay (ELISA) and western blotting analysis using MAb 15E2 to identify the epitope. A linear motif, 199FATFVYAK206, which was located at the C-terminus of the M protein, was identified by MAb 15E2. ELISA and western blotting also showed that this epitope could be recognized by IBV-positive serum from chicken. Given that 15E2 showed reactivity with the 199FATFVYAK206 motif, expressed as a GST fusion protein, in both western blotting and in an ELISA, we proposed that this motif represented a linear B-cell epitope of the M protein. The 199FATFVYAK206 motif was the minimal requirement for reactivity as demonstrated by analysis of the reactivity of 15E2 with several truncated peptides that were derived from the motif. Alignment and comparison of the 15E2-defined epitope sequence with the sequences of other corona-viruses indicated that the epitope is well conserved among chicken and turkey coronaviruses. The identified epitope should be useful in clinical applications and as a tool for the further study of the structure and function of the M protein of IBV.  相似文献   

15.
Extracellular-regulated kinase 3, an atypical member of the mitogen-activated protein kinase subfamily of extracellular-regulated kinases, was originally identified in 1991. Little is known about the biochemical properties, regulation, and biological functions of this protein kinase, partially due to the unstable nature of endogenous and low ectopical expression level of the protein. Here, we report that a single C-terminal c-myc tag increases the half-life of ectopic expressed tagged extracellular-regulated kinase 3 approximately four times compared to the reported 30 min half-life time for the endogenous protein and ectopic expressed extracellular-regulated kinase 3 deprived of its c-myc tag. These findings indicate that this C-terminal tag stabilizes the extracellular-regulated kinase 3. The stabilizing effect of the C-terminal c-myc tag is observed in all cell types tested, but is position- and tag sequence-dependent as neither N-terminal c-myc tag nor C-terminal HA tag stabilize the protein. The c-myc tag on extracellular-regulated kinase 3 did not interfere with its kinase activity, nor did it abrogate its ability to interacts with its bona fide substrate mitogen-activated protein kinase-activated protein kinase 5, indicating that tagging did not alter the known biological properties of the protein. Stabilization of the tagged extracellular-regulated kinase 3 protein probably results from reduced ubiquitination. In conclusion, position and sequence specific tagging should provide an easy and useful tool to generate a more stable protein that can functionally substitute the endogenous unstable protein. A stabilized variant may facilitate studies on the biological role of the protein.  相似文献   

16.
Both Ras protein and calcium play significant roles in various cellular processes via complex signaling transduction networks. However, it is not well understood whether and how Ca(2+) can directly regulate Ras function. Here we demonstrate by isothermal titration calorimetry that Ca(2+) directly binds to the H-Ras.GDP.Mg(2+) complex with moderate affinity at the first binding site followed by two weak binding events. The results from limited proteinase degradation show that Ca(2+) protects the fragments of H-Ras from being further degraded by trypsin and by proteinase K. HPLC studies together with fluorescence spectroscopic measurements indicate that binding of Ca(2+) to the H-Ras.GDP.Mg(2+) complex remarkably promotes guanine nucleotide exchange on H-Ras under emulated physiological Ca(2+) concentration conditions. Addition of high concentrations of either of two macromolecular crowding agents, Ficoll 70 and dextran 70, dramatically enhances H-Ras guanine nucleotide exchange extent in the presence of Ca(2+) at emulated physiological concentrations, and the nucleotide exchange extent increases significantly with the concentrations of crowding agents. Together, these results indicate that binding of calcium ions to H-Ras remarkably promotes H-Ras guanine nucleotide exchange under emulated physiological conditions. We thus propose that Ca(2+) may activate Ras signaling pathway by interaction with Ras, providing clues to understand the role of calcium in regulating Ras function in physiological environments.  相似文献   

17.
We have studied the cleavage efficiency of the protease enterokinase (EK) using the novel vector pESP4. pESP4 is a yeast expression vector equipped with ligation-independent cloning sites, a GST purification tag, and a FLAG epitope tag. EK is used to cleave the FLAG and GST tags leaving the protein of interest without any extraneously added amino acids. We have found that EK is relatively permissive of the amino acid residue downstream of the recognition sequence (the P'1 position). This makes EK an ideal choice to use as a protease to cleave any protein of interest cloned within the pESP4 yeast expression vector.  相似文献   

18.
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.  相似文献   

19.
The construction of an expression vector for increased expression of cytoplasmic proteins in Saccharomyces cerevisiae is described. To enhance the yield of expressed proteins, fusion of ubiquitin to an octapeptide (a FLAG tag) upstream of the respective model genes was applied. During protein maturation ubiquitin is efficiently removed by yeast autologous hydrolases, generating the FLAG octapeptide at the N-terminus. Fusion proteins were recognized by the specific monoclonal antibody M1 directed against the FLAG tag. The FLAG-tagged proteins were purified to homogeneity by immunoaffinity chromatography using an anti-FLAG M1 agarose. Different model proteins, green fluorescent protein, green fluorescent protein-human lysozyme, green fluorescent protein elongation-initiahon factor 5a, green fluorescent protein-rapamycin-selective 25-kDa immunophilin, and green fluorescent protein-heat shock protein 90 beta have been selected to demonstrate the efficiency of the new vector construct.  相似文献   

20.
Kawaguchi R  Yu J  Wiita P  Ter-Stepanian M  Sun H 《Biochemistry》2008,47(19):5387-5395
STRA6 is a multitransmembrane domain protein not homologous to any other proteins with known function. It functions as the high-affinity receptor for plasma retinol binding protein (RBP) and mediates cellular uptake of vitamin A from the vitamin A-RBP complex. Consistent with the diverse roles of vitamin A and the wide tissue expression pattern of STRA6, mutations in STRA6 are associated with severe pathological phenotypes in humans. The structural basis for STRA6's biochemical function is unknown. Although computer programs predict 11 transmembrane domains for STRA6, its topology has never been studied experimentally. Elucidating the transmembrane topology of STRA6 is critical for understanding its structure and function. By inserting an epitope tag into all possible extracellular and intracellular domains of STRA6, we systematically analyzed the accessibility of each tag on the surface of live cells, the accessibility of each tag in permeabilized cells, and the effect of each tag on RBP binding and STRA6-mediated vitamin A uptake from the vitamin A-RBP complex. In addition, we used a new lysine accessibility technique combining cell-surface biotinylation and tandem-affinity purification to study a region of the protein not revealed by the epitope tagging method. These studies not only revealed STRA6's extracellular, transmembrane, and intracellular domains but also implicated extracellular regions of STRA6 in RBP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号