首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have digested chicken erythrocyte soluble chromatin, both unstripped and stripped of histones H1 and H5 with either 0.6 M NaCl or DNA-cellulose, with micrococcal nuclease (MNase). Digestion of unstripped chromatin to monomeric particles initially paused at 188 bp DNA; continued digestion resulted in another pause at 177 before the 167 bp chromatosome and 146 bp core particle were obtained. Digestion of stripped chromatin to monomeric particles paused transiently at 177 bp; continued digestion resulted in marked pauses at 167 and 156 before the 146 bp core particle was obtained. These results suggested that 167 bp DNA representing two complete turns are bound to the histone octamer. Histone H1/H5 binds an additional two helical turns of DNA, thereby protecting up to 188 bp DNA against nuclease digestion. Monomeric particles containing 167 bp DNA were isolated from stripped chromatin and found by DNase I digestion to be a homogeneous population with a 10 bp DNA extension to either end relative to the 146 bp core particle. Thermal denaturation and circular dichroism spectroscopy showed stronger histone-DNA interactions and increased DNA winding as the length of DNA attached to the core histone octamer was decreased. Thermal denaturation also showed three classes of histone-DNA interaction: the core particle containing 167 bp DNA had tight binding of ten helical turns of DNA, intermediate binding of two helical turns and looser binding of four helical turns.  相似文献   

2.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

3.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

4.
Raman spectra have been observed of nucleosome core particles (I) prepared from chicken erythrocyte chromatin, its isolated 146 bp DNA (II), and its isolated histone octamer (H2A+H2B+H3+H4)2 (III). By examining the difference Raman spectra, (I)-(II), (I)-(III), and (I)-(II)-(III), several pieces of information have been obtained on the conformation of the DNA moiety, the conformation of the histone moiety, and the DNA-histone interaction in the nucleosome core particles. In the nucleosome core particles, about 15 bp (A.T rich) portions of the whole 146 bp DNA are considered to take an A-form conformation. These are considered to correspond to its bent portions which appear at intervals of 10 bp.  相似文献   

5.
Although the nucleosomal core particle has been extensively studied as the basic building block of chromatin, the biological significance of a unit carrying exactly 146 bp of DNA remains unclear. Herein, we present data to show that the histone octamer can stably accommodate anywhere from about 100 to 170 bp of DNA. The unfolded structures containing less than 146 bp may well be of greater biological importance than the canonical core particle. BioEssays 21:776–780, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

6.
Two mouse monoclonal IgM antibodies have been isolated which bind to histone 2B (H2B), as shown by protein blotting and immunostaining and by solid-phase radioimmunoassay (RIA). One of these (HBC-7) was specific for H2B by both techniques whereas the other (2F8) cross-reacted with histone H1 by RIA. Both antibodies failed to recognize H2B limit peptides from trypsin-digested chromatin and did not bind to Drosophila H2B, which differs extensively from vertebrate H2B only in the N-terminal region. These findings indicate that both antibodies recognize epitopes within the trypsin-sensitive, N-terminal region comprising residues 1-20. Binding of antibody HBC-7 was inhibited by in vitro ADP-ribosylation of H2B at glutamic acid residue 2. This strongly suggests that the epitope recognized by HBC-7 is located at the N-terminus of H2B, probably between residues 1 and 8. We have used solid-phase radioimmunoassay to investigate factors which influence the accessibility of this epitope in chromatin. Removal of H1 ('stripping') from high-molecular-mass chromatin had no effect on HBC-7 binding, nor was any difference observed between binding to stripped chromatin and to 146-base-pair (bp) core particles derived from it by nuclease digestion. These results suggest that accessibility of the N-terminal region of H2B is not influenced by H1 itself or by the size or conformation of linker DNA. In contrast, binding of antibody HBC-7 to 146-bp core particles derived from unstripped chromatin was reduced by up to 70%. Binding was restored by exposure of these core particles to the conditions used for stripping. Analysis of the protein content of core particle preparations from stripped and unstripped chromatin suggests that these findings may be attributable to redistribution of non-histone proteins during nuclease digestion. Pre-treatment of high-molecular-mass chromatin or 146-bp core particles with the intercalating dye ethidium bromide resulted in a severalfold increase in binding of HBC-7. The major changes in nucleosome morphology induced by ethidium are therefore accompanied by an increase in accessibility of the N-terminal region of H2B, possibly as a direct result of changes in the spatial relationship between H2B and core DNA.  相似文献   

7.
Nucleosomal core particles lacking one H2A.H2B dimer, (H2A.H2B)1 (H3.H4)2/DNA (146 bp), have been prepared by treatment of nucleosomal cores with dimethylmaleic anhydride, a reversible reagent for protein amino groups. The preparative procedure is simple, produces quantitative conversion of nucleosomal cores into dimer-deficient cores without formation of other subnucleosomal particles, and can be applied to the preparation of different H2A.H2B-deficient mono and oligonucleosomal particles. The structural properties of the dimer-deficient cores and complete nucleosomal cores reconstituted from the deficient particles and H2A.H2B dimers have been studied by DNase I digestion, thermal denaturation and circular dichroism.  相似文献   

8.
Structure of nucleosomes and organization of internucleosomal DNA in chromatin   总被引:16,自引:0,他引:16  
We have compared the mononucleosomal pattern produced by micrococcal nuclease digestion of condensed and unfolded chromatin and chromatin in nuclei from various sources with the repeat length varying from 165 to 240 base-pairs (bp). Upon digestion of isolated H1-containing chromatin of every tested type in a low ionic strength solution (unfolded chromatin), a standard series of mononucleosomes (MN) was formed: the core particle, MN145, and H1-containing, MN165, MN175, MN185, MN195, MN205 and MN215 (the indexes give an approximate length of the nucleosomal DNA that differs in these particles by an integral number of 10 bp). In addition to the pattern of unfolded chromatin, digestion of whole nuclei or condensed chromatin (high ionic strength of Ca2+) gave rise to nuclei-specific, H1-lacking MN155. Digestion of H1-lacking chromatin produced only MN145, MN155 and MN165 particles, indicating that the histone octamer can organize up to 165 bp of nucleosomal DNA. Although digestion of isolated sea urchin sperm chromatin (repeat length of about 240 bp) at a low ionic strength gave a typical "unfolded chromatin pattern", digests of spermal nuclei contained primarily MN145, MN155, MN235 and MN245 particles. A linear arrangement of histones along DNA (primary organization) of the core particle was found to be preserved in the mononucleosomes, with the spacer DNA length from 10 to 90 bp on one (in MN155) or both sides of core DNA being a multiple of about 10 bp. In MN235, the core particle occupies preferentially a central position with the length of the spacer DNA on both sides of the core DNA being usually about 30 + 60 or 40 + 50 bp. Histone H1 is localized at the ends of these particles, i.e. close to the centre of the spacer DNA. The finding that globular part of histones H3 and sea urchin sperm H2B can covalently bind to spacer DNA suggests their involvement in the organization of chromatin superstructure. Our data indicate that decondensation of chromatin is accompanied by rearrangement of histone H1 on the spacer DNA sites adjacent to the core particle and thus support a solenoid model for the chromatin superstructure in nuclei in which the core DNA together with the spacer DNA form a continuous superhelix.  相似文献   

9.
We have reconstructed nucleosomes from a histone octamer (H2A, H2B, H3, H4)2 and DNA 146 b.p. or 2-3 thousands b.p. in length. Comparison by means of DNA-histone cross-links of the primary organization of minimal nucleosomes obtained by reconstruction or isolated from chromatin of chicken erythrocyte nuclei has demonstrated a high similarity in histone location on their DNAs. Simultaneously, there have been observed some variations in the character of interaction for all core histones with DNA on nucleosomes. Thus, the cross-link of histone H4 with DNA of a core particle at H4 sites (65), unlike H4(55) and H4(88) sites, significantly depends on the superstructure of chromatin, ionic strength of solution and the presence of denaturating agents. All these differences are expected to probe the existence of conformational isomers for core particles. (Bracketed is the distance from the histone interaction site with the DNA of the core particle to the DNA 5'-terminus.)  相似文献   

10.
Chicken erythrocyte inner histones (H2A, H2B, H3 and H4) were associated with the two complementary homopolymeric polydeoxyribonucleotides and the two alternating copolymeric polydeoxyribonucleotides. No evidence for formation of chromatin-like structures was obtained for the complexes with poly(dG) . poly(dC) or poly(dA) . poly(dT). Both poly (dGdC) . poly(dGdC) and poly(dAdT) . poly(dAdT) could be folded by histones to yield material digested by DNAase I to multiples of about 10 and by staphylococcal nuclease to 146 bp core particles. Due to the lack of sequence heterogeniety in the complex of histones with poly(dAdT) . poly(dAdT), core particles with remarkable fine structural detail are obtained. The internal organization of DNA in the AT-containing and GC-containing core particles appears not to be identical.  相似文献   

11.
The preparation of hybrid histone octamers with wheat histone H2A variants replacing chicken H2A in the chicken octamer is described. The fidelity of the reconstituted hybrid octamers was confirmed by dimethyl suberimidate cross-linking. Polyglutamic-acid-mediated assembly of these octamers on long DNA and subsequent micrococcal nuclease (MNase) digestion demonstrated that, whereas chicken octamers protected 167 base-pairs (representing 2 full turns of DNA), hybrid histone octamers containing wheat histone H2A(1) with its 19 amino acid residue C-terminal extension protected an additional 16 base pairs of DNA against nuclease digestion. The protection observed by hybrid histone octamers containing wheat histone H2A(3) with both a 15 residue N-terminal and a 19 residue C-terminal extension was identical with that observed with H2A(1)-containing hybrid histone octamers with only the 19 residue C-terminal extension. These results suggest that the role of the C-terminal extension is to bind to DNA of the "linker" region. The thermal denaturation of chicken and hybrid core particles was identical in 10 mM-Tris.HCl.20 mM-NaCl, 0.1 mM-EDTA, confirming that there was no interaction between the basic C-terminal extension and DNA of the core particle. Denaturation in EDTA, however, showed that hybrid core particles had enhanced stability, suggesting that the known conformational change of core particles at very low ionic strength allows the C-terminal extension to bind to core particle DNA under these conditions. A model accounting for the observed MNase protection is presented.  相似文献   

12.
Zhao H  Zhang Y  Zhang SB  Jiang C  He QY  Li MQ  Qian RL 《Cell research》1999,9(4):255-260
The structure of the nuclosome core particle of chromatin in chicken erythrocytes has been examined by using AFM.The 146 bp of DNA wrapped twice around the core histone octamer are clearly visualized.Both the ends of entry/exit of linker DNA are also demonstrated.The dimension of the nucleosome core particles is - 1-4 nm in height and - 13-22 nm in width.In addition,superbeads (width of - 48-57 nm,height of - 2-3 nm )are occasionally revealed,two turns of DNA around the core particles are also detected.  相似文献   

13.
The size of DNA involved in the interaction with a histone octamer in H1-depleted chromatin was re-examined. We compared the thermal untwisting of chromatin DNA and naked DNA using CD and electrophoretic topoisomer analysis, and found that DNA of 175 +/- 10 base pairs (bp) in length interacted with the histone core under physiological conditions. The decrease of ionic strength below 20 mM NaCl reduced this length down to 145 bp: apparently, an extra 30 bp DNA dissociated from the histone core to yield well-known 145-bp core particle. Histone cores partly dissociate within the temperature range of 25 to 40 degrees C. Quantitative analysis of histone thermal dissociation from DNA shows that the size of DNA protected against thermal untwisting would be significantly overestimated if this effect is neglected. The results presented in this paper also suggest that the dimers (H2A, H2B) act as a lock, which prevents transmission of conformational alterations from a linker to nucleosome core DNA. The histone core dissociation as well as (H2A, H2B) dimer displacement are discussed in the light of their possible participation in the eukaryotic genome activation.  相似文献   

14.
15.
We propose that the basic unit of chromatin is constructed of two isologously paired heterotypic protein tetramers each containing one molecule of H2A, H2B, H3, and H4 histone. These proteins form a core that holds 140 base pairs (bp) of DNA in a single left-handed, non-interwound DNA supercoil approximately 95 bp in circumference, creating A nucleosome particle (DNA and protein) organized about a dyad axis of symmetry. Such a nucleosome can open up into its separate half-nucleosomes to allow genetic readout without requiring histone displacement  相似文献   

16.
The conformation of recombinant Nucleosome Core Particles (NCPs) lacking H2A and H2B histone tails (gH2AgH2B) are studied. The migration of these particles in acrylamide native gels is slowed down compared to intact reconstituted NCPs. gH2AgH2B NCPs are also much more sensitive to nuclease digestion than intact NCPs. Small angle X-ray scattering (SAXS) experiments point out that the absence of H2A and H2B tails produces small but significant conformational changes of the octamers conformation (without wrapped DNA), whereas gH2AgH2B NCP conformations are significantly altered. A separation of about 25–30 bp from the core could account for the experimental curves, but other types of DNA superhelix deformation cannot be excluded. The distorted gH2AgH2B octamer may not allow the correct winding of DNA around the core. The absence of the H2A and H2B tails would further prevent the secondary sliding of the DNA around the core and therefore impedes the stabilisation of the particle. Cryo-electron microscopy on the same particles also shows a detachment of DNA portions from the particle core. The effect is even stronger because the vitrification of the samples worsens the instability of gH2AgH2B NCPs.  相似文献   

17.
Chicken erythrocyte chromatin was depleted of histones H1, H5, H2A and H2B. The resulting (H3/H4)-containing chromatin was digested with micrococcal nuclease to yield monomer, dimer, trimer etc. units, irregularly spaced on the DNA, with even-number multimers being more prominent. Sucrose density gradient centrifugation separated monomers and dimers (7.7 S and 10.5 S). Sodium dodecyl sulphate gel electrophoresis and cross-linking indicated: the monomer contains 50-base-pair (bp), 60-bp and 70-bp DNA and the dimer 125-bp DNA; the monomer contains a tetramer and the dimer an octamer of H3 and H4. Partial association of monomer units to dimers inhibits structural studies of monomers. The internal structure of the dimer, i.e. and (H3/H4)4-125-bp-DNA particle, was studied using circular dichroism, thermal denaturation and nuclease digestion. Both micrococcal nuclease and DNase I digestion indicate that, unlike core particles, accessible sites occur in the centre of the particle and it is concluded that the (H3/H4)4-125-bp-DNA particle is not a 'pseudo-core particle' in which the 'extra' H3 and H4 replace H2A and H2B. It is proposed that the octamer particle is formed by the sliding together of two 'monomer' units, each containing the (H3/H4)2 tetramer and 70 bp of DNA. Excision of this dimer unit with micrococcal nuclease results in the loss of 10 readily digestible base pairs at each end, leaving 125 bp.  相似文献   

18.
Sullivan SA  Landsman D 《Proteins》2003,52(3):454-465
The three-helix, approximately 65-residue histone fold domain is the most structurally conserved part of the core histones H2A, H2B, H3, and H4. However, it evinces a notable degree of sequence variation within and between histone classes. We used two approaches to characterize sequence variation in these histone folds, toward elucidating their structure/function relationships and evolution. On the one hand we asked how much of the sequence variation seen in structure-based alignments of the folds maintains physicochemical properties at a position, and on the other, whether conservation correlates to structural importance, as measured by the number of residue-to-residue contacts a position makes. Strong physicochemical conservation or correlation of conservation to contacts would support the idea that functional constraints, rather than genetic drift, determines the observed range of variants at a given position. We used an 11-state table of physicochemical properties to classify each position in the core histone fold (CHF) alignments, and a public website (http://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/valdar/scorecons_server.pl) to score conservation. We found that, depending on histone class, from 38 to 77% of CHF positions are maximally conserved physicochemically, and that for H2B, H3, and H4 the degree to which a position is conserved correlates positively to the number of contacts made by the residue at that position in the crystal structure of the nucleosome core particle. We also examined the correlation between conservation and the type of contact (e.g., inter- or intrachain, histone-histone, or histone-DNA, etc.). For H2B, H3, and H4 we found a positive correlation between conservation and number of interchain protein contacts. No such correlation or statistical significance was found for DNA or intrachain contacts. This suggests that variations in the CHF sequences could be functionally constrained by requirements to make sufficient interchain histone contacts. We also suggest that inventory of histone residue variants can augment functional studies of histones. An example is presented for histone H3.  相似文献   

19.
Sequence specificity of the core-binding factor.   总被引:13,自引:4,他引:9       下载免费PDF全文
The core-binding factor (CBF) binds the conserved core motif in mammalian type C retrovirus enhancers. We analyzed the phosphate contacts made by CBF on the Moloney murine leukemia virus enhancer by ethylation interference assay. The phosphate contacts span 9 bp centered around the consensus core site. To examine the sequence preferences for CBF binding, we employed the technique of selected and amplified binding sequence footprinting (T. K. Blackwell and H. Weintraub, Science 250:1104-1110, 1990). The consensus binding site for CBF defined by selected and amplified binding sequence footprinting is PyGPyG GTPy.  相似文献   

20.
High levels of acetylation of lysines in the amino-terminal domains of all four core histones, H2A, H2B, H3, and H4, have been shown to reduce the linking number change per nucleosome core particle in reconstituted minichromosomes (Norton, V. G., Imai, B. S., Yau, P., and Bradbury, E. M. (1989) Cell 57, 449-457). Because there is evidence to suggest that the acetylations of H3 and H4 have functions that are distinct from those of H2A and H2B, we have determined the nucleosome core particle linking number change in minichromosomes containing fully acetylated H3 and H4 and very low levels of acetylation in H2A and H2B. This linking number change was -0.81 +/- 0.05, in close agreement with the linking number change for hyperacetylated nucleosome core particles which contain high levels of acetylation in all four core histones (approximately 70% of full acetylation in H3 and H4). Therefore, high levels of acetylation of H3 and H4 alone are responsible for the reduction in the linking number change per nucleosome core particle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号