首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Circulating mononuclear cells (MNC) from normal donors were examined for lymphocyte proliferation and plasma cell differentiation following stimulation by Fc and Fab fragments or by intact IgG. Lymphocyte differentiation and DNA synthesis were examined as a function of culture duration and concentration of Fc, Fab fragments, and IgG. Plasma cells containing intracytoplasmic Ig were demonstrated by immunofluorescence with a polyvalent antiserum to human immunoglobulin and with specific antisera (anti-mu, -gamma, -alpha, -delta, -kappa, and -lambda chains). DNA synthesis of mononuclear cells cultures was analyzed by measuring [3H]thymidine incorporation. The results indicated that only the Fc fragments are able to induce the differentiation of B cells. The polyclonal plasma cell response to Fc fragments was dose dependent, peaked on the sixth day of culture, and was isotypically diverse (IgM greater than IgA greater than IgG). This activity requires the presence of T helper cells and monocytes. In contrast, the Fc fragments were unable to induce a proliferative response.  相似文献   

2.
The binding of Gd(III) to rabbit IgG (immunoglobulin G) and the Fab (N-terminal half of heavy and light chain), (Bab')2 (N-terminal half of heavy and light chains joined by inter-chain disulphide bond), Fc (C-terminal half of heavy-chain dimer)and pFc' (C-terminal quarter of heavy-chain dimer) fragments was demonstrated by measurements of the enhancement of the solvent-water proton relaxation rates in the appropriate Gd(III) solutions. At pH 5.5 there are six specific Gd(III)-binding sites on the IgG. These six sites can be divided into two classes; two very 'tight' sites on the Fc fragment (Kd approx. 5 muM) and two weaker sites on each Fab region (Kd approx. 140 muM). Ca(II) does not apparently compete for these metal-binding sites. The metal-binding parameters for IgG can be explained as the sum of the metal binding to the isolated Fab and Fc fragments, suggesting that there is no apparent interaction between the Fab and Fc regions in the IgG molecule. The binding of Gd(III) to Fab and Fc fragments was also monitored by measuring changes in the electron-spin-resonance spectrum of Gd(III) in the presence of each fragment and also by monitoring the effects of Gd(III) on the protein fluorescence at 340 nm (excitation 295 nm). The fluorescence of Tb(III) solutions of 545 nm (excitation 295 nm) is enhanced slightly on addition of Fab or Fc.  相似文献   

3.
Carp IgM, isolated from normal serum is more sensitive to trypsinization compared to a human myeloma protein IgMGo. Under the same conditions (treatment with trypsin at 56 degrees C for 30 min) carp IgM was degraded to small, mostly dialysable peptides to a larger extent than IgMGo. In both cases the fragmentation resulted in immunoelectrophoretically pure Fab mu and Fc mu fragments. The Fab mu fragments of human IgM (yield: 20% of used IgM material) had a molecular weight of 54,000, the Fc mu fragments (yield: 30%) were a heterogenous mixture as far as molecular sizes concerned with values of about 300,000. For the corresponding fragments of carp IgM we could analyze a molecular weight of about 43,000 for Fab mu (yield: 8%) and for Fc mu (yield 10%) three fractions of 160,000, 130,000 and 90,000. The reductive subunits of Fc mu fragments showed different molecular weights: 39,000 for IgMGo and 45,000 for carp IgM. The anti-fragment antisera prepared in rabbits were monospecific as demonstrated by immunodiffusion.  相似文献   

4.
To reveal non-covalent interactions between the Fab and Fc regions of IgG molecules the average conformational free-energy change (delta Go), associated with reversible micro-unfoldings, was measured by hydrogen-deuterium exchange for the Fab and Fc fragments and the complete molecule. Human monoclonal IgG1 and pooled IgG samples were used in these experiments. Hydrogen-deuterium exchange data were summarized and compared in the form of exchange relaxation spectra. The experimentally observed relaxation spectrum of intact IgG could not be deduced by weighted summation of spectra measured for Fab and Fc fragments. A comparison of the measured and calculated data revealed a 5-kJ/mol increase in the conformational free energy upon splitting the IgG molecule into two Fab and Fc pieces, i.e. an increase of conformational mobility occurred. This change can be explained either by related fluctuation patterns of the Fab and Fc pieces in the intact molecule or by a shielding effect on the contact surfaces. Both interpretations suppose non-covalent interactions between Fab and Fc that can be a means of information transduction between recognition and effector sites. The pH dependence of the hydrogen-deuterium exchange also indicates interactions between the Fab and Fc regions. A shift in the relaxation spectra of the Fab fragment was observed between pH 8.2 and 7.3 revealing destabilization of the structure at lower pH. This effect is absent in the intact molecule, reflecting interactions that stabilize the Fab structure. Comparison of the relaxation spectra of Fab and Fc shows a difference of about 10 kJ/mol in the microstability of these fragments: the Fab part possesses more conformational flexibility (i.e. its microstability is smaller) than the Fc part.  相似文献   

5.
Concentration-dependent reversible self-association (RSA) of monoclonal antibodies (mAbs) poses a challenge to their pharmaceutical development as viable candidates for subcutaneous delivery. While the role of the antigen-binding fragment (Fab) in initiating RSA is well-established, little evidence supports the involvement of the crystallizable fragment (Fc). In this report, a variety of biophysical tools, including hydrogen exchange mass spectrometry, are used to elucidate the protein interface of such non-covalent protein-protein interactions. Using dynamic and static light scattering combined with viscosity measurements, we find that an IgG1 mAb (mAb-J) undergoes RSA primarily through electrostatic interactions and forms a monomer-dimer-tetramer equilibrium. We provide the first direct experimental mapping of the interface formed between the Fab and Fc domains of an antibody at high protein concentrations. Charge distribution heterogeneity between the positively charged interface spanning complementarity-determining regions CDR3H and CDR2L in the Fab and a negatively charged region in CH3/Fc domain mediates the RSA of mAb-J. When arginine and NaCl are added, they disrupt RSA of mAb-J and decrease the solution viscosity. Fab-Fc domain interactions between mAb monomers may promote the formation of large transient antibody complexes that ultimately cause increases in solution viscosity. Our findings illustrate how limited specific arrangements of amino-acid residues can cause mAbs to undergo RSA at high protein concentrations and how conserved regions in the Fc portion of the antibody can also play an important role in initiating weak and transient protein-protein interactions.  相似文献   

6.
Binding of allergen-IgE complexes to the high affinity IgE receptor (Fc epsilonRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human Fc epsilonRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human Fc epsilonRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and Fc epsilonRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

7.
We have recently reported the presence of IgG which has a potent inhibitory activity against IL-1 alpha in some sera from patients with rheumatoid arthritis. The mechanism of this inhibition by IgG against IL-1 alpha is now elucidated. IgG with IL-1 alpha-inhibitory activity inhibited the binding of 125I-IL-1 alpha to receptors on rheumatoid synovial cells. In addition, preincubation of synovial cells with the inhibitory IgG did not block the binding of 125I-IL-1 alpha to receptors, suggesting a direct interaction between IgG and IL-1 alpha. To examine which region of the IgG, namely Fab or Fc region, has the inhibitory activity, the IgG was digested with papain, and Fab and Fc fragments were purified. Fab fragments, but not Fc fragments, inhibited both IL-1 alpha-induced thymocyte-proliferation and the binding of 125I-IL-1 alpha to receptors. We further demonstrated that the inhibitory IgG which was bound to protein A Sepharose could bind a significant amount of 125I-IL-1 alpha, whereas only a negligible binding of the radiolabeled ligand was detected when IgG without the inhibitory activity was used as control. Moreover, the binding of 125I-IL-1 alpha to IgG with the inhibitory activity was clearly blocked by Fab fragments of IgG having the inhibitory activity. Finally, affinity-purified IgG over an IL-alpha affinity column showed approximately 100-fold more potent inhibitory activity on IL-1 alpha-induced thymocyte proliferation compared with untreated IgG. From these results, we conclude that IgG molecules with IL-1-alpha-inhibitory activity are neutralizing autoantibodies against IL-1 alpha.  相似文献   

8.
Immunoglobulins of human heavy chain subgroup III have a binding site for Staphylococcal protein A on the heavy chain variable domain (V(H)), in addition to the well-known binding site on the Fc portion of the antibody. Thermodynamic characterization of this binding event and localization of the Fv-binding site on a domain of protein A is described. Isothermal titration calorimetry (ITC) was used to characterize the interaction between protein A or fragments of protein A and variants of the hu4D5 antibody Fab fragment. Analysis of binding isotherms obtained for titration of hu4D5 Fab with intact protein A suggests that 3-4 of the five immunoglobulin binding domains of full length protein A can bind simultaneously to Fab with a Ka of 5.5+/-0.5 x 10(5) M(-1). A synthetic single immunoglobulin binding domain, Z-domain, does not bind appreciably to hu4D5 Fab, but both the E and D domains are functional for hu4D5 Fab binding. Thermodynamic parameters for titration of the E-domain with hu4D5 Fab are n = 1.0+/-0.1, Ka = 2.0+/-0.3 x 10(5) M(-1), and deltaH = -7.1+/-0.4 kcal mol(-1). Similar binding thermodynamics are obtained for titration of the isolated V(H) domain with E-domain indicating that the E-domain binding site on Fab resides within V(H). E-domain binding to an IgG1 Fc yields a higher affinity interaction with thermodynamic parameters n = 2.2+/-0.1, Ka > 1.0 x 10(7) M(-1), and deltaH = -24.6+/-0.6 kcal mol(-1). Fc does not compete with Fab for binding to E-domain indicating that the two antibody fragments bind to different sites. Amide 1H and 15N resonances that undergo large changes in NMR chemical shift upon Fv binding map to a surface defined by helix-2 and helix-3 of E-domain, distinct from the Fc-binding site observed in the crystal structure of the B-domain/Fc complex. The Fv-binding region contains negatively charged residues and a small hydrophobic patch which complements the basic surface of the region of the V(H) domain implicated previously in protein A binding.  相似文献   

9.
Binding of allergen-IgE complexes to the high affinity IgE receptor (FcεRI) on mast cells and basophils leads to the release of various mediaters such as histamine. Fab fragments prepared by the papain digestion of humanized antibody against human FcεRI inhibited the release of histamine from human basophils. Here we established an expression system to directly produce Fab fragments of the humanized anti-human FcεRI antibody in methylotropic yeast, P. pastoris. Fab fragments were efficiently secreted into the medium at a concentration of 10-40 mg/L using a signal sequence from the P. pastoris phosphatase gene. They were consisted of disulfide-linked light and heavy chains correctly starting from the first amino acid residues by proper cleavage of the signal peptides. The obtained Fab fragments inhibited the binding between IgE and FcεRI as efficiently as the counterpart prepared by papain digestion of the whole antibody.  相似文献   

10.
This study introduces a novel analytical approach for studying aggregation and phase separation of monoclonal antibodies (mAbs). The approach is based on using analytical scale cation‐exchange chromatography (CEX) for measuring the loss of soluble monomer in the case of individual and mixed protein solutions. Native CEX outperforms traditional size‐exclusion chromatography in separating complex protein mixtures, offering an easy way to assess mAb aggregation propensity. Different IgG1 and IgG2 molecules were tested individually and in mixtures consisting of up to four protein molecules. Antibody aggregation was induced by four different stress factors: high temperature, low pH, addition of fatty acids, and rigorous agitation. The extent of aggregation was determined from the amount of monomeric protein remaining in solution after stress. Consequently, it was possible to address the role of specific mAb regions in antibody aggregation by co‐incubating Fab and Fc fragments with their respective full‐length molecules. Our results revealed that the relative contribution of Fab and Fc regions in mAb aggregation is strongly dependent on pH and the stress factor applied. In addition, the CEX‐based approach was used to study reversible protein precipitation due to phase separation, which demonstrated its use for a broader range of protein–protein association phenomena. In all cases, the role of Fab and Fc was clearly dissected, providing important information for engineering more stable mAb‐based therapeutics.  相似文献   

11.
In humans, in vitro, Fc fragment of IgG at a low concentration induces plasma cell generation. However, Fc fragment at a high concentration induces PGE2 release of monocyte activation capable of inhibiting this differentiation. The levels of PGE2 in the supernatant culture from mononuclear cells from normal donors were examined as a function of culture duration and concentration of Fc, Fab fragments and IgG. Plasma cells containing intracytoplasmic Ig were demonstrated by immunofluorescence with a polyvalent antiserum to human immunoglobulin(s). PGE2 levels, from mononuclear cell cultures, were analyzed by the RIA test. The results indicated that the Fc fragments are able to induce PGE2 secretion. The maximal release of PGE2 occurs after 24 hr of culture; this level is proportionate to the quantity of Fc fragments introduced. The addition of indomethacin in the cell culture stimulated by a high concentration of Fc fragments reestablishes the percentage of plasma cells. These results suggest the regulatory role of Fc fragment by PGE2 secretion in B cell differentiation.  相似文献   

12.
The affinity-purified by chromatography on immobilized antigen rabbit IgG was modified with mixed carboxycarbonic anhydride of DTPA which markedly alters the interaction of charged residues in the protein molecule. To study the correlation between the antigen binding activity and the conformational mobility of IgG, the reactivity of modified IgG towards conformational probes targeted at variable and constant IgG domains, was investigated. The antibody against CH2 domains of IgG, staphylococcal protein A and protein antigen ferritin were used as conformational probes. It was found that modification of IgG amino groups entails the global increase in conformational mobility involving the Fab fragments, CH2 and, probably, the CH3 domains of the Fc portion of IgG. Taking advantage of Fab fragments modification it was shown that two processes contribute to the global increase in the conformational mobility of IgG. These processes are: i) stimulation of segmental flexibility and, ii) increase in the mobility within the Fv domains of the Fab fragments.  相似文献   

13.
The monoclonal antibody KuFc79 binds to a determinant on the Fc receptors (Fc gamma R) of human leukocytes. We examined the biologic effects of the interaction of this antibody with Fc gamma R on human neutrophils (PMNL). The univalent Fab fragment of KuFc79 inhibits the formation of rosettes with IgG-sensitized sheep erythrocytes by as much as 91.7%. In other experiments in which PMNL were washed after exposure to Fab of KuFc79, phagocytosis of IgG-sensitized sheep erythrocytes was inhibited by 36%. Fab fragments of other mouse IgG2b monoclonal proteins did not have these effects. When PMNL are exposed to coverslips coated with univalent Fab fragments of this antibody, the Fc gamma R are removed from the surface of the PMNL. Under these conditions, rosetting could be inhibited by 85.4%. We examined cross-linking of receptor bound monoclonal antibody or its Fab fragment by either Protein A or F(ab')2 of an anti-mouse Ig. As much as 31.7% of beta-glucuronidase, a marker for lysosomal enzymes, is specifically released by cross-linking the Fc gamma R on PMNL. The generation of O2- is also induced by specifically cross-linking Fc gamma R with Fab and anti-Fab. The data constitute the first formal demonstration that cross-linking of Fc gamma R on PMNL leads to enzyme release and superoxide generation.  相似文献   

14.
本实验采用木瓜酶水解,SPA柱亲合层析等手段得到人IgGFc段及Fab段,以Sigma抗人IgGfFc段和抗人IgG Fab段单抗为标准品,鉴定了细胞库中抗人IgG系列的部分细胞株,得到特异性分泌抗人IgG Fc段和抗人IgG Fab段单抗的细胞各一株。 在上述实验基础上,用抗人IgG Fc及抗人IgG Fab单抗分别制备了Sepharose4B亲合层析柱,提纯了酶解人IgG Fc、Fab片段,经ELISA法鉴定,相互之间无交叉反应。同时用此方法制备了人抗HBe Fab片段,并将该片段进行了过氧化物酶标记,用来配制HBe ELISA诊断盒,证明其生物活性未受影响,而且消除了类风湿因子引起的HBe Ag假阳性现象。因抗HBe单抗来源困难,如采用HBe多抗制备ELISA试剂,本法将是提高质量的一个好方法。  相似文献   

15.
1. The sedimentation coefficients of rabbit immunoglobulin G, four types of Fc fragments, univalent Fab and bivalent F(ab)2 fragments were measured as a function of pH. 2. In conjunction with molecular-weight determinations by sedimentation equilibrium, and with the behaviour on gel filtration, this enabled the state of association of the Fc fragments to be followed. 3. The type possessing an interchain disulphide bond, 1Fc fragment, changed extensively in structure, but not in molecular weight. 4. There was good correlation between the readiness to dissociate and the chain length of the shorter Fc fragments that do not contain the interchain covalent bond. 5. The increasing resistance to dissociation as the fragments became shorter ran parallel with the ability to resist enzymic attack. 6. The site of the strong association between component chains of Fc fragment is located in the C-terminal half. 7. The gel-filtration behaviour of the Fc fragments clearly confirms that the process is governed by the Stokes radius rather than molecular weight. 8. The ultracentrifugal results were used to estimate the separations of the hydrodynamic subunits in intact immunoglobulin G, and as a basis for a schematic structure.  相似文献   

16.
We describe the preparation of Fab fragments of a humanized anti-human high-affinity IgE receptor (Fc epsilonRIalpha) antibody potentially useful for treatment of IgE-mediated allergic diseases. IgE-binding capacities of sixteen combinations of light and heavy chains of four recombinant anti-Fc epsilonRIalpha antibodies, chimeric CRA2, humanized CRA2, chimeric CRA4, and humanized CRA4, were compared. A combination in which both chains were of humanized CRA2 had the highest activity. Stable transfectant clones of four kinds of host cells expressing recombinant antibodies were established. CHO-K1 cells were the most productive. Serum-free media suitable for culture of the stable CHO-transfectant clones were screened. The concentration of the humanized CRA2, which the most productive clone secreted into the chosen serum-free medium, was approximately 100 microg/ml. A procedure for the purification of the antibody, papain-digestion, and purification of Fab fragments was established. The highly purified humanized Fab fragments are suitable for use to examine their in vivo activity and immunogenicity in primates.  相似文献   

17.
Intact rabbit immunoglobulin G molecules (IgGs) and their papain or pepsin fragments were radio-iodinated and injected into HeLa cells. Whole IgGs, Fab2, and Fc fragments were degraded with half-lives of 60- 90 h, whereas half-lives of Fab fragments were 110 h. These results indicate that proteolytic cleavage in the hinge region of the IgG molecule is not the rate-limiting step in its intracellular degradation. The hingeless human myeloma protein, Mcg, was degraded at the same rate as bulk human IgG, providing further evidence that the proteolytically susceptible hinge region is not important for intracellular degradation of IgG molecules. SDS acrylamide gel analysis of injected rabbit IgG molecules revealed that heavy and light chains were degraded at the same rate. Injected rabbit IgGs and rabbit IgG fragments were also examined on isoelectric focusing gels. Fab, Fab2, and Fc fragments were degraded without any correlation with respect to isoelectric point. Positively charged rabbit IgGs disappeared more rapidly than their negative counterparts, contrary to the trend reported for normal intracellular proteins. The isoelectric points of two mouse monoclonal antibodies were essentially unchanged after injection into HeLa cells, suggesting that the altered isoelectric profile observed for intact rabbit IgG resulted from degradation and not protein modification. The intracellular distributions of IgG fragments and intact rabbit IgG molecules were determined by autoradiography of thin sections through injected cells. Intact IgG molecules were excluded from HeLa nuclei whereas both Fab and Fc fragments readily entered them. Thus, for some proteins, entry into the nuclear compartment is determined primarily by size.  相似文献   

18.
The formyl peptide receptor (FPR) and the glycosyl-phosphatidylinositol-linked type III receptor for the Fc portion of IgG (Fc gamma RIIIB; CD16) play important roles in various inflammatory responses in human neutrophils. The mechanisms of signaling by the glycosyl phosphatidylinositol-anchored Fc gamma RIIIB are not known. Therefore, we investigated the possibility that Fc gamma RIIIB and FPR may act in concert to mediate neutrophil functions. We observed that pretreatment of normal human neutrophils with Fab fragments of a mAb to the Fc gamma RIII (3G8) specifically inhibited their chemotaxis into micropore filters in response to the formylated peptides FMLP or formyl-norleucyl-leucyl-phenylalanine. Pretreatment of neutrophils with a saturating concentration of 3G8 Fab (100 nM or 5 micrograms/ml) followed by exposure to FMLP (0.5 to 500 nM) indicated that significant inhibition of chemotaxis was observed at peptide concentrations greater than 5 nM. However, 3G8 Fab had no effect on the neutrophil response to a wide range (0.05 to 500 nM) of other chemotactic factors, including C5a, leukotriene B4, IL-8 (neutrophil-activating peptide-1), and platelet-activating factor. Moreover, pretreatment of neutrophils with mAb to other cell surface molecules (decay-accelerating factor, Fc gamma RII, and HLA class I) did not affect chemotaxis to FMLP. Inhibition of movement was not due to degradation of FMLP by the cell surface endopeptidase 24.11 (CD10), because neutrophils pretreated with the CD10 inhibitor phosphoramidone and 3G8 Fab displayed the same altered response to FMLP as cells pretreated with 3G8 Fab alone. Ligation of the Fc binding site of Fc gamma RIIIB appears to be essential for altering the FMLP-induced response, since soluble aggregated IgG and other anti-Fc gamma RIII antibodies, all of which recognize the ligand binding site, mimic the inhibitory effect of the 3G8 Fab on FMLP-induced chemotaxis. In contrast, a mAb (214.1) that does not recognize the Fc binding site of Fc gamma RIIIB had no effect on FMLP-induced chemotaxis. Not only did anti-Fc gamma RIII inhibit neutrophil chemotaxis to FMLP in a filter-based migration assay, but 3G8 Fab also inhibited FMLP-induced neutrophil transendothelial migration. Scatchard plot analysis of radioligand binding experiments indicated that 3G8 Fab did not significantly alter the number of FMLP binding sites on neutrophils but significantly increased the affinity of the FPR for [3H]FMLP. Removal of greater than 80% of cell surface Fc gamma RIIIB by phospholipase C abolished the neutrophil chemotactic response to FMLP but did not affect movement toward C5a, IL-8, or leukotriene B4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
IgG antibodies (Abs) and fragments of IgG Abs are becoming major biotherapeutics to treat an assortment of human diseases. Commonly prepared fragments of IgGs include Fc, Fab, and F(ab')2 fragments, all of which can be made using the sulfhydryl protease papain, although prolonged digestion times and/or excessive amounts of papain typically result in further cleavage of the Fc domain into smaller fragments. During our attempts to use papain to isolate Fc fragments from different IgG monoclonal Abs, it was observed that prior removal of Fc glycans resulted in a faster rate of papain-mediated degradation of the Fc domain. Subsequent time-course experiments comparing glycosylated and deglycosylated versions of IgG antibodies showed that the majority of molecules in a deglycosylated IgG sample were converted into Fab, Fc, and smaller Fc fragments in less than one hour, whereas the original glycosylated IgG required more than two hours to convert into a comparable amount of Fab and Fc fragments. Furthermore, whereas papain digestion converted almost all of a deglycosylated Fc fragment into smaller fragments of approximately 10 and approximately 12 kDa within 4 h, more than 40% of a glycosylated Fc fragment remained intact even after 24 h of digestion. These results indicate that the presence of CH(2) domain glycans in either IgGs or purified Fc fragments increases resistance to papain digestion. Increased sensitivity of non-glycosylated Fc domains to papain is consistent with the Fc domains lacking a defined structure, as exemplified by their inability to bind Fcgamma receptors, since misfolded proteins are often degraded by proteases because of increased accessibility of their proteolytic cleavage sites. Based on these observations it is possible to use papain sensitivity as a means of assessing proper Fc structure of IgG molecules.  相似文献   

20.
The authors established the amino acid substitutions determining G3m(s) and G3m(t) specificities, which characterize Mongoloid populations, by sequence analysis of the Fc region of a myeloma protein (Jir). By comparing the amino acid sequences of the IgG3 (Jir) and the other IgG subclasses analyzed to date, it was found that G3m(s) was an isoallotype specified by an amino acid substitution at position 435; i.e., whereas the subclasses IgG1, IgG2, and IgG4 had histidine in common, G3m(s-) had arginine in this position. This was also confirmed by the observation that the Fc fragment in question bound to protein A. It was also established that the amino acid at position 379 of G3m(t-) IgG3 and the other subclasses was valine, whereas methionine in this position was specific for G3m(t+). In addition, the amino acids at position 339 of G3m(u-) IgG3 Jir was threonine, and at position 296 of G3m(g-) IgG3 Jir was tyrosine. These findings are not in accord with the hitherto postulated relations of alanine and phenylalanine to G3m(u-) and G3m(g-), respectively. Finally, this study showed that a large number of substitutions occurred at positions 384 through 389, which suggests that many specificities of the G3m(b) group occur on IgG3 proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号