首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Assessment of flow-mediated dilation (FMD) after forearm ischemia is widely used as a noninvasive bioassay of stimulated nitric oxide (NO)-mediated conduit artery vasodilator function in vivo. Whether this stimulated endothelial NO function reflects basal endothelial NO function is unknown. To test this hypothesis, retrospective analysis of randomized crossover studies was undertaken in 17 subjects with Type 2 diabetes; 9 subjects undertook an exercise training or control period, whereas the remaining 8 subjects were administered an angiotensin II receptor blocker or placebo. FMD was assessed by using wall tracking of high-resolution brachial artery ultrasound images in response to reactive hyperemia. Resistance vessel basal endothelium-dependent NO function was assessed by using intrabrachial administration of NG-monomethyl-L-arginine (L-NMMA) and plethysmographic assessment of forearm blood flow (FBF). FMD was higher after intervention compared with control/placebo (6.15+/-0.53 vs. 3.81+/-0.72%, P<0.001). There were no significant changes in the FBF responses to L-NMMA. Regression analysis between FMD and L-NMMA responses at entry to the study revealed an insignificant correlation (r=-0.10, P=0.7), and improvements in FMD with the interventions were not associated with changes in the L-NMMA responses (r=-0.04, P=0.9). We conclude that conduit artery-stimulated endothelial NO function (FMD) does not reflect basal resistance vessel endothelial NO function in subjects with Type 2 diabetes.  相似文献   

2.
A reduced nitric oxide availability is a hallmark of endothelial dysfunction occurring early in atherosclerosis. Recently, we have shown that plasma nitrite mirrors acute changes in endothelial nitric oxide synthase activity in various mammals, including humans. Here, we examined the hypothesis that plasma nitrite levels are reduced in humans with endothelial dysfunction and the decrease is correlated with increasing numbers of cardiovascular risk factors (RF). Plasma nitrite concentrations were quantified by flow-injection analysis. The coefficient of variation for repeated measurements of plasma nitrite was <8%, and heart rate and blood pressure at the time of blood sampling had no significant effect on nitrite values measured (n=10). Baseline levels of plasma nitrite followed a normal distribution in each group studied and decreased progressively with increasing numbers of cardiovascular risk factors (n=351, p<0.001): 351+/-13 (0 RF), 261+/-10 (1 RF), 253+/-11 (2 RF), 222+/-18 (3 RF), and 171+/-29 nmol/L (4 RF). Intima media thickness (IMT) and flow-mediated dilation (FMD) were determined via ultrasound. Plasma nitrite and FMD levels were lower, whereas IMT was greater in individuals with endothelial dysfunction (n=12) compared to healthy volunteers (n=12). Nitrite correlated significantly with FMD (r=0.56, p<0.001) and inversely with IMT (r= -0.49, p<0.01). Plasma nitrite levels are reliably measurable in humans, indicate endothelial dysfunction, and correlate with cardiovascular risk factors. Future studies are necessary to identify the prognostic relevance of plasma nitrite determination in patients suffering from cardiovascular disease.  相似文献   

3.
The purpose of this study was to assess the relationship between aerobic exercise training and brachial artery flow-mediated dilation (FMD) in healthy subjects. Healthy controls (HC) and aerobically-trained (T) subjects were studied with high-resolution vascular ultrasound at baseline, and during a 5-minute period of hyperemia following forearm cuff occlusion. Training was defined by self-reported participation in recreational or competitive run training. Forearm cuff occlusion was held at 200 mm Hg for 5 minutes. At baseline, both brachial artery flow and diameter were greater in T than in HC (p < 0.05). Resting heart rate was lower in T than in HC (p < 0.05). Peak hyperemic flow (15 seconds postocclusion) was significantly greater in T than in HC (HC; 539 +/- 75 ml x min(-1) vs. T; 832 +/- 103 ml x min(-1), p < 0.05) and correlated well with V(.-)O2peak (r = 0.67, p = 0.008). Flow-mediated dilation was significantly greater in T vs. HC throughout the 5-minute postocclusion phase (p < 0.05). Maximal brachial artery dilation was greater in T than in HC (HC; 3 +/- 1% of baseline vs. T; 8 +/- 3% of baseline; p < 0.05) and moderately correlated with V(.-)O2peak (r = 0.55, p < 0.05). These data suggest that the greater FMD observed in trained subjects may be due, in part, to an augmentation of peak hyperemic flow.  相似文献   

4.
Brachial artery flow-mediated dilation (FMD) is a strong predictor of future cardiovascular disease and is believed to represent a "barometer" of systemic endothelial health. Although a recent study [Padilla et al. Exp Biol Med (Maywood) 235: 1287-1291, 2010] in pigs confirmed a strong correlation between brachial and femoral artery endothelial function, it is unclear to what extent brachial artery FMD represents a systemic index of endothelial function in humans. We conducted a retrospective analysis of data from our laboratory to evaluate relationships between the upper (i.e., brachial artery) vs. lower limb (superficial femoral n = 75; popliteal artery n = 32) endothelium-dependent FMD and endothelium-independent glyceryl trinitrate (GTN)-mediated dilation in young, healthy individuals. We also examined the relationship between FMD assessed in both brachial arteries (n = 42). There was no correlation between brachial and superficial femoral artery FMD (r(2) = 0.008; P = 0.46) or between brachial and popliteal artery FMD (r(2) = 0.003; P = 0.78). However, a correlation was observed in FMD between both brachial arteries (r(2) = 0.34; P < 0.001). Brachial and superficial femoral artery GTN were modestly correlated (r(2) = 0.13; P = 0.007), but brachial and popliteal artery GTN responses were not (r(2) = 0.08; P = 0.11). Collectively, these data indicate that conduit artery vasodilator function in the upper limbs (of healthy humans) is not predictive of that in the lower limbs, whereas measurement of FMD in one arm appears to be predictive of FMD in the other. These data do not support the hypothesis that brachial artery FMD in healthy humans represents a systemic index of endothelial function.  相似文献   

5.
It is well established that endothelial dysfunction is present in coronary artery disease (CAD), although few studies have determined the effect of training on peripheral conduit vessel function in patients with CAD. A randomized, crossover design determined the effect of 8 wk of predominantly lower limb, combined aerobic and resistance training, in 10 patients with treated CAD. Endothelium-dependent dilation of the brachial artery was determined, by using high-resolution vascular ultrasonography, from flow-mediated vasodilation (FMD) after ischemia. Endothelium-independent vasodilation was measured after administration of glyceryl trinitrate (GTN). Baseline function was compared with that of 10 control subjects. Compared with matched healthy control subjects, FMD and GTN responses were significantly impaired in the untrained CAD patients [3.0 +/- 0.8 (SE) vs. 5.8 +/- 0.8% and 14.5 +/- 1.9 vs. 20.4 +/- 1.5%, respectively; both P < 0.05]. Training significantly improved FMD in the CAD patients (from 3.0 +/- 0.8 to 5.7 +/- 1.1%; P < 0.05) but not responsiveness to GTN (14.5 +/- 1.9 vs. 12.1 +/- 1.4%; P = not significant). Exercise training improves endothelium-dependent conduit vessel dilation in subjects with CAD, and the effect, evident in the brachial artery, appears to be generalized rather than limited to vessels of exercising muscle beds. These results provide evidence for the benefit of exercise training, as an adjunct to routine therapy, in patients with a history of CAD.  相似文献   

6.
Different magnitudes and durations of postocclusion reactive hyperemia were achieved by occluding different volumes of tissue with and without ischemic exercise to test the hypotheses that flow-mediated dilation (FMD) of the brachial artery would depend on the increase in peak flow rate or shear stress and that the position of the occlusion cuff would affect the response. The brachial artery FMD response was observed by high-frequency ultrasound imaging with curve fitting to minimize the effects of random measurement error in eight healthy, young, nonsmoking men. Reactive hyperemia was graded by 5-min occlusion distal to the measurement site at the wrist and the forearm and proximal to the site in the upper arm. Flow was further increased by exercise during occlusion at the wrist and forearm positions. For the two wrist occlusion conditions, flow increased eightfold and FMD was only 1 to 2% (P > 0.05). After the forearm and upper arm occlusions, blood flow was almost identical but FMD after forearm occlusions was 3.4% (P < 0.05), whereas it was significantly greater (6.6%, P < 0.05) and more prolonged after proximal occlusion. Forearm occlusion plus exercise caused a greater and more prolonged increase in blood flow, yet FMD (7.0%) was qualitatively and quantitatively similar to that after proximal occlusion. Overall, the magnitude of FMD was significantly correlated with peak forearm blood flow (r = 0.59, P < 0.001), peak shear rate (r = 0.49, P < 0.002), and total 5-min reactive hyperemia (r = 0.52, P < 0.001). The prolonged FMD after upper arm occlusion suggests that the mechanism for FMD differs with occlusion cuff position.  相似文献   

7.
Endothelial dysfunction reflects reduced nitric oxide (NO) bioavailability due to either reduced production, inactivation of NO, or reduced smooth muscle responsiveness. Oral methionine loading causes acute endothelial dysfunction in healthy subjects and provides a model in which to study mechanisms. Endothelial function was assessed using flow-mediated dilatation (FMD) of the brachial artery in humans. Three markers of oxidative stress were measured ex vivo in venous blood. NO responsiveness was assessed in vascular smooth muscle and platelets. Oral methionine loading induced endothelial dysfunction (FMD decreased from 2.8 +/- 0.8 to 0.3 +/- 0.3% with methionine and from 2.8 +/- 0.8 to 1.3 +/- 0.3% with placebo; P < 0.05). No significant changes in measures of plasma oxidative stress or in vascular or platelet sensitivity to submaximal doses of NO donors were detected. These data suggest that oxidative stress is not the mechanism of endothelial dysfunction after oral methionine loading. Furthermore, the preservation of vascular and platelet NO sensitivity makes a signal transduction abnormality unlikely.  相似文献   

8.
Aging is associated with a decline in vascular endothelial function, manifesting in part as impaired flow-mediated arterial dilation (FMD), but the underlying mechanisms are uncertain. Impaired FMD may be mediated in part by a decrease in synthesis of nitric oxide by endothelial nitric oxide synthase, and in clinical populations this has been attributed to competitive inhibition of l-arginine binding sites by asymmetric dimethylarginine (ADMA). If this mechanism is involved in the age-associated decline in FMD, increasing l-arginine concentration may swing the competitive balance in favor of l-arginine binding, restoring nitric oxide synthesis, and enhancing FMD in older humans. To test this hypothesis, we measured FMD (brachial ultrasound) in 10 younger (21 +/- 1 yr) and 12 older healthy men and women (60 +/- 2 yr) following infusion of vehicle or vehicle + l-arginine. Baseline FMD in the older subjects was only approximately 60% of that in the younger subjects (P = 0.002). l-Arginine did not significantly increase FMD in either group despite 23-fold (older) and 19-fold (younger) increases in plasma l-arginine concentrations (P < 0.0001 vs. control). Protein expression (immunofluorescence) in vascular endothelial cells showed that ADMA and the enzyme isoform that controls its degradation, dimethylarginine dimethylaminohydrolase II, were not different in the younger and older subjects. Endothelium-independent vasodilation (sublingual nitroglycerine) was not different between age groups or conditions. We conclude that acutely increasing plasma concentrations of l-arginine do not significantly improve brachial artery FMD in healthy older subjects and thus does not restore the age-associated loss of FMD. Together with the finding that endothelial cell ADMA protein expression was not increased in older adults, these findings suggest that competitive inhibition of l-arginine binding sites on endothelial nitric oxide synthase by ADMA is not an important mechanism contributing to impaired conduit artery endothelium-dependent dilation with aging in healthy humans.  相似文献   

9.
Flow-mediated dilation (FMD) has become a commonly applied approach for the assessment of vascular function and health, but methods used to calculate FMD differ between studies. For example, the baseline diameter used as a benchmark is sometimes assessed before cuff inflation, whereas others use the diameter during cuff inflation. Therefore, we compared the brachial artery diameter before and during cuff inflation and calculated the resulting FMD in healthy children (n=45; 10+/-1 yr), adults (n=31; 28+/-6 yr), and older subjects (n=22; 58+/-5 yr). Brachial artery FMD was examined after 5 min of distal ischemia. Diameter was determined from either 30 s before cuff inflation or from the last 30 s during cuff inflation. Edge detection and wall tracking of high resolution B-mode arterial ultrasound images was used to calculate conduit artery diameter. Brachial artery diameter during cuff inflation was significantly larger than before inflation in children (P=0.02) and adults (P<0.001) but not in older subjects (P=0.59). Accordingly, FMD values significantly differed in children (11.2+/-5.1% vs. 9.4+/-5.2%; P=0.02) and adults (7.3+/-3.2% vs. 4.6+/-3.3%; P<0.001) but not in older subjects (6.3+/-3.4% vs. 6.0+/-4.2%; P=0.77). When the diameter before cuff inflation was used, an age-dependent decline was evident in FMD, whereas FMD calculated using the diameter during inflation was associated with higher FMD values in older than younger adults. In summary, the inflation of the cuff significantly increases brachial artery diameter, which results in a lower FMD response. This effect was found to be age dependent, which emphasizes the importance of using appropriate methodology to calculate the FMD.  相似文献   

10.
We tested the hypothesis that reductions in vascular endothelial function (endothelium-dependent dilation, EDD) with age are related to increases in sympathetic activity. Among 314 healthy men and women, age was inversely related to brachial artery flow-mediated dilation (FMD) (r = -0.30, P < 0.001), a measure of EDD, and positively related to plasma norepinephrine concentrations (PNE), a marker of sympathetic activity (r = 0.49, P < 0.001). Brachial FMD was inversely related to PNE in all subjects (r = -0.25, P < 0.001) and in men (n = 187, r = -0.17, P = 0.02) and women (n = 127, r = -0.37, P < 0.001) separately. After controlling for PNE (multiple regression analysis), brachial FMD remained significantly related to age in all subjects (r = -0.20, P < 0.001) and in men (r = -0.23, P < 0.01), but not women (r = -0.16, P = 0.06). Consistent with this, brachial FMD remained significantly related to PNE when controlling for age (r = -0.24, P < 0.01) and menopause status (r = -0.24, P < 0.01) in women. Indeed, PNE was the strongest independent correlate of brachial FMD in women after controlling for conventional cardiovascular disease risk factors (r = -0.22, P = 0.01). This relation persisted in a subset of women (n = 113) after further accounting for the effects of plasma oxidized low-density lipoprotein (P < 0.05), a circulating marker of oxidative stress. Endothelium-independent dilation was not related to age in either men or women (P > 0.05). These results provide the first evidence that EDD is inversely related to sympathetic activity, as assessed by PNE, among healthy adults varying in age. In particular, our findings suggest that sympathetic nervous system activity may be a key factor involved in the modulation of vascular endothelial function with aging in women.  相似文献   

11.
Previous work from our laboratory demonstrated that isometric handgrip (IHG) training improved local, endothelium-dependent vasodilation in medicated hypertensives [McGowan CL (PhD Thesis), 2006; McGowan et al. Physiologist 47: 285, 2004]. We investigated whether changes in the capacity of smooth muscle to dilate (regardless of endothelial factors) influenced this training-induced change, and we examined the acute vascular responses to a single bout of IHG. Seventeen subjects performed four 2-min unilateral IHG contractions at 30% of maximal voluntary effort, three times a week for 8 wk. Pre- and posttraining, brachial artery flow-mediated dilation (FMD, an index of endothelium-dependent vasodilation) and nitroglycerin-mediated maximal vasodilation (an index of endothelium-independent vasodilation) were measured in the exercised arm by using ultrasound before and immediately after acute IHG exercise. IHG training resulted in improved resting brachial FMD (P < 0.01) and no change in nitroglycerin-mediated maximal vasodilation. Pre- and posttraining, brachial artery FMD decreased following an acute bout of IHG exercise (normalized to peak shear rate, pre-, before IHG exercise: 0.01 +/- 0.002, after IHG exercise: 0.008 +/- 0.002%/s(-1); post-, before IHG exercise: 0.020 +/- 0.003, after IHG exercise: 0.010 +/- 0.003%/s(-1); P < 0.01). Posttraining, resting brachial artery FMD improved yet nitroglycerin-mediated maximal vasodilation was unchanged in persons medicated for hypertension. This suggests that the training-induced improvements in the resting brachial artery FMD were not due to underlying changes in the forearm vasculature. Acute IHG exercise attenuated brachial artery FMD, and although this impairment may be interpreted as hazardous to medicated hypertensives with already dysfunctional endothelium, the effects appear transient as repeated exposure to the IHG stimulus improved resting endothelium-dependent vasodilation.  相似文献   

12.
Advancing age is a major risk factor for coronary artery disease. Endothelial dysfunction accompanied by increased oxidative stress and inflammation with aging may predispose older arteries to greater ischemia-reperfusion (I/R) injury. Because coronary artery ischemia cannot be induced safely, the effects of age and habitual endurance exercise on endothelial I/R injury have not been determined in humans. Using the brachial artery as a surrogate model of the coronary arteries, endothelial function, assessed by brachial artery flow-mediated dilation (FMD), was measured before and after 20 min of continuous forearm occlusion in young sedentary (n = 10, 24 ± 2 yr) and middle-aged (n = 9, 48 ± 2 yr) sedentary adults to gain insight into the effects of primary aging on endothelial I/R injury. Young (n = 9, 25 ± 1 yr) and middle-aged endurance-trained (n = 9, 50 ± 2 yr) adults were also studied to determine whether habitual exercise provides protection from I/R injury. Fifteen minutes after ischemic injury, FMD decreased significantly by 37% in young sedentary, 35% in young endurance-trained, 68% in middle-aged sedentary, and 50% in middle-aged endurance-trained subjects. FMD returned to baseline levels within 30 min in young sedentary and endurance-trained subjects but remained depressed in middle-aged sedentary and endurance-trained subjects. Circulating markers of antioxidant capacity and inflammation were not related to FMD. In conclusion, advancing age is associated with a greater magnitude and delayed recovery from endothelial I/R injury in humans. Habitual endurance exercise may provide partial protection to the endothelium against this form of I/R injury with advancing age.  相似文献   

13.
Exercise elevates shear stress in the supplying conduit artery. Although this is the most relevant physiological stimulus for flow-mediated dilation (FMD), the fluctuating pattern of shear that occurs may influence the shear stress-FMD stimulus response relationship. This study tested the hypothesis that the brachial artery FMD response to a step increase in shear is influenced by the fluctuating characteristics of the stimulus, as evoked by forearm exercise. In 16 healthy subjects, we examined FMD responses to step increases in shear rate in three conditions: stable shear upstream of heat-induced forearm vasodilation (FHStable); fluctuating shear upstream of heat-induced forearm vasodilation and rhythmic forearm cuff inflation/deflation (FHFluctuating); and fluctuating shear upstream of exercise-induced forearm vasodilation (FEStep Increase). The mean increase in shear rate (+/-SD) was the same in all trials (FHFluctuating): 51.69 +/- 15.70 s(-1); FHStable: 52.16 +/- 14.10 s(-1); FEStep Increase: 50.14 +/- 13.03 s(-1) P = 0.131). However, the FHFluctuating and FEStep Increase trials resulted in a fluctuating shear stress stimulus with rhythmic high and low shear periods that were 96.18 +/- 24.54 and 11.80 +/- 7.30 s(-1), respectively. The initial phase of FMD (phase I) was followed by a second, delayed-onset FMD and was not different between conditions (phase I: FHFluctuating: 5.63 +/- 2.15%; FHStable: 5.33 +/- 1.85%; FEStep Increase: 5.30 +/- 2.03%; end-trial: FHFluctuating: 7.76 +/- 3.40%; FHStable: 7.00 +/- 3.03%; FEStep Increase: 6.68 +/- 3.04%; P = 0.196). Phase I speed also did not differ (P = 0.685). In conclusion, the endothelium transduced the mean shear when exposed to shear fluctuations created by a typical handgrip protocol. Muscle activation did not alter the FMD response. Forearm exercise may provide a viable technique to investigate brachial artery FMD in humans.  相似文献   

14.
GLP-1 stimulates insulin secretion, suppresses glucagon secretion, delays gastric emptying, and inhibits small bowel motility, all actions contributing to the anti-diabetogenic peptide effect. Endothelial dysfunction is strongly associated with insulin resistance and type 2 diabetes mellitus and may cause the angiopathy typifying this debilitating disease. Therefore, interventions affecting both endothelial dysfunction and insulin resistance may prove useful in improving survival in type 2 diabetes patients. We investigated GLP-1's effect on endothelial function and insulin sensitivity (S(I)) in two groups: 1) 12 type 2 diabetes patients with stable coronary artery disease and 2) 10 healthy subjects with normal endothelial function and S(I). Subjects underwent infusion of recombinant GLP-1 or saline in a random crossover study. Endothelial function was measured by postischemic FMD of brachial artery, using ultrasonography. S(I) [in (10(-4) dl.kg(-1).min(-1))/(muU/ml)] was measured by hyperinsulinemic isoglycemic clamp technique. In type 2 diabetic subjects, GLP-1 infusion significantly increased relative changes in brachial artery diameter from baseline FMD(%) (3.1 +/- 0.6 vs. 6.6 +/- 1.0%, P < 0.05), with no significant effects on S(I) (4.5 +/- 0.8 vs. 5.2 +/- 0.9, P = NS). In healthy subjects, GLP-1 infusion affected neither FMD(%) (11.9 +/- 0.9 vs. 10.3 +/- 1.0%, P = NS) nor S(I) (14.8 +/- 1.8 vs. 11.6 +/- 2.0, P = NS). We conclude that GLP-1 improves endothelial dysfunction but not insulin resistance in type 2 diabetic patients with coronary heart disease. This beneficial vascular effect of GLP-1 adds yet another salutary property of the peptide useful in diabetes treatment.  相似文献   

15.
The vascular endothelium is a monolayer of cells that cover the interior of blood vessels and provide both structural and functional roles. The endothelium acts as a barrier, preventing leukocyte adhesion and aggregation, as well as controlling permeability to plasma components. Functionally, the endothelium affects vessel tone.Endothelial dysfunction is an imbalance between the chemical species which regulate vessel tone, thombroresistance, cellular proliferation and mitosis. It is the first step in atherosclerosis and is associated with coronary artery disease, peripheral artery disease, heart failure, hypertension, and hyperlipidemia.The first demonstration of endothelial dysfunction involved direct infusion of acetylcholine and quantitative coronary angiography. Acetylcholine binds to muscarinic receptors on the endothelial cell surface, leading to an increase of intracellular calcium and increased nitric oxide (NO) production. In subjects with an intact endothelium, vasodilation was observed while subjects with endothelial damage experienced paradoxical vasoconstriction.There exists a non-invasive, in vivo method for measuring endothelial function in peripheral arteries using high-resolution B-mode ultrasound. The endothelial function of peripheral arteries is closely related to coronary artery function. This technique measures the percent diameter change in the brachial artery during a period of reactive hyperemia following limb ischemia.This technique, known as endothelium-dependent, flow-mediated vasodilation (FMD) has value in clinical research settings. However, a number of physiological and technical issues can affect the accuracy of the results and appropriate guidelines for the technique have been published. Despite the guidelines, FMD remains heavily operator dependent and presents a steep learning curve. This article presents a standardized method for measuring FMD in the brachial artery on the upper arm and offers suggestions to reduce intra-operator variability.  相似文献   

16.
The measurement of nitric oxide (NO) bioavailability is of great clinical interest in the assessment of vascular health. However, NO is rapidly oxidized to form nitrite and nitrate and thus its direct detection in biological systems is difficult. Venous plasma nitrite (nM concentrations) has been shown to be a marker of forearm NO production following pharmacological stimulation of the endothelium utilizing acetylcholine (Ach). In the present study, we demonstrate, within 15 apparently healthy subjects (34.1 +/- 7.3 years), that reactive hyperemia of the forearm, a physiological endothelial stimulus, results in a 52.5% increase in mean plasma nitrite concentrations (415 +/- 64.0 to 634 +/- 57.1 nM, P = 0.015). However, plasma nitrite is readily oxidized to nitrate within plasma, and thus its utility as a marker of NO production within the clinical setting may be limited. Alternatively, NOx (predominantly nitrate) is relatively stable in plasma (microM concentrations), but is produced by sources other than the vasculature and has been shown to be unsuitable as a measure of localized NO production. We reasoned that the principle source of NOx generation during exercise is NO production and thus have examined the change in NOx following treadmill exercise stress. In this study, 12 apparently healthy subjects showed an increase (from baseline) in venous NOx at peak effort and during recovery (12 +/- 9.1 and 17 +/- 15.3 microM respectively, P < 0.05). In contrast, 10 subjects with cardiovascular disease showed no significant increases. Additionally, a correlation between VO(2peak) and the change in circulating NOx (r(2) = 0.4585, P < or = 0.01) indicated the subjects who could exercise hardest also produced the most NO.  相似文献   

17.
The extent to which ATP-sensitive K(+) channels contribute to reactive hyperemia in humans is unresolved. We examined the role of ATP-sensitive K(+) channels in regulating reactive hyperemia induced by 5 min of forearm ischemia. Thirty-one healthy subjects had forearm blood flow measured with venous occlusion plethysmography. Reactive hyperemia could be reproducibly induced (n = 9). The contribution of vascular ATP-sensitive K(+) channels to reactive hyperemia was determined by measuring forearm blood flow before and during brachial artery infusion of glibenclamide, an ATP-sensitive K(+) channel inhibitor (n = 12). To document ATP-sensitive K(+) channel inhibition with glibenclamide, coinfusion with diazoxide, an ATP-sensitive K(+) channel opener, was undertaken (n = 10). Glibenclamide did not significantly alter resting forearm blood flow or the initial and sustained phases of reactive hyperemia. However, glibenclamide attenuated the hyperemic response induced by diazoxide. These data suggest that ATP-sensitive K(+) channels do not play an important role in controlling forearm reactive hyperemia and that other mechanisms are active in this adaptive response.  相似文献   

18.
Insulin resistance is a risk factor for atherosclerosis and is associated with hyperinsulinemia, abnormal lipid profile, and hypertension. Whether hyperinsulinemia affects vascular function independent of insulin resistance or other metabolic risk factors is unknown. This investigation aimed to assess the effects of hyperinsulinemia on endothelial function in subjects with a spectrum of insulin sensitivity and lipid profile. Endothelium-dependent (flow-mediated dilation, FMD) and -independent (nitroglycerin) responses of the brachial artery were studied by high-resolution ultrasound before and during hyperinsulinemia (euglycemic clamp) in 25 normoglycemic, normotensive subjects. Participants were divided into an insulin-sensitive and an insulin-resistant subgroup based on their sensitivity index values, with a cutoff of 8, and into a normal-cholesterol and a high-cholesterol subgroup based on their total cholesterol levels, with a cutoff of 5.2 mmol/l (200 mg/dl). In the whole population, FMD was lower during hyperinsulinemia compared with baseline (2.3 +/- 0.6% vs. 6 +/- 0.6%; P < 0.001). Resting FMD was lower in the insulin-resistant subgroup compared with the insulin-sensitive subgroup (4.2 +/- 0.9% vs. 7.4 +/- 0.8%; P = 0.014) and in the high-cholesterol subjects compared with the normal-cholesterol subjects (4.4 +/- 0.7% vs. 8 +/- 0.7%; P = 0.002). Hyperinsulinemia decreased FMD in both the insulin-sensitive (from 7.4 +/- 0.8% to 3.6 +/- 0.4%; P < 0.001) and insulin-resistant (from 4.2% to 1.22%; P = 0.012) subgroups and in both the normal-cholesterol (from 8 +/- 0.7% to 3.9 +/- 0.4%; P < 0.001) and high-cholesterol (from 4.4 +/- 0.7% to 1.1 +/- 0.8%; P = 0.01) participants. Acute hyperinsulinemia impairs conduit vessel endothelial function independent of insulin sensitivity and lipid profile. Insulin may trigger endothelial dysfunction and promote atherosclerosis.  相似文献   

19.
Hypertension is associated with low plasma ascorbic acid levels and impaired endothelial function. Recent evidence suggests that increased vascular oxidative stress contributes to the pathophysiology of endothelial dysfunction and hypertension. We recently showed that chronic oral ascorbic acid therapy lowers blood pressure in hypertensive patients. We hypothesized that it would also improve endothelial vasomotor function. In a randomized, double-blind, placebo-controlled study, we examined the effect of acute (2 g po) and chronic (500 mg/day for 1 mo) ascorbic acid treatment on brachial artery flow-mediated dilation in 39 patients with hypertension. Compared with 82 age- and gender-matched normotensive controls, these patients had impaired endothelium-dependent, flow-mediated dilation of the brachial artery [8.9 +/- 6.1 vs. 11.2 +/- 5.7% (SD), P < 0.04]. After therapy, plasma ascorbic acid concentrations increased acutely from 50 +/- 12 to 149 +/- 51 micromol/l and were maintained at 99 +/- 33 micromol/l with chronic treatment (both P < 0.001). As previously reported, chronic ascorbic acid therapy reduced systolic and mean blood pressure in these patients. However, acute or chronic ascorbic acid treatment had no effect on brachial artery endothelium-dependent, flow-mediated dilation or on endothelium-independent, nitroglycerin-mediated dilation. These results demonstrate that conduit vessel endothelial dysfunction secondary to hypertension is not reversed by acute or chronic treatment with oral ascorbic acid. The effects of this treatment on resistance vessel vasomotor function warrant further investigation.  相似文献   

20.
Flow-mediated dilation (FMD) measures the ability of an artery to relax in response to increases in blood velocity. FMD, primarily of the brachial artery, has been used as a noninvasive method of assessing vascular health. The purpose of this study was to assess FMD in the lower legs of humans. Six healthy subjects (27 PlusMinus; 6 yrs) were tested. Doppler ultrasound images of the posterior tibial artery were taken before, during, and after 5 minutes of proximal cuff occlusion. FMD was measured as the percent increase in diameter after cuff release. Vascular tone was calculated using the resting diameter as a percentage of the vessel's vasoactive range. Minimum diameter occurred during ischemia and maximal diameter occurred following reactive hyperemia with local heating. The lower leg was heated with 10 minutes of immersion in 44 degrees C water. Mean diameters at rest, cuff, and during release were 0.267 PlusMinus; 0.062, 0.162 PlusMinus; 0.036, 0.302 PlusMinus; 0.058 cm, respectively. FMD was 13.5 PlusMinus; 6.6 % and vascular tone was 29 PlusMinus; 16.3%. We also found that retesting on a second day produced mean diameter values within 8% of the first day. Larger resting diameter (decreased tone) correlated with decreased FMD (r2 = 0.73). These results suggest that FMD and vascular tone can be measured in the posterior tibial artery. This is a potentially powerful tool to non-invasively measure vascular health in the lower legs of people at risk for vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号