首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ethanolamine (Etn) stimulates hepatocyte proliferation in vivo and in vitro; however, the physiological function of Etn in hepatocytes has yet to be elucidated. In the present study, we examined the effect of Etn using a primary culture of rat hepatocytes. The level of membrane phosphatidylethanolamine (PE) significantly decreased when the hepatocytes were cultured without Etn but increased to the level found in the liver when the culture medium was supplemented with 20–50 μM Etn. Moreover, Etn stimulated DNA synthesis in a dose-dependent manner and had a synergistic effect with epidermal growth factor (EGF). A binding assay and Western blotting showed that the number of EGF receptors was 22–30% lower in cells grown in the absence of Etn compared to those grown in its presence, but the respective Kd values were almost the same. Furthermore, tyrosine phosphorylation of the EGF receptor was significantly lower in cells grown without Etn. Phosphatidylcholine (PC) synthesis in the liver is unique in that it occurs via stepwise methylation of PE. We found that without Etn supplementation, bezafibrate-induced inhibition of PE methylation increased the level of PE by decreasing its conversion to PC and stimulated DNA synthesis. Moreover, the function of EGF in stimulating DNA synthesis was significantly enhanced under Etn-sufficient conditions. These data suggest that Etn is a nutritional factor required for synthesis of adequate PE, levels of which are important for hepatocyte proliferation.  相似文献   

2.
Partial hepatectomy (PH) triggers a rapid regenerative response in the remaining tissue to reinstate the organ function and the cell numbers. Among the molecules that change in the course of regeneration is an accumulation of prostaglandin E2 in the sera of rats with PH. Analysis of the cyclooxygenase (COX) isoenzymes in the remnant liver showed the preferential expression of COX-2 in hepatocytes. Cultured regenerating hepatocytes expressed significant levels of COX-2, a process that was not observed in the sham counterparts. Maximal expression of COX-2 was detected 16 h after PH with increased levels present even at 96 h. Pharmacological inhibition of COX-2 activity with NS398 shunted the up-regulation of cell proliferation after PH, which suggests a positive interaction of prostaglandins with the progression of the cell cycle. Similar results were obtained after PH of mice lacking the COX-2 gene. The expression of COX-2 in regenerating liver was concomitant with a decrease in CCAAT-enhancer binding protein (C/EBP-a) level and an increase in the expression of C/EBP-b and C/EBP-d. These results suggest a contribution of the enhanced synthesis of prostaglandins to liver regeneration observed after PH.  相似文献   

3.
Fibroblast growth factor (FGF) has been considered to modulate liver regeneration (LR) after partial hepatectomy (PH) at the tissue level. Previous studies have demonstrated that FGF15 and FGF19 induce the activation of its receptor, FGF receptor 4 (FGFR4), which can promote hepatocellular carcinoma progression and regulate liver lipid metabolism. In this study, we aimed to explore the role of the ileal FGF15/19- hepatic FGFR4 axis in the LR after PH. Male C57BL/6 mice aged 8–12 weeks were partially hepatectomized and assessed for expression of ileal FGF15/19 to hepatic FGFR4 signaling. We used recombinant human FGF19 protein and a small interfering RNA (siRNA) of FGFR4 to regulate expression of the FGF15/19-FGFR4 axis in vitro and in vivo. The proliferation and cell cycle of hepatocytes, the expression levels of FGF15/19-FGFR4 downstream molecules, liver recovery, and lipid metabolism were assessed. We found that both ileal and serum FGF15 expression were upregulated and hepatic FGFR4 was activated after PH in mice. FGF15/19 promoted cell cycle progression, enhanced proliferation, and reduced hepatic lipid accumulation of hepatocytes both in vitro and in vivo. Furthermore, the proliferative effect and lipid regulatory properties of FGF15/19 were dependent on FGFR4 in hepatocytes. In addition, ileal FGF15/19-hepatic FGFR4 transduction during hepatocyte proliferation was regulated by extracellular regulated protein kinase (ERK) 1/2. In conclusion, the ileal FGF15/19 to hepatic FGFR4 axis is activated and promotes LR after PH in mice, supporting the potential of ileal FGF15/19 to hepatic FGFR4 axis-targeted therapy to enhance LR after PH.  相似文献   

4.
The liver possesses the capacity to restore its function and mass after injury. Liver regeneration is controlled through complicated mechanisms, in which the phosphoinositide (PI) cycle is shown to be activated in hepatocytes. Using a rat partial hepatectomy (PH) model, the authors investigated the expression of the diacylglycerol kinase (DGK) family, a key enzyme in the PI cycle, which metabolizes a lipid second-messenger diacylglycerol (DG). RT-PCR analysis shows that DGKζ and DGKα are the major isozymes in the liver. Results showed that in the process of regeneration, the DGKζ protein, which is detected in the nucleus of a small population of hepatocytes in normal liver, is significantly increased in almost all hepatocytes. However, the mRNA levels remain largely unchanged. Double labeling with bromodeoxyuridine (BrdU), an S phase marker, reveals that DGKζ is expressed independently of DNA synthesis or cell proliferation. However, DGKα protein localizes to the cytoplasm in normal and regenerating livers, but immunoblot analysis reveals that the expected (80 kDa) and the lower (70 kDa) bands are detected in normal liver, whereas at day 10 after PH, the expected band is solely recognized, showing a different processing pattern of DGKα in liver regeneration. These results suggest that DGKζ and DGKα are involved, respectively, in the nucleus and the cytoplasm of hepatocytes in regenerating liver.  相似文献   

5.
6.
7.
Distribution of fibronectin, laminin, and collagens type I, III, IV, and V in the lobular regions of regenerating rat liver was studied by indirect immunofluorescence. Little or no laminin was detected in sham-operated controls throughout the experimental period, while it was detected in sinusoids of regenerating liver as early as 6 h after partial hepatectomy (PH). After reaching a maximum at 24 h, it decreased and was barely detectable 6 days after PH. Changes in the other extracellular matrix (ECM) proteins were evident 3 days after PH, but not earlier than 24 h. Hepatocytes isolated from regenerating rat livers were tested in a short term assay for attachment to the substrates coated with the ECM proteins. The attachment of hepatocytes to laminin substrates increased 12 h after PH, reached a maximum at 24 h, and decreased to the control level 6 days after PH, while that of the control remained constant. The attachment to fibronectin substrates was not different between regenerating livers and controls at any time point. The attachment to collagen did not change earlier than 24 h after PH, but increased slightly 3 days after PH. Primary rat hepatocytes cultured on the substrates coated with the ECM proteins were determined for replicative DNA synthesis in response to epidermal growth factor. Both in normal liver and in regenerating liver 24 h after PH, laminin was one of the most effective substrates in supporting the responsiveness of hepatocytes to the growth stimulus. Taken together, these results suggest the importance of hepatocyte-laminin interaction during the early stage of liver regeneration possibly in growth stimulation of hepatocytes and/or maintenance of hepatocyte-specific functions.  相似文献   

8.
Mature adult parenchymal hepatocytes can enter the S phase in the presence of growth factors such as HGF and EGF, but rarely proliferate in culture. We hypothesized that the cell cycle of hepatocytes in culture is restricted before G(2)/M phase and we attempted to identify the factor that induces cell cycle progression. We found that the conditioned medium from long-term cultured hepatocytes contained co-mitogenic activity with other growth factors, which was attributed to ethanolamine (Etn). Etn induced not only DNA synthesis but also cell replication of cultured hepatocytes with various other growth factors. Etn and HGF synergistically induced cyclin D(1), A and B expression, however, only cyclin B but not cyclin A formed a complex with Cdc2. In addition, Etn combined with HGF enhanced PKCbetaII expression and translocated PKCbetaII to the plasma membrane, and induced filopodia formation, which was inhibited by an antisense oligonucleotide against PKCbetaII. In addition, blocking the cytoskeleton rearrangement with inhibitors (colchicine, cytochalasin D, or chlerythrine (a specific PKC inhibitor)) inhibited cyclin expression and cell proliferation. Although Etn enhanced the downstream product, cellular phosphatidylethanolamine (PE), PE itself did not show any Etn-like activities on hepatocytes. Taken together, our results indicate that Etn functions as a co-replication factor to promote the cell cycle of mature hepatocytes to G(2)/M phase in the presence of growth factors. The activity is thought to be mediated by PKCbetaII-dependent cyclin B expression.  相似文献   

9.
The effects of food consumption on the kinetics of hepatic DNA synthesis after partial hepatectomy (PH) have been studied in rats. Short-term (4-24 hr) fasting before or after PH resulted in depression and/or delay of DNA synthesis on days 1, 2 and 3 of regeneration. This depression was found in hepatocytes and, to a lesser extent, in littoral cells. Re-feeding resulted in an increase of DNA synthesis within 3-8 hr. The results suggest that two different hepatocyte subpopulations exist in regenerating rat liver: one which proceeds to DNA synthesis without apparent exogenous signals, and another one which needs, in addition to the specific mitogenic action of PH, food intake as a secondary permissive signal in order to initiate DNA synthesis. In the latter population food consumption appears to be required at two different stages: (1) in G0 or the early pre-replicative phase (PRP); (2) in the late PRP 3-8 hr before initiation of DNA synthesis. In the latter stage dietary protein is needed, but no so in the former. The dependence on feeding in the late PRP increases relatively with time after PH. No evidence was found to suggest a different distribution of the two cell populations throughout the liver acinus. The findings support the hypothesis that the known effects of the light-dark rhythm on the timing of DNA synthesis after PH are mediated by the natural feeding rhythm of rats fed ad libitum. In addition they offer a means for improving the synchrony of hepatocyte proliferation in regenerating rat liver.  相似文献   

10.
Liver regeneration after partial hepatectomy (PH) is achieved through proliferation of hepatocytes and non-parenchymal cells. The nuclear peroxisome proliferator-activated receptor alpha (PPARalpha) is involved in regulation of lipid metabolism and proliferation of hepatic cells. The sphingomyelin signal transduction pathway is involved in the regulation of the cell cycle in eukaryotic organisms. Sphingosine-1-phosphate (S1P) and ceramide (CER)-- the intermediates of the pathway--are known to stimulate and to inhibit cellular proliferation. The aim of the present study was to investigate the effect of PPARalpha activation by bezafibrate on the sphingomyelin signaling pathway during the first 24h of liver regeneration after PH in the rat. The content of sphingomyelin, ceramide, sphingosine, sphinganine, sphingosine-1-phosphate and the activity of sphingomyelinases and ceramidases were determined at various time points after PH. It has been found that the activity of neutral Mg(2+)-dependent sphingomyelinase (nSMase) increased, whereas the activity of acidic sphingomyelinase (aSMase) decreased in the regenerating liver. Activation of PPARalpha by bezafibrate lower the activity of nSMase and increased the activity of aSMase in the regenerating rat liver. The content of ceramide was higher in bezafibrate-treated rats, whereas the content of sphingosine-1-phosphate was markedly lower as compared to the untreated rats. Therefore, it is concluded that activation of PPARalpha by bezafibrate decreases the growth-stimulatory activity of the sphingomyelin pathway in regenerating rat liver.  相似文献   

11.
Norepinephrine (NE), acting through the alpha 1-adrenergic receptor, modules the response of rat hepatocytes in primary culture to transforming growth factor type beta 1 (TGF beta) by increasing the amount of TGF beta required for a given degree of inhibition of epidermal growth factor (EGF)-induced DNA synthesis (Houck et al., J. Cell. Physiol. 135:551-555, 1988). This effect was also found in hepatocytes isolated from regenerating livers but was greatly magnified in cells isolated between 12 and 18 hr after two-thirds partial hepatectomy (PHX). During this period of enhanced sensitivity, NE was equally potent in terms of dose but more efficacious in the regenerating hepatocytes. As it did in control hepatocytes (Cruise et al., Science 227:749-751, 1985), the alpha 1-adrenergic receptor mediated the activity of NE in regenerating hepatocytes. Vasopressin (VP) and angiotensin-II (AG) also antagonized the effect of TGF beta and showed increased activity in regenerating hepatocytes but at only 50% or less of the maximal effect reached by NE. Regenerating hepatocytes isolated 24-72 hr after PHX exhibited decreased sensitivity to inhibition by TGF beta, with a nadir in 48-hr-regenerating cells. These findings suggest that NE may be involved in triggering the early phase of DNA synthesis during liver regeneration, with the subsequent acquisition of innate resistance to TGF beta responsible for continued proliferation at a time when TGF beta mRNA is known to be increasing in the liver (Braun et al., Proc. Natl. Acad. Sci. USA 85:1539-1543, 1988). EGF induced increased DNA and protein synthesis in cultures of control hepatocytes; TGF beta inhibited the EGF-induced DNA synthesis but had no effect on protein synthesis. This may be relevant to the latter stages of liver regeneration, when high levels of TGF beta mRNA are detected in liver and cellular hypertrophy predominates over hyperplasia.  相似文献   

12.
13.
Liver regeneration is regulated by several factors, including growth factors, cytokines, and post-translational modifications of several proteins. It is suggested that transglutaminase 2 (TG2) and ornithine decarboxylase (ODC) are involved in liver regeneration. To investigate the role of TG2 and ODC activities in regenerating liver, we used retinoic acid (RA), an inducer of TG2 and a suppressor of ODC. Regenerating rat liver was prepared by 70% partial hepatectomy (PH). Rats were sacrificed at 1, 2, 3, 4, and 6 days after surgery. RA was intraperitoneally injected immediately after PH. TG2 and ODC activities and products (epsilon-(gamma-glutamyl) lysine isopeptide (Gln-Lys) and polyamines, respectively) were examined at the indicated times. In RA-treated rat, DNA synthesis and ODC activity declined and the peak shifted to 2 days after PH, whereas TG2 activity increased at 1 day after PH. At that time, protein-polyamine, especially the protein-spermidine (SPD) bond, transiently decreased, whereas the formation of the Gln-Lys bond increased after PH. These results suggested that in regenerating liver, enhanced the formation of Gln-Lys bonds catalyzed by TG2 led to reduced DNA synthesis, whereas when ODC produced newly synthesized SPD, the inhibition of Gln-Lys bond production by the preferential formation of protein-SPD bonds led to an increase in DNA synthesis.  相似文献   

14.
Liver regeneration may take place after liver injury through replication of hepatocytes or hepatic progenitor cells called oval cells. Interferons (IFN) are natural cytokines with pleiotrophic effects including antiviral and antiproliferative actions. No data are yet available on the physiology and cellular source of natural IFNs during liver regeneration. To address this issue, we have analyzed the levels and biologic activities of IFN-α/IFN-γ in two models of partial hepatectomy. After 2/3rd partial hepatectomy (PH), hepatic levels of IFN-α and IFN-γ declined transiently in contrast to a transient increase of the IFN-γ serum level. After administration of 2-acetylaminofluorene and partial hepatectomy (AAF/PH model), however, both IFN-α and IFN-γ expression were up-regulated in regenerating livers. Again, the IFN-γ serum level was transiently increased. Whereas hepatic IFN-γ was up-regulated early (day 1–5), but not significantly, in the AAF/PH model, IFN-α was significantly up-regulated at later time points in parallel to the peak of oval cell proliferation (days 7–9). Biological activity of IFN-α was shown by activation of IFN-α-specific signal transduction and induction of IFN-α specific-gene expression. We found a significant infiltration of the liver with inflammatory monocyte-like mononuclear phagocytes (MNP) concomitant to the frequency of oval cells. We localized IFN-α production only in MNPs, but not in oval cells. These events were not observed in normal liver regeneration after standard PH. We conclude that IFN-γ functions as an acute-phase cytokine in both models of liver regeneration and may constitute a systemic component of liver regeneration. IFN-α was increased only in the AAF/PH model, and was associated with proliferation of oval cells. However, oval cells seem not to be the source of IFN-α. Instead, inflammatory MNP infiltrating AAF/PH-treated livers produce IFN-α. These inflammatory MNPs may be involved in the regulation of the oval cell compartment through local expression of cytokines, including IFN-α.  相似文献   

15.
16.
Setkov NA  Eremeev AV 《Tsitologiia》2001,43(6):567-574
Mouse liver regeneration after partial hepatectomy can be considered as a spectacular example of controlled tissue increase. In this study serum-deprived (0.2%) resting and serum-stimulated (10%) proliferating NIH 3T3 mouse fibroblasts were fused with primary hepatocytes isolated from normal (intact) and regenerating adult mouse liver at different times after partial hepatectomy (1-15 days) to elucidate mechanisms of liver cell proliferation cessation at the regeneration end. DNA synthesis was investigated in the nuclei of heterokaryons and non-fused cells using radioautography. Hepatocytes isolated from regenerating liver within 1-12 days following operation did not retard the entry of stimulated fibroblast nuclei into the S-period. In contrast, hepatocytes isolated within 15 days after hepatectomy were found to have inhibitory effect on the entry of stimulated fibroblast nuclei into the S-period in heterokaryons. Preincubation of these hepatocytes with cyclocheximide for 2-4 h abolished their ability to suppress DNA synthesis in stimulated fibroblast nuclei in heterokaryons. Possible reasons of inhibitory effect of differentiated cells in heterokaryos are discussed. The data obtained enable us to conclude that the mechanism of proliferative process control in regenerating hepatocytes seems to be stopped being affected by the intracellular growth inhibitors, whose formation depends on protein synthesis.  相似文献   

17.
采用高效液相色谱和原位杂交技术研究了皮质酮对大鼠再生肝细胞鸟氨酸脱羧酶 (ODC)活性及ODCmRNA表达的影响。结果显示 ,大鼠完整肝脏中ODC水平较低 ,2 / 3肝切除 (PH)后 3h ,不同处理组ODC活性开始升高 ,6h达到最高值 ,其中 ,去肾上腺 NaCl组和糖皮质激素受体拮抗剂RU4 86处理组的酶活性高于对照组 (去肾上腺假手术组 ) ,而去肾上腺 皮质酮处理组的酶活性低于对照组 ,36h恢复到肝切除前水平 ;完整肝脏的ODCmRNA水平极低 ,PH后表达量迅速增加 ,5h达到最大值 ,不同处理组mRNA水平的高低顺序与酶活性一致 ,12h降至肝切除前水平 ;在PH前 12h给大鼠注射RU4 86 (10mg/kg体重 ) ,取得了与去肾上腺 NaCl处理鼠相似的结果。以上结果表明 ,在PH诱导的再生肝细胞中 ,ODCmRNA表达量的增加和 /或减少是造成ODC活性改变的原因之一 ,皮质酮对ODC活性及其mRNA的表达具有抑制作用 ,主要表现在肝再生的早期 ,该作用可能是通过受体实现的  相似文献   

18.
19.
The effect of COX (cyclo-oxygenase)-2-dependent PGs (prostaglandins) in acute liver injury has been investigated in transgenic mice that express human COX-2 in hepatocytes. We have used three well-established models of liver injury: in LPS (lipopolysaccharide) injury in D-GalN (D-galactosamine)-preconditioned mice; in the hepatitis induced by ConA (concanavalin A); and in the proliferation of hepatocytes in regenerating liver after PH (partial hepatectomy). The results from the present study demonstrate that PG synthesis in hepatocytes decreases the susceptibility to LPS/D-GalN or ConA-induced liver injury as deduced by significantly lower levels of the pro-inflammatory profile and plasmatic aminotransferases in transgenic mice, an effect suppressed by COX-2-selective inhibitors. These Tg (transgenic) animals express higher levels of anti-apoptotic proteins and exhibit activation of proteins implicated in cell survival, such as Akt and AMP kinase after injury. The resistance to LPS/D-GalN-induced liver apoptosis involves an impairment of procaspase 3 and 8 activation. Protection against ConA-induced injury implies a significant reduction in necrosis. Moreover, hepatocyte commitment to start replication is anticipated in Tg mice after PH, due to the expression of PCNA (proliferating cell nuclear antigen), cyclin D1 and E. These results show, in a genetic model, that tissue-specific COX-2-dependent PGs exert an efficient protection against acute liver injury by an antiapoptotic/antinecrotic effect and by accelerated early hepatocyte proliferation.  相似文献   

20.
The multi-kinase inhibitor Sorafenib increases the survival of patients with advanced hepatocellular carcinoma (HCC). Current data suggest that Sorafenib inhibits cellular proliferation and angiogenesis and promotes apoptosis. However, the underlying pro-apoptotic molecular mechanisms are incompletely understood. Here we compared the pro-apoptotic and anti-proliferative properties of Sorafenib in murine hepatoma cells and syngeneic healthy hepatocytes in vitro and in animal models of HCC and liver regeneration in vivo. In vitro, we demonstrate that cell cycle activity and expression of anti-apoptotic Bcl-2 like proteins are similarly downregulated by Sorafenib in Hepa1-6 hepatoma cells and in syngeneic primary hepatocytes. However, Sorafenib-mediated activation of caspase-3 and induction of apoptosis were exclusively found in hepatoma cells, but not in matching primary hepatocytes. We validated these findings in vivo by applying an isograft HCC transplantation model and partial hepatectomy (PH) in C57BL/6 mice. Sorafenib treatment activated caspase-3 and thus apoptosis selectively in small tumor foci that originated from implanted Hepa1-6 cells but not in surrounding healthy hepatocytes. Similarly, Sorafenib did not induce apoptosis after PH. However, Sorafenib treatment transiently inhibited cell cycle progression and resulted in mitotic catastrophe and enhanced non-apoptotic liver injury during regeneration. Importantly, Sorafenib-mediated apoptosis in hepatoma cells was associated with the expression of p53-upregulated-modulator-of-apoptosis (PUMA). In contrast, regenerating livers after PH revealed downregulation of PUMA and were completely protected from Sorafenib-mediated apoptosis. We conclude that Sorafenib induces apoptosis selectively in hepatoma cells but not in healthy hepatocytes and can additionally increase non-apoptotic hepatocyte injury in the regenerating liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号