首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
2.
3.
With the increase of sequenced fungal genomes, high-throughput methods for functional analyses of genes are needed. We assessed the potential of a new transposon mutagenesis tool deploying a Fusarium oxysporum miniature inverted-repeat transposable element mimp1, mobilized by the transposase of impala, a Tc1-like transposon, to obtain knock-out mutants in Fusarium graminearum. We localized 91 mimp1 insertions which showed good distribution over the entire genome. The main exception was a major hotspot on chromosome 2 where independent insertions occurred at exactly the same nucleotide position. Furthermore insertions in promoter regions were over-represented. Screening 331 mutants for sexual development, radial growth and pathogenicity on wheat resulted in 19 mutants (5.7%) with altered phenotypes. Complementation with the original gene restored the wild-type phenotype in two selected mutants demonstrating the high tagging efficiency. This is the first report of a MITE transposon tagging system as an efficient mutagenesis tool in F. graminearum.  相似文献   

4.
The ortholog of the human gene NPC1 was identified in the plant pathogenic, filamentous fungus Fusarium graminearum by shared amino acid sequence, protein domain structure and cellular localization of the mature fungal protein. The FusariumNpc1 gene shares 34% amino acid sequence identity and 51% similarity to the human gene, has similar domain structure and is constitutively expressed, although up-regulated in ungerminated macroconidia and ascospores. GFP-tagged Npc1p localizes to the fungal vacuolar membrane. Cultures derived from a Δnpc1 mutant strain contain significantly more ergosterol than cultures of the wildtype. Staining with the fluorescent, sterol binding dye filipin, shows that ergosterol accumulates in vacuoles of the Δnpc1 mutant but not the wildtype strain. The Δnpc1 mutant has a temperature dependent reduction in growth and greater sensitivity to the ergosterol synthesis inhibiting fungicide tebuconazole compared with the wildtype strain or the mutant complemented with wildtype Npc1. The mutant also is significantly reduced in pathogenicity to wheat. Our results are consistent with the interpretation that Npc1p is important for normal transport of ergosterol from the vacuole and is essential for proper membrane function under particular environmental conditions.  相似文献   

5.
6.
Antifungal defensins, MsDef1 and MtDef4, from Medicago spp., inhibit the growth of Fusarium graminearum, which causes head blight disease in cereals. In order to determine the signalling cascades that are modulated by these defensins, we have isolated several insertional mutants of F. graminearum that exhibit hypersensitivity to MsDef1, but not to MtDef4. The molecular characterization of two of these mutants, designated enhanced sensitivity to defensin (esd), has revealed that the Mgv1 and Gpmk1 MAP kinase signalling cascades play a major role in regulating sensitivity of F. graminearum to MsDef1, but not to MtDef4. The Hog1 MAP kinase signalling cascade, which is responsible for adaptation of this fungus to hyperosmotic stress, does not participate in the fungal response to these defensins. Significantly, the esd mutants also exhibit hypersensitivity to other tested defensins and are highly compromised in their pathogenesis on wheat heads and tomato fruits. The studies reported here for the first time implicate two MAP kinase signalling cascades in a plant defensin-mediated alteration of fungal growth. Based on our findings, we propose that specific MAP kinase signalling cascades are essential for protection of a fungal pathogen from the antimicrobial proteins of its host plant.  相似文献   

7.
8.
14alpha-Demethylase (CYP51) is a key enzyme in all sterol biosynthetic pathways (animals, fungi, plants, protists, and some bacteria), catalyzing the removal of the C-14 methyl group following cyclization of squalene. Based on mutations found in CYP51 genes from Candida albicans azole-resistant isolates obtained after fluconazole treatment of fungal infections, and using site-directed mutagenesis, we have found that fluconazole binding and substrate metabolism vary among three different CYP51 isoforms: human, fungal, and mycobacterial. In C. albicans, the Y132H mutant from isolates shows no effect on fluconazole binding, whereas the F145L mutant results in a 5-fold increase in its IC(50) for fluconazole, suggesting that F145 (conserved only in fungal 14alpha-demethylases) interacts with this azole. In C. albicans, F145L accounts, in part, for the difference in fluconazole sensitivity reported between mammals and fungi, providing a basis for treatment of fungal infections. The C. albicans Y132H and human Y145H CYP51 mutants show essentially no effect on substrate metabolism, but the Mycobacterium tuberculosis F89H CYP51 mutant loses both its substrate binding and metabolism. Because these three residues align in the three isoforms, the results indicate that their active sites contain important structural differences, and further emphasize that fluconazole and substrate binding are uncoupled properties.  相似文献   

9.
10.
11.
Rahier A 《Steroids》2011,76(4):340-352
Sterols become functional only after removal of the two methyl groups at C-4. This review focuses on the sterol C-4 demethylation process in higher plants. An intriguing aspect in the removal of the two C-4 methyl groups of sterol precursors in plants is that it does not occur consecutively as it does in yeast and animals, but is interrupted by several enzymatic steps. Each C-4 demethylation step involves the sequential participation of three individual enzymatic reactions including a sterol methyl oxidase (SMO), a 3β-hydroxysteroid-dehydrogenase/C4-decarboxylase (3βHSD/D) and a 3-ketosteroid reductase (SR). The distant location of the two C-4 demethylations in the sterol pathway requires distinct SMOs with respective substrate specificity. Combination of genetic and molecular enzymological approaches allowed a thorough identification and functional characterization of two distinct families of SMOs genes and two 3βHSD/D genes. For the latter, these studies provided the first molecularly and functionally characterized HSDs from a short chain dehydrogenase/reductase family in plants, and the first data on 3-D molecular interactions of an enzyme of the postoxidosqualene cyclase sterol biosynthetic pathway with its substrate in animals, yeast and higher plants. Characterization of these three new components involved in C-4 demethylation participates to the completion of the molecular inventory of sterol synthesis in higher plants.  相似文献   

12.
Fusarium head blight (FHB) of wheat is caused by Fusarium graminearum which produces many secondary metabolites including the trichothecene mycotoxins deoxynivalenol (vomitoxin) and 3-acetyldeoxynivalenol. Coleoptile tissue segements from 14 spring wheat cultivars were exposed to the F. graminearum metabolites deoxynivalenol, 3-acetyldeoxynivalenol, butenolide (all known mycotoxins), sambucinol, culmorin and dihydroxycalonectrin in a bioassay. The tissue of most cultivars was inhibited, at a concentration of 10?6M by the trichothecenes tested and up to 10?3M for the other compounds. Deoxynivalenol and 3-acetyldeoxynivalenol, which affect protein synthesis at the ribosome, are therefore potent phytotoxins in addition to being mycotoxins. The resistance or susceptibility of each cultivar to FHB was established in a field experiment. A comparison of the two sets of data indicated that resistant cultivars could tolerate much higher concentrations of the metabolites tested than susceptible cultivars. Some resistant material can tolerate 10 to 1000 times the concentration of the trichothecenes, compared with susceptible cultivars, with no effect on growth. The data suggest that it may be possible to screen germplasm rapidly for FHB resistance in vitro and a new type of resistance in wheat to this disease is proposed based on the apparent insensitivity to trichothecenes by resistant cultivars, additional to the three types of resistance described in the literature.  相似文献   

13.
The trichothecenes T-2 toxin and deoxynivalenol (DON) are natural fungal products that are toxic to both animals and plants. Their importance in the pathogenicity of Fusarium spp. on crop plants has inspired efforts to understand the genetic and biochemical mechanisms leading to trichothecene synthesis. In order to better understand T-2 toxin biosynthesis by Fusarium sporotrichioides and DON biosynthesis by F. graminearum, we compared the nucleotide sequence of the 23-kb core trichothecene gene cluster from each organism. This comparative genetic analysis allowed us to predict proteins encoded by two trichothecene genes, TRI9 and TRI10, that had not previously been described from either Fusarium species. Differences in gene structure also were correlated with differences in the types of trichothecenes that the two species produce. Gene disruption experiments showed that F. sporotrichioides TRI7 (FsTRI7) is required for acetylation of the oxygen on C-4 of T-2 toxin. Sequence analysis indicated that F. graminearum TRI7 (FgTRI7) is nonfunctional. This is consistent with the fact that the FgTRI7 product is not required for DON synthesis in F. graminearum because C-4 is not oxygenated.  相似文献   

14.
15.
林凡云  陆琼娴  徐剑宏  史建荣 《遗传》2008,30(12):1608-1614
摘要: 在植物体内, 糖基转移酶通过参与多种物质的糖基化而在植物抗逆境方面起着重要作用。为了解小麦糖基转移酶基因响应病原菌和盐胁迫的分子机制, 文章分离了两个小麦糖基转移酶基因(TaUGT1, TaUGT2)。这两个基因均编码496个氨基酸, cDNA序列相似性为90%。它们均含有一个内含子, 分别为335 bp(TaUGT1)和324 bp(TaUGT2)。序列比对分析表明, TaUGT1和TaUGT2与尿苷二磷酸葡萄糖醛酸/尿苷二磷酸葡萄糖转移酶(UDP-glucoronosyl and UDP-glucosyl transferase)基因同源性最高, 且都含有PSPG(Putative secondary plant gly-cosyltransferase)保守结构域。Real-time PCR表达分析显示, TaUGT1受赤霉病菌抑制表达, 而TaUGT2受赤霉病菌诱导表达; 在高浓度NaCl胁迫下, TaUGT1和TaUGT2的相对表达量分别为对照的2.87及4.56倍, 差异达到极显著水平。以上结果表明, TaUGT2可能与小麦赤霉病抗性有关, 而TaUGT1和TaUGT2可能共同参与了小麦对盐胁迫的响应。  相似文献   

16.
Aims: To develop a real‐time PCR assay to quantify Fusarium graminearum biomass in blighted wheat kernels. Methods and Results: Primers designed to amplify a gene in the trichothecene biosynthetic cluster (TRI6) were evaluated for sensitivity and specificity. Primer pair Tri6_10F/Tri6_4R specifically and consistently amplified a 245‐bp DNA fragment from F. graminearum. A workflow was developed and validated to extract DNA from infested grain. The assay detected as little as 10 μg of F. graminearum mycelia in 1 g of ground wheat grain with a high correlation between fungal biomass and cycle threshold values (R2 = 0·9912; P = 0·004). In field‐inoculated grain, qPCR measurements of biomass correlated closely with deoxynivalenol levels (R = 0·82, P < 0·0001) and two visual techniques to assess grain quality (R = 0·88, P < 0·0001 and R = 0·81, P < 0·0001). Conclusions: The qPCR assay provided accurate and precise assessments of the amount of F. graminearum biomass in blighted wheat kernels. This method represents a technical advance over other approaches to quantify kernel colonization and real‐time PCR detection methodologies for F. graminearum that do not correlate quantification of fungal genomic DNA to biomass. Significance and Impact of the Study: Quantifying F. graminearum biomass, especially low levels of growth associated with kernels that are visually asymptomatic, represents a new approach to screen for resistance to kernel infection, an understudied yet potentially important avenue to reduce the impact of head blight.  相似文献   

17.
18.
In the biosynthesis of type B trichothecenes, four oxygenation steps remain to have genes functionally assigned to them. On the basis of the complete genome sequence of Fusarium graminearum, expression patterns of all oxygenase genes were investigated in Fusarium asiaticum (F. graminearum lineage 6). As a result, we identified five cytochrome P450 monooxygenase (CYP) genes that are specifically expressed under trichothecene-producing conditions and are unique to the toxin-producing strains. The entire coding regions of four of these genes were identified in F. asiaticum. When expressed in Saccharomyces cerevisiae, none of the oxygenases were able to transform trichodiene-11-one to expected products. However, one of the oxygenases catalyzed the 2beta-hydroxylation rather than the expected 2alpha-hydroxylation. Targeted disruption of the five CYP genes did not alter the trichothecene profiles of F. asiaticum. The results are discussed in relation to the presence of as-yet-unidentified oxygenation genes that are necessary for the biosynthesis of trichothecenes.  相似文献   

19.
通过组织培养筛选小麦抗赤霉病突变体的研究   总被引:15,自引:1,他引:15  
郭丽娟  张浩 《遗传学报》1992,19(3):259-265
选用中抗赤霉病的春小麦品种和品系的花药进行离体培养,以小麦赤霉病29号菌株产生的致病培养滤液为选择剂,结合物理诱变处理,进行抗病鉴定,用赤霉病菌分生孢子直接接种在愈伤组织和再生植株筛选抗病突变体。在83块愈伤中有53块抗病。在11株的再生植株中有9株均比未经培养滤液处理的对照提高了抗病性,从中选出4株抗病性接近或超过“苏麦3号”品种。  相似文献   

20.
Disruption of two Fusarium genes that negatively regulate trichothecene biosynthesis was reported to cause a drastic increase in trichothecene production. However, careful inspection of these genes revealed that neither was significantly related to trichothecene production. Agmatine medium maintained the expression of trichothecene genes at significant levels, resulting in a 2–3-fold increase in the final yield, as compared to glutamine medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号