首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview‐Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38–1.42, P < 0.00001), and genotypes were more similar within subgroups compared to the unsubgrouped dataset (Fst = 0.17 ± 0.0.0009). These results suggest that the subgroups recapitulate genetic etiology. Using the same approach in an independent dataset from the Autism Genome Project, we similarly identified two distinct subgroups of cases and confirmed this severity‐based dichotomy. We also observed evidence for genetic contributions to subgroups identified in the replication dataset. Our results provide more effective methods of phenotype definition that should increase power to detect genetic factors influencing risk for ASD .  相似文献   

3.
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by impaired social interaction, communication skills, and restricted and repetitive behavior. The genetic causes for autism are largely unknown. Previous studies implicate CACNA1C (L-type Ca(V)1.2) calcium channel mutations in a disorder associated with autism (Timothy syndrome). Here, we identify missense mutations in the calcium channel gene CACNA1H (T-type Ca(V)3.2) in 6 of 461 individuals with ASD. These mutations are located in conserved and functionally relevant domains and are absent in 480 ethnically matched controls (p = 0.014, Fisher's exact test). Non-segregation within the pedigrees between the mutations and the ASD phenotype clearly suggest that the mutations alone are not responsible for the condition. However, functional analysis shows that all these mutations significantly reduce Ca(V)3.2 channel activity and thus could affect neuronal function and potentially brain development. We conclude that the identified mutations could contribute to the development of the ASD phenotype.  相似文献   

4.
Autism spectrum disorder (ASD) is characterized by impairments in reciprocal social interaction and communication, and by restricted and repetitive behaviors. Family studies indicate a significant genetic basis for ASD susceptibility, and genomic scanning is beginning to elucidate the underlying genetic architecture. Some 5-15% of individuals with ASD have an identifiable genetic etiology corresponding to known chromosomal rearrangements or single gene disorders. Rare (<1% frequency) de novo or inherited copy number variations (CNVs) (especially those that affect genes with synaptic function) are observed in 5-10% of idiopathic ASD cases. These findings, coupled with genome sequencing data suggest the existence of hundreds of ASD risk genes. Common variants, yet unidentified, exert only small effects on risk. Identification of ASD risk genes with high penetrance will broaden the targets amenable to genetic testing; while the biological pathways revealed by the deeper list of ASD genes should narrow the targets for therapeutic intervention.  相似文献   

5.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a strong genetic component. The past decade has witnessed tremendous progress in the genetic studies of ASD. In this article, we review the accumulating literatures on the monogenic forms of ASD and chromosomal abnormalities associated with ASD, the genome-wide linkage and association studies, the copy number variation (CNV) and the next generation sequencing (NGS) studies. With more than hundreds of mutations being implicated, the convergent biological pathways are emerging and the genetic landscape of ASD becomes clearer. The genetic studies provide a solid basis for future translational study for better diagnoses, intervention and treatment of ASD.  相似文献   

6.
Autism spectrum disorders(ASD) are a pervasive neurodevelopmental disease characterized by deficits in social interaction and nonverbal communication, as well as restricted interests and stereotypical behavior. Genetic changes/heritability is one of the major contributing factors, and hundreds to thousands of causative and susceptible genes, copy number variants(CNVs), linkage regions, and micro RNAs have been associated with ASD which clearly indicates that ASD is a complex genetic disorder. Here, we will briefly summarize some of the high-confidence genetic changes in ASD and their possible roles in their pathogenesis.  相似文献   

7.
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental condition characterized by atypical social interaction and communication together with repetitive behaviors and restricted interests. The prevalence of ASD has been increased these years. Compelling evidence has shown that genetic factors contribute largely to the development of ASD. However, knowledge about its genetic etiology and pathogenesis is limited. Broad applications of genomics studies have revealed the importance of gene mutations at protein-coding regions as well as the interrupted non-coding regions in the development of ASD. In this review, we summarize the current evidence for the known molecular genetic basis and possible pathological mechanisms as well as the risk genes and loci of ASD. Functional studies for the underlying mechanisms are also implicated. The understanding of the genetics and genomics of ASD is important for the genetic diagnosis and intervention for this condition.  相似文献   

8.
Autism is a heritable but genetically complex disorder characterized by deficits in language and in reciprocal social interactions, combined with repetitive and stereotypic behaviors. As with many genetically complex disorders, numerous genome scans reveal inconsistent results. A genome scan of 345 families from the Autism Genetic Resource Exchange (AGRE) (AGRE_1), gave the strongest evidence of linkage at 17q11-17q21 in families with no affected females. Here, we report a full-genome scan of an independent sample of 91 AGRE families with 109 affected sibling pairs (AGRE_2) that also shows the strongest evidence of linkage to 17q11-17q21 in families with no affected females. Taken together, these samples provide a replication of linkage to this chromosome region that is, to our knowledge, the first such replication in autism. Fine mapping at 2-centimorgan (cM) intervals in the combined sample of families with no affected females reveals a linkage peak at 66.85 cM, which places this locus at 17q21.  相似文献   

9.
Ye H  Liu J  Wu JY 《Neuro-Signals》2010,18(2):62-71
Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by abnormalities in social interaction, language development and behavior. Recent genetic studies demonstrate that alterations in synaptic genes including those encoding cell adhesion molecules and their interaction partners play important roles in the pathogenesis of ASD. Systematic analyses of different cell adhesion molecule genes will help elucidate their normal functions and regulatory mechanisms in the establishment and maintenance of normal neural circuits and uncover genetic aberrations contributing to ASD.  相似文献   

10.
Autism is a genetically complex neurodevelopmental syndrome in which language deficits are a core feature. We describe results from two complimentary approaches used to identify risk variants on chromosome 7 that likely contribute to the etiology of autism. A two-stage association study tested 2758 SNPs across a 10 Mb 7q35 language-related autism QTL in AGRE (Autism Genetic Resource Exchange) trios and found significant association with Contactin Associated Protein-Like 2 (CNTNAP2), a strong a priori candidate. Male-only containing families were identified as primarily responsible for this association signal, consistent with the strong male affection bias in ASD and other language-based disorders. Gene-expression analyses in developing human brain further identified CNTNAP2 as enriched in circuits important for language development. Together, these results provide convergent evidence for involvement of CNTNAP2, a Neurexin family member, in autism, and demonstrate a connection between genetic risk for autism and specific brain structures.  相似文献   

11.
Molecular Biology Reports - Autism spectrum disorder (ASD) is an increasing concern among the Iraqi Arab population. The genetic alterations that cause ASD are likely to converge at the synapse....  相似文献   

12.
Autism Spectrum Disorder (ASD) is a "spectrum" of disorders, characterized by varying degrees of symptoms ranging from mild to severe. Among Psychiatric disorders, Autism Spectrum Disorders have the strongest evidence for a genetic basis, yet the search for specific genes contributing to these often devastating developmental syndromes has proven extraordinarily difficult. Bipolar Disorder (BP) is a manic-depressive disorder whose symptoms are characterized by extremities in moods. It is also called as the "Mood disorder". BP, like, ASD also has a strong genetic basis and identification of the candidate genes still remains an ongoing effort. Literature studies point to the hypothesis that ASD and BP have good chances of comorbidity and that they may share common pathways for their manifestation. But this hypothesis has not been worked on in depth. Thus, the study focuses on identifying the chances of their comorbidity by identifying their common pathways and the genes involved in the pathways and also discuss the degree of chances of their comorbidity based on the genes involved in the common pathways. Networks for the genes are also constructed to represent their commonness or uniqueness for the disorders.  相似文献   

13.
Autism spectrum disorder (ASD) is a frequent neurodevelopmental disorder characterized by variable clinical severity. Core symptoms are qualitatively impaired communication and social behavior, highly restricted interests and repetitive behaviors. Although recent work on genetic mutations in ASD has shed light on the pathophysiology of the disease, classifying it essentially as a synaptopathy, no treatments are available to date. To develop and test novel ASD treatment approaches, validated and informative animal models are required. Of particular interest, in this context are loss-of-function mutations in the postsynaptic cell adhesion protein neuroligin-4 and point mutations in its homologue neuroligin-3 (NL-3) that were found to cause certain forms of monogenic heritable ASD in humans. Here, we show that NL-3-deficient mice display a behavioral phenotype reminiscent of the lead symptoms of ASD: reduced ultrasound vocalization and a lack of social novelty preference. The latter may be related to an olfactory deficiency observed in the NL-3 mutants. Interestingly, such olfactory phenotype is also present in a subgroup of human ASD patients. Tests for learning and memory showed no gross abnormalities in NL-3 mutants. Also, no alterations were found in time spent in social interaction, prepulse inhibition, seizure propensity and sucrose preference. As often seen in adult ASD patients, total brain volume of NL-3 mutant mice was slightly reduced as assessed by magnetic resonance imaging (MRI). Our findings show that the NL-3 knockout mouse represents a useful animal model for understanding pathophysiological events in monogenic heritable ASD and for developing novel treatment strategies in this devastating human disorder.  相似文献   

14.
Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.  相似文献   

15.
Autism spectrum disorders(ASD) are highly heterogeneous pediatric developmental disorders with estimated heritability more than 70%. Although the genetic factors in ASD are mainly unknown, a large number of gene mutations have been found, especially in genes involved in neurogenesis. The Neurexin-Neuroligin-Shank(NRXN-NLGN-SHANK) pathway plays a key role in the formation, maturation and maintenance of synapses, consistent with the hypothesis of neurodevelopmental abnormality in ASD. Presynaptic NRXNs interact with postsynaptic NLGNs in excitatory glutamatergic synapses. SHANK proteins function as core components of the postsynaptic density(PSD) by interacting with multiple proteins. Recently, deletions and point mutations of the SHANK1 gene have been detected in ASD individuals, indicating the involvement of SHANK1 in ASD. This review focuses on the function of SHANK1 protein, Shank1 mouse models, and the molecular genetics of the SHANK1 gene in human ASD.  相似文献   

16.
Autism spectrum disorder (ASD) is a group of the neurodevelopment disorders presenting as an isolated ASD or more complex forms, where a broader clinical phenotype comprised of developmental delay and intellectual disability is present. Both the isolated and complex forms have a significant causal genetic component and submicroscopic genomic copy number variations (CNV) are the most common identifiable genetic factor in these patients. The data on microarray testing in ASD cohorts are still accumulating and novel loci are often identified; therefore, we aimed to evaluate the diagnostic efficacy of the method and the relevance of implementing it into routine genetic testing in ASD patients. A genome-wide CNV analysis using the Agilent microarrays was performed in a group of 150 individuals with an isolated or complex ASD. Altogether, 11 (7.3%) pathogenic CNVs and 15 (10.0%) variants of unknown significance (VOUS) were identified, with the highest proportion of pathogenic CNVs in the subgroup of the complex ASD patients (14.3%). An interesting case of previously unreported partial UPF3B gene deletion was identified among the pathogenic CNVs. Among the CNVs with unknown significance, four VOUS involved genes with possible correlation to ASD, namely genes SNTG2, PARK2, CADPS2 and NLGN4X. The diagnostic efficacy of aCGH in our cohort was comparable with those of the previously reported and identified an important proportion of genetic ASD cases. Despite the continuum of published studies on the CNV testing in ASD cohorts, a considerable number of VOUS CNVs is still being identified, namely 10.0% in our study.  相似文献   

17.
18.
Autism and autism spectrum disorders(ASD) refer to a range of conditions characterized by impaired social and communication skills and repetitive behaviors caused by different combinations of genetic and environmental influences. Although the pathophysiology underlying ASD is still unclear, recent evidence suggests that immune dysregulation and neuroinflammation play a role in the etiology of ASD. In particular, there is direct evidence supporting a role for maternal immune activation during prenatal life in neurodevelopmental conditions. Currently, the available options of behavioral therapies and pharmacological and supportive nutritional treatments in ASD are only symptomatic. Given the disturbing rise in the incidence of ASD, and the fact that there is no effective pharmacological therapy for ASD, there is an urgent need for new therapeutic options. Mesenchymal stem cells(MSCs) possess immunomodulatory properties that make them relevant to several diseases associated with inflammation and tissue damage. The paracrine regenerative mechanisms of MSCs are also suggested to be therapeutically beneficial for ASD.Thus the underlying pathology in ASD, including immune system dysregulation and inflammation, represent potential targets for MSC therapy. This review willfocus on immune dysfunction in the pathogenesis of ASD and will further discuss the therapeutic potential for MSCs in mediating ASD-related immunological disorders.  相似文献   

19.
Autism spectrum disorder (ASD) is a complex disorder that appears to be caused by interactions between genetic changes and environmental insults during early development. A wide range of factors have been linked to the onset of ASD, but recently both genetic associations and environmental factors point to a central role for immune-related genes and immune responses to environmental stimuli. Specifically, many of the proteins encoded by the major histocompatibility complex (MHC) play a vital role in the formation, refinement, maintenance, and plasticity of the brain. Manipulations of levels of MHC molecules have illustrated how disrupted MHC signaling can significantly alter brain connectivity and function. Thus, an emerging hypothesis in our field is that disruptions in MHC expression in the developing brain caused by mutations and/or immune dysregulation may contribute to the altered brain connectivity and function characteristic of ASD. This review provides an overview of the structure and function of the three classes of MHC molecules in the immune system, healthy brain, and their possible involvement in ASD. ? 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012.  相似文献   

20.
Ziats MN  Rennert OM 《PloS one》2011,6(9):e24691
The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia--in addition to neurons--deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号