首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Female preferences for specific male phenotypes have been documented across a wide range of animal taxa, including numerous species where males contribute only gametes to offspring production. Yet, selective pressures maintaining such preferences are among the major unknowns of evolutionary biology. Theoretical studies suggest that preferences can evolve if they confer genetic benefits in terms of increased attractiveness of sons ("Fisherian" models) or overall fitness of offspring ("good genes" models). These two types of models predict, respectively, that male attractiveness is heritable and genetically correlated with fitness. In this meta-analysis, we draw general conclusions from over two decades worth of empirical studies testing these predictions (90 studies on 55 species in total). We found evidence for heritability of male attractiveness. However, attractiveness showed no association with traits directly associated with fitness (life-history traits). Interestingly, it did show a positive correlation with physiological traits, which include immunocompetence and condition. In conclusion, our results support "Fisherian" models of preference evolution, while providing equivocal evidence for "good genes." We pinpoint research directions that should stimulate progress in our understanding of the evolution of female choice.  相似文献   

2.
3.
Baculoviruses are used as microbial insecticides, protein expression vectors, epitope display platforms, and most recently as vectors for gene therapy. Understanding the mechanisms that control baculovirus host-range and tissue tropisms are important for assessing their safety and for improving their properties for these biotechnology applications. In the past two decades some progress has been made and several baculovirus genes that influence host-range have been identified. Despite this progress, our understanding of the underlying mechanisms that restrict baculovirus host-range is still limited. Here we review what is currently known about baculovirus genes that influence virus host-range.  相似文献   

4.
Neurodegenerative diseases are a complex set of disorders that are known to be caused by environmental as well as genetic factors. In the recent past, mutations in a large number of genes have been identified that are linked to several neurodegenerative diseases. The pathogenic mechanisms in most of these disorders are unknown. Recently, studies of genes that are linked to neurodegeneration in Drosophila, the fruit flies, have contributed significantly to our understanding of mechanisms of neuroprotection and degeneration. In this review, we focus on forward genetic screens in Drosophila that helped in identification of novel genes and pathogenic mechanisms linked to neurodegeneration. We also discuss identification of four novel pathways that contribute to neurodegeneration upon mitochondrial dysfunction.  相似文献   

5.
Whether an infection with Salmonella spp. leads to a disease largely depends on the virulence of the strain and the constitution of the host. The virulence of the strain is determined by so-called virulence factors. Whereas a number of virulence factors of Salmonella have been identified only recently, others have been studied for decades. These latter virulence factors i.e., virulence-plasmids, toxins, fimbriae and flagella are therefore referred to as "classic" virulence factors. Here we present an overview on the distribution of (genes coding for) these virulence factors among Salmonella spp. The pathogenicity islands of Salmonella are also reviewed, all be it briefly, since they contain a major part of the virulence genes.  相似文献   

6.
Charcot-Marie-Tooth (CMT) is the generic name given to a group of genetic disorders characterized by a relatively isolated dysfunction of peripheral nerves, with combined motor and sensory impairment. These CMT syndromes are the most frequent genetically-determined peripheral neuropathies, with a global prevalence between 4.7 and 36/100,000. Their clinical phenotype is predominantly motor, with a grossly symmetrical distal amyotrophy involving both lower and upper limbs. Mode of inheritance is variable: autosomal dominant, autosomal recessive or X-linked. Apparently sporadic forms can be a difficult diagnosis and they must be considered in all patients with a chronic polyneuropathy which is not clearly of acquired origin. During the last two decades, the identification of more than 25 genes mutated in CMT syndromes has complicated the classification of these disorders. Knowledge of the function of some of these genes has improved our understanding of the pathogenesis of myelinic or axonal dysfunction in CMT, but for some others their function remains elusive or unknown.  相似文献   

7.
Here we summarize evidence obtained by our group during the last two decades, and contrasted it with a review of related data from the available literature to show that behavioral syndromes involving attention deficit/hyperactivity disorder (ADHD), externalizing disorders, and substance-use disorder (SUD) share similar signs and symptoms (i.e., have a biological basis as common syndromes), physiopathological and psychopathological mechanisms, and genetic factors. Furthermore, we will show that the same genetic variants harbored in different genes are associated with different syndromes and that non-linear interactions between genetic variants (epistasis) best explain phenotype severity, long-term outcome, and response to treatment. These data have been depicted in our studies by extended pedigrees, where ADHD, externalizing symptoms, and SUD segregate and co-segregate. Finally, we applied here a new formal network analysis using the set of significantly replicated genes that have been shown to be either associated and/or linked to ADHD, disruptive behaviors, and SUD in order to detect significantly enriched gene categories for protein and genetic interactions, pathways, co-expression, co-localization, and protein domain similarity. We found that networks related to pathways involved in axon guidance, regulation of synaptic transmission, and regulation of transmission of nerve impulse are overrepresented. In summary, we provide compiled evidence of complex networks of genotypes underlying a wide phenotype that involves SUD and externalizing disorders.  相似文献   

8.
9.
10.
11.
12.
The unprecedented advances in molecular biology during the last two decades have resulted in a dramatic increase in knowledge about gene structure and function, an immense database of genetic sequence information, and an impressive set of efficient new technologies for monitoring genetic sequences, genetic variation, and global functional gene expression. These advances have led to a new sub-discipline of toxicology: "toxicogenomics". We define toxicogenomics as "the study of the relationship between the structure and activity of the genome (the cellular complement of genes) and the adverse biological effects of exogenous agents". This broad definition encompasses most of the variations in the current usage of this term, and in its broadest sense includes studies of the cellular products controlled by the genome (messenger RNAs, proteins, metabolites, etc.). The new "global" methods of measuring families of cellular molecules, such as RNA, proteins, and intermediary metabolites have been termed "-omic" technologies, based on their ability to characterize all, or most, members of a family of molecules in a single analysis. With these new tools, we can now obtain complete assessments of the functional activity of biochemical pathways, and of the structural genetic (sequence) differences among individuals and species, that were previously unattainable. These powerful new methods of high-throughput and multi-endpoint analysis include gene expression arrays that will soon permit the simultaneous measurement of the expression of all human genes on a single "chip". Likewise, there are powerful new methods for protein analysis (proteomics: the study of the complement of proteins in the cell) and for analysis of cellular small molecules (metabonomics: the study of the cellular metabolites formed and degraded under genetic control). This will likely be extended in the near future to other important classes of biomolecules such as lipids, carbohydrates, etc. These assays provide a general capability for global assessment of many classes of cellular molecules, providing new approaches to assessing functional cellular alterations. These new methods have already facilitated significant advances in our understanding of the molecular responses to cell and tissue damage, and of perturbations in functional cellular systems.As a result of this rapidly changing scientific environment, regulatory and industrial toxicology practice is poised to undergo dramatic change during the next decade. These advances present exciting opportunities for improved methods of identifying and evaluating potential human and environmental toxicants, and of monitoring the effects of exposures to these toxicants. These advances also present distinct challenges. For example, the significance of specific changes and the performance characteristics of new methods must be fully understood to avoid misinterpretation of data that could lead to inappropriate conclusions about the toxicity of a chemical or a mechanism of action. We discuss the likely impact of these advances on the fields of general and genetic toxicology, and risk assessment. We anticipate that these new technologies will (1) lead to new families of biomarkers that permit characterization and efficient monitoring of cellular perturbations, (2) provide an increased understanding of the influence of genetic variation on toxicological outcomes, and (3) allow definition of environmental causes of genetic alterations and their relationship to human disease. The broad application of these new approaches will likely erase the current distinctions among the fields of toxicology, pathology, genetic toxicology, and molecular genetics. Instead, a new integrated approach will likely emerge that involves a comprehensive understanding of genetic control of cellular functions, and of cellular responses to alterations in normal molecular structure and function.  相似文献   

13.
Chen LL  Chung WC  Lin CP  Kuo CH 《PloS one》2012,7(3):e34407
Phytoplasmas and mycoplasmas are two groups of important pathogens in the bacterial class Mollicutes. Because of their economical and clinical importance, these obligate pathogens have attracted much research attention. However, difficulties involved in the empirical study of these bacteria, particularly the fact that phytoplasmas have not yet been successfully cultivated outside of their hosts despite decades of attempts, have greatly hampered research progress. With the rapid advancements in genome sequencing, comparative genome analysis provides a new approach to facilitate our understanding of these bacteria. In this study, our main focus is to investigate the evolution of gene content in phytoplasmas, mycoplasmas, and their common ancestor. By using a phylogenetic framework for comparative analysis of 12 complete genome sequences, we characterized the putative gains and losses of genes in these obligate parasites. Our results demonstrated that the degradation of metabolic capacities in these bacteria has occurred predominantly in the common ancestor of Mollicutes, prior to the evolutionary split of phytoplasmas and mycoplasmas. Furthermore, we identified a list of genes that are acquired by the common ancestor of phytoplasmas and are conserved across all strains with complete genome sequences available. These genes include several putative effectors for the interactions with hosts and may be good candidates for future functional characterization.  相似文献   

14.
Autism is a complex neuropsychiatric disorder of developmental origin, where multiple genetic and environmental factors likely interact resulting in a clinical continuum between "affected" and "unaffected" individuals in the general population. During the last two decades, relevant progress has been made in identifying chromosomal regions and genes in linkage or association with autism, but no single gene has emerged as a major cause of disease in a large number of patients. The purpose of this paper is to discuss specific methodological issues and experimental strategies in autism genetic research, based on fourteen years of experience in patient recruitment and association studies of autism spectrum disorder in Italy.  相似文献   

15.
Innexins get into the gap   总被引:9,自引:0,他引:9  
Connexins were first identified in the 1970s as the molecular components of vertebrate gap junctions. Since then a large literature has accumulated on the cell and molecular biology of this multi-gene family culminating recently in the findings that connexin mutations are implicated in a variety of human diseases. Over two decades, the terms "connexin" and "gap junction" had become almost synonymous. In the last few years a second family of gap-junction genes, the innexins, has emerged. These have been shown to form intercellular channels in genetically tractable invertebrate organisms such as Drosophila melanogaster and Caenorhabditis elegans. The completed genomic sequences for the fly and worm allow identification of the full complement of innexin genes in these two organisms and provide valuable resources for genetic analyses of gap junction function.  相似文献   

16.
Recent findings on genes associated with inflammatory disease   总被引:3,自引:0,他引:3  
Yamada R  Ymamoto K 《Mutation research》2005,573(1-2):136-151
Inflammatory diseases encompass a variety of medical conditions. In this chapter, autoimmune diseases and allergic disorders will be our focus. The autoimmune diseases include organ-specific autoimmunities, such as type I diabetes mellitus and autoimmune thyroiditis (AITD), and organ non-specific disorders such as systemic lupus erythematosus (SLE). All of them seem to share aspects of aberrant immunologic tolerance toward self-antigens. Asthma and atopic diathesis are among the allergies. Crohn disease and SLE are relatively rare with a prevalence of 10-50 per 100,000, and rheumatoid arthritis (RA), psoriasis, AITD and asthma are commoner with a prevalence of 500 per 100,000 or much higher. The difference among ethnic groups is not prominent for rheumatoid arthritis, psoriasis, AITD or asthma, but Crohn disease and SLE affect some ethnic populations more than others. Although all of these disorders have some environmental component, asthma and atopy seem most affected by environmental factors, as is suggested by the significant increase in their incidence over the last several decades with changes in various environmental factors, especially in developed countries. Over the last 10 years, multiple linkage studies revealed many disease-linked loci throughout the genome with various consistencies. As implicated by some pathophysiological studies of inflammatory immune system related disorders, certain loci are involved in multiple disorders. In the following sections, reports on the identification of disease-associated genes or markers will be summarized for individual diseases (cytotoxic T lymphocyte-associated 4 (CTLA4), CARD15, DLG5, SLC22A4/A5, programmed cell death 1 (PDCD1), RUNX1, SLC9A3R1/NAT9, PADI4, ADAM33, DPP10, PHF11 and GPRA), followed by a discussion of the genes that have been implicated in multiple disorders.  相似文献   

17.
Mitochondria are cytoplasmic, double-membrane organelles, a main role of which is to synthesize ATP, the universal energy ‘supply’ of cells. In the last three decades, molecular genetic, biochemical, immunological and cell biological techniques have been applied in a coordinated fashion to unveil the pathogenesis of known mitochondrial disorders, as well as to explore the role of mitochondria in aging and neurodegenerative diseases. Once to be thought to be rare, it is now clear that mitochondrial dysfunction is an important cause of neurological and cardiac diseases, and age-related disorders such as cancer. Here, we review, illustrate, and provide updated protocols of two histochemical, and three immunohistochemical methods that in our opinion are the most reliable tools to visualize mitochondria on tissue sections from normal and disease specimens.  相似文献   

18.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

19.
The development of the central nervous system can be divided into a number of phases, each of which can be subject of genetic or epigenetic alterations that may originate particular developmental disorders. In recent years, much progress has been made in elucidating the molecular and cellular mechanisms by which the vertebrate forebrain develops. Therefore, our understanding of major developmental brain disorders such as cortical malformations and neuronal migration disorders has significantly increased. In this review, we will describe the major stages in forebrain morphogenesis and regionalization, with special emphasis on developmental molecular mechanisms derailing telencephalic development with subsequent damage to cortical function. Because animal models, mainly mouse, have been fundamental for this progress, we will also describe some characteristic mouse models that have been capital to explore these molecular mechanisms of malformative diseases of the human brain. Although most of the genes involved in the regulation of basic developmental processes are conserved among vertebrates, the extrapolation of mouse data to corresponding gene expression and function in humans needs careful individual analysis in each functional system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号