首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Akazara scallop (Chlamys nipponensis akazara) troponin C (TnC) of striated adductor muscle binds only one Ca2+ ion at the C-terminal EF-hand motif (Site IV), but it works as the Ca2+-dependent regulator in adductor muscle contraction. In addition, the scallop troponin (Tn) has been thought to regulate muscle contraction via activating mechanisms that involve the region spanning from the TnC C-lobe (C-lobe) binding site to the inhibitory region of the TnI, and no alternative binding of the TnI C-terminal region to TnC because of no similarity between second TnC-binding regions of vertebrate and the scallop TnIs. To clarify the Ca2+-regulatory mechanism of muscle contraction by scallop Tn, we have analyzed the Ca2+-binding properties of the complex of TnC C-lobe and TnI peptide, and their interaction using isothermal titration microcalorimetry, nuclear magnetic resonance, circular dichroism, and gel filtration chromatography. The results showed that single Ca2+-binding to the Site IV leads to a structural transition not only in Site IV but also Site III through the structural network in the C-lobe of scallop TnC. We therefore assumed that the effect of Ca2+-binding must lead to a change in the interaction mode between the C-lobe of TnC and the TnI peptide. The change should be the first event of the transmission of Ca2+ signal to TnI in Tn ternary complex.  相似文献   

2.
The Ca2+-regulatory tropomyosin-troponin complex was purified from chick embryonic muscles by a combination of DEAE-cellulose chromatography and (NH4)2SO4 fractionation. The embryonic complex was very similar to that obtained from adult chicken muscles with respect to stoichiometry of components and biological activity. Tropomyosin of embryonic skeletal muscles contains both α and β subunits, the β form being the major species. In the adult stage the β form is decreased with a concomitant increase in the α form. These results indicate that i) the Ca2+-regulatory proteins are not deficient in early embryonic muscles as previously thought (Hitchcock, S.E., Develop. Biol. 23, 399, 1970), and ii) different structural genes coding for tropomyosin subunits are expressed differentially in embryonic and adult muscle fibers.  相似文献   

3.
To study the regulation of cardiac muscle contraction by the myosin essential light chain (ELC) and the physiological significance of its N-terminal extension, we generated transgenic (Tg) mice by partially replacing the endogenous mouse ventricular ELC with either the human ventricular ELC wild type (Tg-WT) or its 43-amino-acid N-terminal truncation mutant (Tg-Δ43) in the murine hearts. The mutant protein is similar in sequence to the short ELC variant present in skeletal muscle, and the ELC protein distribution in Tg-Δ43 ventricles resembles that of fast skeletal muscle. Cardiac muscle preparations from Tg-Δ43 mice demonstrate reduced force per cross-sectional area of muscle, which is likely caused by a reduced number of force-generating myosin cross-bridges and/or by decreased force per cross-bridge. As the mice grow older, the contractile force per cross-sectional area further decreases in Tg-Δ43 mice and the mutant hearts develop a phenotype of nonpathologic hypertrophy while still maintaining normal cardiac performance. The myocardium of older Tg-Δ43 mice also exhibits reduced myosin content. Our results suggest that the role of the N-terminal ELC extension is to maintain the integrity of myosin and to modulate force generation by decreasing myosin neck region compliance and promoting strong cross-bridge formation and/or by enhancing myosin attachment to actin.  相似文献   

4.
To investigate the interplay between the thin and thick filaments during calcium activation in striated muscle, we employed n-(6-aminohexyl) 5-chloro-1-napthalenesulfonamide (W7) as an inhibitor of troponin C and compared its effects with that of the myosin-specific inhibitor, 2,3-butanedione 2-monoxime (BDM). In both skeletal and cardiac fibers, W7 reversibly inhibited ATPase and tension over the full range of calcium activation between pCa 8.0 and 4.5, resulting in reduced calcium sensitivity and cooperativity of ATPase and tension activations. At maximal activation in skeletal fibers, the W7 concentrations for half-maximal inhibition (KI) were 70–80 μM for ATPase and 20–30 μM for tension, nearly >200-fold lower than BDM (20 mM and 5–8 mM, respectively). When W7 (50 μM) and BDM (20 mM) were combined in skeletal fibers, the ATPase and tension-pCa curves exhibited lower apparent cooperativity and maxima and higher calcium sensitivity than expected from two independent activation pathways, suggesting that the interplay between the thin and thick filaments varies with the level of activation. Significantly, the inhibition of W7 increased the ATPase/tension ratio during activation in both muscle types. W7 holds much promise as a potent and reversible inhibitor of thin filament-mediated calcium activation of skeletal and cardiac muscle contraction.  相似文献   

5.
L Pezzoli  ME Sana  P Ferrazzi  M Iascone 《Gene》2012,507(2):165-169
We describe a male patient affected by hypertrophic cardiomyopathy (HCM) with no point mutations in the eight sarcomeric genes most commonly involved in the disease. By multiple ligation-dependent probe amplification (MLPA) we have identified a multi-exons C-terminus deletion in the cardiac myosin binding protein C (MYBPC3) gene. The rearrangement has been confirmed by long PCR and breakpoints have been defined by sequencing. The 3.5kb terminal deletion is mediated by Alu-repeat elements and is predicted to result in haploinsufficiency of MYBPC3. To exclude the presence of other rare pathogenic variants in additional HCM genes, we performed targeted next-generation sequencing (NGS) of 88 cardiomyopathy-associated genes but we did not identify any further mutation. Interestingly, the MYBPC3 multi-exons deletion was detectable by NGS. This finding broadens the range of mutational spectrum observed in HCM, contributing to understanding the genetic basis of the most common inherited cardiovascular disease. Moreover, our data suggest that NGS may represent a new tool to achieve a deeper insight into molecular basis of complex diseases, allowing to detect in a single experiment both point mutations and gene rearrangements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号