首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acetylcholinesterase (AChE) from housefly heads was purified by affinity chromatography. Three different native forms were separated by electrophoresis on polyacrylamide gradient gels. Two hydrophilic forms presented apparent molecular weights of 75,000 (AChE1) and 150,000 (AChE2). A third component (AChE3) had a migration that depended on the nature and concentration of detergents. In the presence of sodium deoxycholate in the gel, AChE3 showed an apparent molecular weight very close to that of AChE2. Among the three forms, AChE3 was the only one found in purified membranes. The relationships among the various forms were investigated using reduction with 2-mercaptoethanol or proteolytic treatments. Such digestion converted purified AChE3 into AChE2 and AChE1, and reduction of AChE3 and AChE2 by 2-mercaptoethanol gave AChE1, in both cases with a significant loss of activity. These data indicate that the three forms of purified AChE may be classified as an active hydrophilic monomeric unit (G1) plus hydrophilic and amphiphilic dimers. These two components were termed G2s and G2m, where "s" refers to soluble and "m" to membrane bound.  相似文献   

2.
Previous studies in this laboratory showed an age-related decline of acetylcholinesterase (AChE) activity in the cerebral cortex of rats. In the present study the age-related differences in enzymatic activity were evaluated in terms of individual molecular forms. Extracts containing total, soluble and membrane-bound AChE were analyzed both by ultracentrifugation in sucrose gradient and by non-denaturing gradient polyacrylamide gel electrophoresis. By ultracentrifugation two molecular forms, namely 10S and 4S (corresponding to tetrameric-G4 and monomeric-G1 forms, respectively) were separated in extracts of total and soluble AChE, while only 10S forms were present in extracts of membrane-bound AChE. Electrophoresis of soluble AChE extracts revealed slowly- and fast-migrating bands, grouped in two clusters of at least three bands each; membrane-bound AChE contained only a single slowly-migrating band. Electrophoresis of the single forms isolated by ultracentrifugation showed that slowly- and fast-migrating bands corresponded to G4 and G1 forms, respectively. Therefore, in soluble AChE no one-to-one relationship between charge- and size-isomers was observed; on the contrary, such relationship has been shown for membrane-bound AChE. This implies that soluble G4 forms and membrane-bound-G4 form are electrophoretically different, being heterogeneous the former and homogeneous the latter. The age-related decline of total AChE, accompanied by a decrease of G4/G1 ratio, depended mainly on a decrease of membrane-bound AChE while soluble AChE and its G4/G1 ratio was unchanged. The qualitative pattern of charge isomers was not modified by aging.  相似文献   

3.
Primary cultures of avian muscle cells express both globular and asymmetric molecular forms of acetylcholinesterase (AChE) when grown in a simple defined culture medium. Under these conditions, we analyzed the role of various agents interfering with muscular activity: tetrodotoxin (TTX) and veratridine, as well as a depolarizing concentration of KCl. These treatments caused the complete cessation of contractions in mature myotubes. We observed no influence on cellular AChE activity. The paralyzing treatments induced different effects on AChE secretion: TTX increased the secretion by approximately 25%, whereas KCl and veratridine reduced it by approximately 30%. The proportions of secreted molecular forms (mostly hydrophilic G4 and G2) were not modified significantly. TTX did not affect the pattern of molecular forms of cellular AChE (in particular, the proportion of A forms was not changed). Depolarization by veratridine or KCl induced an increase in the proportion of A forms in mature myotubes by a factor of 2-3. Similar results were obtained with quail myotubes cultured under the same conditions. This study shows that, in avian muscle cultures, the ionic balance across myotube membranes, rather than muscular activity per se, can regulate the level of A forms and the rate of AChE secretion. These results do not exclude the possible involvement of other factors, such as Ca2+ and/or peptidic factors. In addition, taking together our results and data from the literature. we conclude that the expression of AChE molecular forms depends both on the species and on the culture conditions used.  相似文献   

4.
To learn more about the evolution of the cholinesterases (ChEs), acetylcholinesterase (AChE) and butyrylcholinesterase in the vertebrates, we investigated the AChE activity of a deuterostome invertebrate, the urochordate Ciona intestinalis, by expressing in vitro a synthetic recombinant cDNA for the enzyme in COS-7 cells. Evidence from kinetics, pharmacology, molecular biology, and molecular modeling confirms that the enzyme is AChE. Sequence analysis and molecular modeling also indicate that the cDNA codes for the AChE(T) subunit, which should be able to produce all three globular forms of AChE: monomers (G(1)), dimers (G(2)), and tetramers (G(4)), and assemble into asymmetric forms in association with the collagenic subunit collagen Q. Using velocity sedimentation on sucrose gradients, we found that all three of the globular forms are either expressed in cells or secreted into the medium. In cell extracts, amphiphilic monomers (G(1)(a)) and non-amphiphilic tetramers (G(4)(na)) are found. Amphiphilic dimers (G(2)(a)) and non-amphiphilic tetramers (G(4)(na)) are secreted into the medium. Co-expression of the catalytic subunit with Rattus norvegicus collagen Q produces the asymmetric A(12) form of the enzyme. Collagenase digestion of the A(12) AChE produces a lytic G(4) form. Notably, only globular forms are present in vivo. This is the first demonstration that an invertebrate AChE is capable of assembling into asymmetric forms. We also performed a phylogenetic analysis of the sequence. We discuss the relevance of our results with respect to the evolution of the ChEs in general, in deuterostome invertebrates, and in chordates including vertebrates.  相似文献   

5.
Eight inhibitors of acetylcholinesterase (AChE), tacrine, bis-tacrine, donepezil, rivastigmine, galantamine, heptyl-physostigmine, TAK-147 and metrifonate, were compared with regard to their effects on AChE and butyrylcholinesterase (BuChE) in normal human brain cortex. Additionally, the IC50 values of different molecular forms of AChE (monomeric, G1, and tetrameric, G4) were determined in the cerebral cortex in both normal and Alzheimer's human brains. The most selective AChE inhibitors, in decreasing sequence, were in order: TAK-147, donepezil and galantamine. For BuChE, the most specific was rivastigmine. However, none of these inhibitors was absolutely specific for AChE or BuChE. Among these inhibitors, tacrine, bis-tacrine, TAK-147, metrifonate and galantamine inhibited both the G1 and G4 AChE forms equally well. Interestingly, the AChE molecular forms in Alzheimer samples were more sensitive to some of the inhibitors as compared with the normal samples. Only one inhibitor, rivastigmine, displayed preferential inhibition for the G1 form of AChE. We conclude that a molecular form-specific inhibitor may have therapeutic applications in inhibiting the G1 form, which is relatively unchanged in Alzheimer's brain.  相似文献   

6.
The distribution of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) molecular forms and their solubility characteristics were examined, using density gradient centrifugation, in various regions of the postmortem human CNS. Total AChE activity varied extensively (50-fold) among the regions investigated, being highest in the telencephalic subcortical structures (caudate nucleus and nucleus of Meynert); intermediate in the substantia nigra, cerebellum, and spinal cord; and least in the fornix and cortical regions (hippocampus and temporal and parietal cortex). Total BChE activity was, in contrast, much more evenly distributed, with only a threefold variation between the regions studied. Although the patterns of molecular forms of each enzyme were broadly similar among the different areas, regional variations in the distribution and abundance of the various forms of AChE were much greater than those of BChE. Thus, although the tetrameric G4 form of AChE constituted the majority of the total AChE activity in all regions examined, the ratio of the G4 form to the monomeric G1 form, the latter of which constituted the majority of the remaining activity, varied markedly, ranging from 21 in the caudate nucleus to 1.7 in the temporal cortex. In addition to the G4 and G1 forms of AChE, the dimeric G2 form was observed in the nucleus of Meynert and a fast-sedimenting (16S) species was found in samples of both the parietal cortex and spinal cord. In contrast, the G4 and G1 forms of BChE were the only molecular species observed in the different areas and the G4:G1 ratio varied from 3.3 in the substantia nigra to 0.9 in the temporal cortex. Regarding the solubility characteristics of the individual AChE and BChE molecular forms, the majority of the G4 form of AChE was extractable only in the presence of detergent, indicating a predominantly membrane-bound localization of this species. The smaller AChE forms (G1 and G2) and both the G1 and G4 forms of BChE were all relatively evenly distributed between soluble and membrane-bound species. These findings are discussed in relation to neurochemical and neuroanatomical, particularly cholinergic, features of the regions examined.  相似文献   

7.
Rat liver cholinesterases were found to share properties and characteristics with those expressed in cholinergic tissues. The distribution and presence of different molecular forms of cholinesterases in different subcellular organelles of rat liver were studied. The rough and smooth endoplasmic reticulum and Golgi apparatus were enriched in the G4 molecular form of acetylcholinesterase (AChE) (relative to the G2 molecular form), while the inverse was found in the plasma membrane. The interaction of these molecular forms of AChE with the Golgi membrane was studied in detail. Approximately one-half of the G4 form was free within the lumen while the remainder was an intrinsic membrane protein; all the G2 molecular form was anchored to the membrane via phosphatidylinositol. Only the G1 and G2 molecular forms of butyrylcholinesterase (BuChE) were found in the above subcellular organelles; both molecular forms were soluble within the lumen of Golgi vesicles. These results indicate that rat liver expresses several molecular forms of AChE which have multiple interactions with membranes and that liver is unlikely to be the source of the G4 form of BuChE present in high concentration in the plasma.  相似文献   

8.
Aging in the sciatic nerve of the rat is characterized by various alterations, mainly cytoskeletal impairment, the presence of residual bodies and glycogen deposits, and axonal dystrophies. These alterations could form a mechanical blockade in the axoplasm and disturb the axoplasmic transports. However, morphometric studies on the fiber distribution indicate that the increase of the axoplasmic compartment during aging could obviate this mechanical blockade. Analysis of the axoplasmic transport, using acetylcholinesterase (AChE) molecular forms as markers, demonstrates a reduction in the total AChE flow rate, which is entirely accounted for by a significant bidirectional 40-60% decrease in the rapid axonal transport of the G4 molecular form. However, the slow axoplasmic flow of G1 + G2 forms, as well as the rapid transport of the A12 form of AChE, remain unchanged. Our results support the hypothesis that the alterations observed in aged nerves might be related either to the impairment in the rapid transport of specific factor(s) or to modified exchanges between rapidly transported and stationary material along the nerves, rather than to a general defect in the axonal transport mechanisms themselves.  相似文献   

9.
In the peripheral nerves of birds and mammals, acetylcholinesterase (AChE) exists in four main molecular forms (G1, G2, G4, and A12). The two heaviest forms (G4 and A12) are carried by rapid axoplasmic transport, whereas the two lightest forms (G1 and G2) are probably much more slowly transported. Here we report that nerves innervating fast-twitch (F nerves) and slow-twitch (S nerves) muscles of the rabbit differ both in their AChE molecular form patterns and in their anterograde and retrograde axonal transport parameters. Since we had previously shown a selective regulation of this enzyme in fast and slow parts of rabbit semimembranosus muscle, we wondered whether the differences observed in the nerve could be affected by the twitch properties of muscle. The results reported here show that in F nerves that reinnervate slow-twitch muscles, both the AChE molecular form patterns and axonal transport parameters turn into those of the S nerve. These data suggest the existence of a retrograde specific effect exerted by the muscles on their respective motoneurons.  相似文献   

10.
Abstract: Acetylcholinesterase (AChE) was extracted in a high-saline medium from gastrocnemius muscles of rat embryos and young rats aged 14 days'gestation to 40 days post partum. The molecular forms of the enzyme were separated by low-salt precipitation, followed by velocity sedimentation. During gestation, all molecular forms increased in activity, particularly the 16 S (A12) form. During the first 2 weeks of life, there was a large increase in the activity of soluble AChE (G forms), whilst the activity of insoluble AChE (A forms) was reduced. Denervation of the muscle reversed the change in the relative proportions of the molecular forms. The embryonic pattern of activities of AChE forms persisted in cultures of myotubes obtained at 20 days'gestation and maintained in the absence of spinal cord. When myotubes were maintained in medium previously conditioned by developing spinal cord explants, 16 S AChE declined while the soluble (4 and 6 S) forms increased in activity in a manner resembling that seen in early postnatal muscles in vivo . β-Endorphin (β-EP) immunoreactivity was detected in the spinal cord-conditioned medium and was identified by HPLC and ion-exchange chromatography as β-EP-(l–31) plus its shortened and N -acetylated forms. Cultivation of myotubes in the presence of synthetic camel β-EP resulted in a reversible change in the pattern of AChE forms which was similar to that seen with spinal cord-conditioned medium. These studies provide evidence for the neuroregulation of AChE A and G forms in immature skeletal muscle. A major candidate for this role is β-EP, produced and released by developing spinal cord.  相似文献   

11.
We analyzed the molecular forms of acetylcholinesterase (AChE) in the nematode Steinernema carpocapsae. Two major AChEs are involved in acetylcholine hydrolysis. The first class of AChE is highly sensitive to eserine (IC50 = 0.05 microM). The corresponding molecular forms are: an amphiphilic 14S form converted into a hydrophilic 14.5S form by mild proteolysis and two hydrophilic 12S and 7S forms. Reduction of the amphiphilic 14S form with 10 mM dithiothreitol produces hydrophilic 7S and 4S forms, indicating that it is an oligomer of hydrophilic catalytic subunits linked by disulfide bond(s) to a hydrophobic structural element that confers the amphiphilicity to the complex. Sedimentation coefficients suggest that 4S, 7S, 12S forms correspond to hydrophilic monomer, dimer, tetramer and that the 14S form is also a tetramer linked to one structural element. The second class of AChE is less sensitive to eserine (IC50 = 0.1 mM). Corresponding molecular forms are hydrophilic and amphiphilic 4S forms (monomers) and a major amphiphilic 7S form converted into a hydrophilic dimer by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C. This amphiphilic 7S form thus possesses a glycolipid anchor. It appears that Steinernema (a very primitive invertebrate) presents AChEs with two types of membrane association that closely resemble those described for amphiphilic G2 and G4 forms of AChE in more evolved animals.  相似文献   

12.
The present study looks at possible changes in the activity of acetylcholinesterase (AChE) in tissues (brain and white muscle) of the Mediterranean bony fish Sparus auratus after a 20 days exposure to sublethal concentrations (0.1 or 0.5 ppm) of copper in the marine water and on control untreated animals. The trials also included measurements of Cu concentration in the tissues to evaluate possible metal accumulation. Moreover, sedimentation analysis as well as V(max) and K(m) determination were carried out in tissue extracts of Cu-exposed or control animals. V(max) and K(m) were also determined with or without addition of Cu(2+) in the assay. No Cu accumulation occurred in brain and muscle after Cu exposure. AChE showed in both tissues a molecular polymorphism with putative globular (G) and asymmetric (A) forms. Cu exposition led to an increased specific activity and improved catalytic efficiency of AChE in brain and muscle, seemingly regarding G forms. The increase in catalytic efficiency also resulted from the in vitro assay with tissue extracts and Cu(2+) addition. The higher AChE activity and catalytic efficiency in both tissues after Cu exposition and without metal accumulation, suggests an increase of free Cu aliquot into the cells, likely due to mechanisms of metal homeostasis.  相似文献   

13.
Abstract— Specific antibodies were raised in rabbits to acetylcholinesterase (AChE) from bovine caudate nucleus and the‘native’(14S + 18S) and globular (11S) forms of AChE from eel electric tissue. All AChE preparations were purified by affinity chromatography to a specific activity of 100–400 mmol acetylthiocholine hydrolyzed/mg protein/h. Antigenic specificities of the different enzyme forms were studied by immunodiffusion, Immunoelectrophoresis and micro-complement fixation. Minor differences in antigenic determinants were observed between the different molecular forms of electric tissue AChE. In crossover experiments using both eel AChE and bovine caudate AChE antisera there was complete absence of cross reactivity between the mammalian brain AChE and the different molecular forms of the electric tissue enzyme. Brain AChE activity was inhibited up to 50% in the presence of its antiserum.  相似文献   

14.
The embryonic development of total specific activities as well as of molecular forms of acetylcholinesterase (AChE, EC 3.1.1.7) and of butyrylcholinesterase (BChE, EC 3.1.1.8) have been studied in the chick brain. A comparison of the development in different brain parts shows that cholinesterases first develop in diencephalon, then in tectum and telencephalon; cholinesterase development in retina is delayed by about 2-3 days; and the development in rhombencephalon [not studied until embryonic day 6 (E6)] and cerebellum is last. Both enzymes show complex and independent developmental patterns. During the early period (E3-E7) first BChE expresses high specific activities that decline rapidly, but in contrast AChE increases more or less constantly with a short temporal delay. Thereafter the developmental courses approach a late phase (E14-E20), during which AChE reaches very high specific activities and BChE follows at much lower but about parallel levels. By extraction of tissues from brain and retina in high salt plus 1% Triton X-100, we find that both cholinesterases are present in two major molecular forms, AChE sedimenting at 5.9S and 11.6S (corresponding to G2 and G4 globular forms) and BChE at 2.9S and 10.3S (G1 and G4, globular). During development there is a continuous increase of G4 over G2 AChE, the G4 form reaching 80% in brain but only 30% in retina. The proportion of G1 BChE in brain remains almost constant at 55%, but in retina there is a drastic shift from 65% G1 before E5 to 70% G4 form at E7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The measurement of cholinesterase activities in either plasma or cerebrospinal fluid (CSF) may ultimately prove to be relevant in the diagnosis of neurological and neuropsychiatric disorders. However, studies to date have examined only total enzyme activities. Therefore in the present study we have examined the distribution of the individual molecular forms of both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in plasma and CSF using sucrose density gradient centrifugation. Although the total activities of AChE were of the same order of magnitude in plasma and CSF, there was a considerable difference (120-500-fold) between total BChE activity in the CSF and the BChE-rich plasma. The analysis of the individual molecular forms revealed that the predominant molecular species of AChE and BChE in the CSF--both lumbar and ventricular--was the G4 form. The G4 form also constituted the majority of the plasma BChE activity and, on average, over half (56%) of the plasma AChE activity. The significance of the AChE and BChE molecular form compositions of both plasma and CSF and their possible relationship to pathological states are discussed.  相似文献   

16.
1. Comparison of partial amino acid sequences of G2-acetylcholinesterase (AChE) from bovine erythrocytes and G4-AChE from bovine caudate nucleus revealed no differences in primary structure between the two enzymes. The first 33 residues of the N-terminal sequences were identical. 2. In addition, the amino acid sequences of four peptides generated by tryptic and cyanogen bromide cleavage were identical for bovine erythrocyte and brain AChE, suggesting one identical major coding exon for the adult bovine AChE forms. Comparison of these sequences with that of fetal bovine serum AChE (Doctor et al., 1988), showed differences in residues 16, 181, 212, and 216. 3. Deglycosylation studies of the two adult enzyme forms revealed that the core protein of erythrocyte AChE has an approximately 4 kDa lower molecular mass than brain AChE. This most probably reflects differences in the C-terminal sequences of the two enzymes.  相似文献   

17.
Changes in the glycosylation pattern of brain proteins have been associated with Creutzfeldt-Jakob disease (CJD). We have investigated the glycosylation status of acetylcholinesterase (AChE) by lectin binding assay. Our data show that in lumbar CSF from definite and probable sporadic CJD cases AChE activity is lower compared with that in age-matched controls. We also show, for the first time, that AChE glycosylation is altered in CJD CSF and brain. Unlike Alzheimer's disease, in which an alteration in both the glycosylation and levels of AChE molecular forms is observed, the abnormal glycosylation of AChE in CJD appears to be unrelated to changes in molecular forms of this enzyme. These findings suggest that altered AChE glycosylation in CJD may be a consequence of the general perturbation of the glycosylation machinery that affects prion protein, as well as other proteins. The diagnostic potential of these changes remains to be explored.  相似文献   

18.
We studied the composition of molecular forms of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in normal and streptozotocin-induced diabetic rat retinal pigment epithelium (RPE). Tissues were sequentially extracted with saline (S(1)) and saline-detergent buffers (S(2)). About a 50% decrease in AChE molecular forms was observed in the diabetic RPE compared to the controls. Approximately 70% of the BChE activity in normal RPE was brought into solution and evenly distributed in S(1) and S(2). Analysis of the fractions from RPE revealed the presence of G(A)(1), G(A)(4) and a small proportion of G(H)(4) BChE forms in S(1); whereas G(A)(4) and G(A)(1) molecules predominate in S(2). A 40% decrease in the activity of G(A)(4) in S(2) was observed in the diabetic RPE. Our results show that diabetes caused a remarkable decrease in the activity of cholinesterases molecular forms in the RPE. This might be related to the alterations observed in diabetic retinopathy.  相似文献   

19.
A previous study conducted in this laboratory revealed a decrease in total cholinesterase (total ChE) in the cerebral cortex, hippocampus and striatum in aged rats (24 months) of various strains, as compared with young animals (3 months). The purpose of the present experiments was to extend the study to other brain areas (hypothalamus, medulla-pons and cerebellum) and to assess whether this decrease was dependent on the reduction of either specific acetylcholinesterase (AChE) or butyrylcholinesterase (BuChE) or both. By using ultracentrifugation on a sucrose gradient, the molecular forms of AChE were evaluated in all the brain areas of young and aged Sprague-Dawley rats. In young rats the regional distribution of total ChE and AChE varied considerably with respect to BuChE. The age-related loss of total ChE was seen in all areas. Although there was a reduction of AChE and, to somewhat lesser extent, of BuChE in the cerebral cortex, hippocampus, striatum, and hypothalamus (but not in the medulla-pons or the cerebellum), the ratio AChE/BuChE was not substantially modified by age. Two molecular forms of AChE, namely G4 (globular tetrameric) and G1 (monomeric), were detected in all the brain areas. Their distribution, expressed as G4/G1 ratio, varied in young rats from about 7.5 for the striatum to about 2.0 for the medulla-pons and cerebellum. The age-related changes consisted in a significant and selective loss of the enzymatic activity of G4 forms in the cerebral cortex, hippocampus, striatum, and hypothalamus, which resulted in a significant decrease of the G4/G1 ratio. No such changes were found in the medullapons or the cerebellum. Since G4 forms have been proposed to be present presynaptically, their age-related loss in those brain areas where acetylcholine plays an important role in neurotransmission may indicate an impairment of presynaptic mechanisms.  相似文献   

20.
1. In a recent study, we distinguished two classes of amphiphilic AChE3 dimers in Torpedo tissues: class I corresponds to glycolipid-anchored dimers and class II molecules are characterized by their lack of sensitivity to PI-PLC and PI-PLD, relatively small shift in sedimentation with detergent, and absence of aggregation without detergent. 2. In the present report, we analyze the amphiphlic or nonamphiphilic properties of globular AChE forms in T28 murine neural cells, rabbit muscle, and chicken muscle. The molecular forms were identified by sucrose gradient sedimentation in the presence and absence of detergent and analyzed by nondenaturing charge-shift electrophoresis. Some amphiphilic forms showed an abnormal electrophoretic migration in the absence of detergent, because of the retention of detergent micelles. 3. We show that the amphiphilic monomers (G1a) from these tissues, as well as the amphiphilic dimers (G2a) from chicken muscle, resemble the class II dimers of Torpedo AChE. We cannot exclude that these molecules possess a glycolipidic anchor but suggest that their hydrophobic domain may be of a different nature. We discuss their relationship with other cholinesterase molecular forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号