首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of chloramphenical acetyl transferase (CAT) protein driven by the wound-inducible promoter from the proteinase inhibitor II K (pin2) gene was examined in whole tobacco (Nicotiana tabacum L.) plants under field conditions. Mechanical wounding of the field-grown leaves caused an accumulation of CAT protein in these leaves which begins several hours after wounding and continues to accumulate for about 36 hours. When sections of leaves were assayed for accumulation of CAT protein following wounding, the CAT protein was found to accumulate in the apical portions of the leaves. When endogenous insects attacked the leaves of transgenic plants grown in the field, the plants responded by inducing CAT protein. The mesophyll cells of the leaf were the site of expression of the CAT protein rather than the mid-vein or major veins within the leaf blade, indicating that the wound-inducible pin2 promoter specifically directs the synthesis of novel genes in tissues preferentially consumed by larval insects.  相似文献   

2.
A method was developed for culturing protoplasts freshly isolated from developing soybean (Glycine max L.) cotyledons. First cell divisions were observed within 5 days after protoplast isolation and microcalli, consisting of about 20 cells, were formed within 10 days. Thirty days after protoplast isolation, callus tissues were observed without the aid of a microscope. A 30 to 50% plating efficiency was consistently obtained. Using a polyethylene glycol-electroporation technique, DNA was introduced into these protoplasts. The protoplasts were then cultured to form callus. Chloramphenicol acetyltransferase (CAT) activity was detected in protoplast cultures 6 hours after introduction of a 35S-CAT-nopaline synthase 3′ chimeric gene. The highest CAT activity was detected in 3-day-old electroporated protoplast cultures, indicating transient expression of the introduced gene. Some CAT activity was detected in 40-day-old callus cultures and in geneticin (G418) selected callus tissues which also received a chimeric neomycin phosphotransferase II gene, indicating the presence of stable transformants. A control chimeric gene with an inverted 35S promoter failed to produce any CAT activity in this system.  相似文献   

3.
A chimeric gene consisting of the 5 flanking sequences of a rice glutelin gene (Gt3) linked to the chloramphenicol acetyltransferase (CAT) coding segment was introduced into tobacco via Agrobacterium tumefaciens-mediated transformation. CAT enzyme activity could be detected in extracts from seeds as early as 8 days after flowering and obtained a maximum level at 16 days after flowering, the onset of overall protein accumulation. Significant expression of CAT activity in non-seed tissues occurred in some, but not all plants, suggesting possible chromosome position effects on non-seed tissue expression. A positive correlation was observed between expression levels in seeds and gene copy numbers.Author for correspondence  相似文献   

4.
Electroporation was used to evaluate parameters affecting transient gene expression in Glycine max protoplasts. Protoplast viability and reporter enzyme activity for chloramphenicol acetyl transferase (CAT) and ß-glucuronidase (GUS) depended on the field strength employed. Maximum CAT and GUS activity was obtained when a field strength of 500 V/cm at 1000 F and a protoplast concentration of 1–3 × 106/ml was used. Transformation efficiencies up to approximately 1.6% GUS positive protoplasts were obtained. Transient gene expression increased with increasing plasmid DNA concentration and with the time after electroporation, reaching a maximum after 48 hr. Addition of polyethylene glycol at 5.6% and heat shock (5 rain at 45 °C) given to the protoplasts before adding DNA further enhanced the transformation efficiency. Under the optimized experimental conditions, CAT and GUS activity increased simultaneously, thereby indicating that the increased expression is caused by DNA uptake by more cells rather than greater DNA uptake by the same cells. Our results demonstrate that both GUS and CAT can be used as efficient screenable markers for transformation studies in soybean.Abbreviations CAT chloramphenicol acetyl transferase - GUS ß-glucuronidase - PEG polyethylene glycol  相似文献   

5.
Protoplasts are currently used to study the expression of genes following transformation. Expression is followed on a population of protoplasts after total protein extraction by conventional western blotting or measure of the enzymatic activity of the transgenic protein. We describe here a new method, called protoplast printing, allowing easy detection of the fraction of cells expressing a certain protein within a population of protoplasts. It consists of immobilization of the protoplast proteins on a nitrocellulose filter, so as to retain the outlines of the cell, followed by immunological detection of the protein of interest. The only special requirement is an antibody specific for the protein. We have studied the expression of the BNYVV coat protein after electroporation of Chenopodium quinoa protoplasts with viral RNAs, and the expression of the NPT II gene in protoplasts isolated from transgenic tobacco plants as well as after direct transfer of plasmid DNA into tobacco protoplasts. In both cases — infection with viral RNAs and transformation with plasmid DNA — expressing and non-expressing cells can be distinguished as early as 12h after transfer of the transgenes.Abbreviations BCIP 5-bromo-4-chloro-3-indolylphosphate - BNYVV beet necrotic yellow vein virus - CaMV Cauliflower Mosaic Virus - NBT nitroblue tetrazolium chloride - NPT II Neomycin phospho transferase  相似文献   

6.
The 549 base pairs of the 5 flanking region of a barley seed storage protein (B1 hordein) gene were linked to the reporter gene encoding chloramphenicol acetyl transferase (CAT). The chimaeric gene was transferred into tobacco plants using Agrobacterium tumefaciens. CAT enzyme activity was detected in the seeds, but not in the leaves, of the transgenic plants. Furthermore, enzyme activity was found only in the endosperm, and only from fifteen days after pollination. In contrast, the constitutive 19S promoter from cauliflower mosaic virus (CaMV) directed the expression of the CAT gene in the leaves as well as in both the endosperm and embryo and at all stages in seed development.  相似文献   

7.
Summary The use of transient gene expression assays for the study of natural or engineered plant promoters is affected by a considerable degree of inter-experiment variability. As a means of obtaining interpretable data from a limited number of experiments, we worked out conditions for the simultaneous determi nation of the activity of two reporter genes, a sample and a reference, ona single extract of co-transformed protoplasts. ß-glucuronidase (GUS) and chloramphenicol acetyl transferase (CAT) genes, both under the control of the CaMV 35S promoter, were transferred into tobacco (Nicotiana tabacum L.) protoplasts on two independent plasmids. The parallel expression of the two reporter genes in several independent co-transformation experiments was verified. Conditions for the use of a single protoplast extraction buffer and for the simultaneous assay of both reporter gene activities were set up. A HPLC method for the non-radioactive determination of both enzyme activities on a single aliquot of the reaction mixture was developed. The resulting procedure was tested using the GUS gene as reference and the CAT gene, under the control of either wild type or upstream-deleted (–90) CaMV 35S promoter, as sample. The protocol is simple and allows the fast analysis of plant promoters in the presence of a true internal standard under conditions in which assay manipulations are reduced to a minimum and both reporter gene activities are subjected to the same experimental treatments.Abbreviations CaMV cauliflower mosaic virus - CAT chloramphenicol acetyl transferase - EDTA ethylenediaminetetraacetic acid - GUS ß-glucuronidase - HPLC high performance liquid chromatography - MES 2-morpholinoethanesulphonic acid - MS medium after Murashige and Skoog (1962) - MUG 4-methyl umbelliferyl glucuronide - MU methylumbelliferone - NOS nopaline synthase - PEG polyethylene glycol - TRIS tris-hydroxymethyl aminomethane - UV ultraviolet  相似文献   

8.
Summary A protoplast fusion experiment was designed in which the selectable marker, nitrate reductase (NR), also served as a biochemical marker to provide direct evidence for intergeneric specific gene transfer. NR-deficient tobacco (Nicotiana tabacum) mutant Nia30 protoplasts were the recipients for the attempted transfer of the NR structural gene from 50 krad -irradiated barley (Hordeum vulgare L.) protoplasts. Barley protoplasts did not form colonies and Nia30 protoplasts could not grow on nitrate medium; therefore, selection was for correction of NR deficiency allowing tobacco colonies to grow on nitrate medium. Colonies were selected from protoplast fusion treatments at an approximate frequency of 10-5. This frequency was similar to the Nia30 reversion frequency, and thus provided little evidence for transfer of the barley NR gene to tobacco. Plants regenerated from colonies had NR activity and were analyzed by western blotting using barley NR antiserum to determine the characteristics of the NR conferring growth on nitrate. Ten plants exhibited tobacco NR indicating reversion of a Nia30 mutant NR locus. Twelve of 26 regenerated tobacco plants analyzed had NR subunits with the electrophoretic mobility and antigenic properties of barley NR. These included plants regenerated from colonies selected from 1) co-culturing a mixture of Nia30 protoplasts with irradiated barley protoplasts without a fusion treatment, 2) a protoplast fusion treatment of Nia30 and barley protoplasts, and 3) a fusion treatment of Nia30 protoplasts with irradiated barley protoplasts. No barley-like NR was detected in plants regenerated from a colony that grew on nitrate following selfed fusion of Nia30 protoplasts. Because tobacco plants expressing barley-like NR were recovered from mixture controls as well as fusion treatments, explanations for these results other than protoplast fusionmediated gene transfer are discussed.  相似文献   

9.
Summary A procedure has been developed to isolate protoplasts from mature aleurone layers of the malting variety Alexis and four other barley genotypes. It combines induction of endogenous cell wall degrading enzymes together with use of Onuzuka cellulase R 10 and driselase and results in better yields for two varieties than can be obtained with the huskless variety Himalaya. The viability of the freshly isolated protoplasts is greater than 90% and in spite of the presence of gibberellic acid during isolation procedures, most of the protoplasts are at an early developmental stage, as judged by ultrastructure. Gibberellic acid-induced changes in protoplast structure resemble those reported for Himalaya protoplasts. The protoplasts secrete both -amylase (EC 3.2.1.1) and (1-3, 1-4)--glucanase (EC 3.2.1.73) into the surrounding medium. Transfection studies using a low pI -amylase promoter to direct chloramphenicol acetyltransferase expression in aleurone protoplasts from Alexis and Himalaya revealed significant differences in their hormone responsiveness. In the absence of hormones, low levels of expression of the reporter enzyme were obtained in Alexis protoplasts, while high levels were characteristic for Himalaya protoplasts. An 8-fold increase in the expression of the reporter gene was induced by supplying the transfected Alexis protoplasts with gibberellin A3, whereas expression in Himalaya protoplasts remained unchanged. When Himalaya protoplasts were isolated from aleurone layers that had not been incubated with GA3 during the initial stages of protoplasting (the classical procedure), the hormone response of the promoter was 2.5-fold. It is thus possible to optimize the aleurone protoplast isolation procedure for different barley genotypes and mutants of interest in studies of transgenic gene expression and hormone induced secretion of proteins from this unique secretory plant tissue.Abbreviations ABA abscisic acid - APIM aleurone protoplast isolation medium - CAT chloramphenicol acetyltransferase - EDTA ethylenediamine tetraacetic acid - ER endoplasmic reticulum - GA3 gibberellin A3 - IgG immunoglobulin G - MES 2-(N-morpholino)-ethanesulfonic acid - PAGE polyacrylamide gel electrophoresis - PEG polyethylene glycol - pI isoelectric point - PIPES piperazine N,N-bis-(diethanesulfonic acid) - SDS sodium dodecyl sulfate  相似文献   

10.
Protoplasts isolated from cotyledons of Eucalyptus citriodora were electroporated using a rectangular pulse, with plasmid carrying the cat gene. The levels of transient expression and protoplast viability were influenced by the voltage and pulse duration. At a field strength of 800 V cm-1 (1000 s), a protoplast viability of 57%, and 47% conversion of 14C-chloramphenicol to its acetylated forms, were obtained. Expression levels were improved by an increase in plasmid concentration (up to 60 g ml-1), and also by the addition of carrier DNA. Gene expression was further enhanced by the addition of 40% (w/v) PEG, in the presence of the carrier DNA, to the protoplasts after electroporation.Abbreviations BAP 6-benzylaminopurine - CAT chloramphenicol acetyltransferase - CPW 13M CPW salts medium with 13% (w/v) mannitol - DC direct current - FDA fluorescein diacetate - f. wt fresh weight - GUS -glucuronidase - K Kao (1977) - MES 2-N-morpholinoethane sulfonic acid - MS Murashige & Skoog (1962) - NAA -naphthaleneacetic acid - PVP-10 polyvinylpyrrolidone (Av MW 10,000) - TLC thin layer chromatography  相似文献   

11.
12.
The purpose of this study was to investigate the role of superoxide dismutase (SOD) and catalase (CAT) in brain ischemic tolerance induced by ischemic preconditioning. Forebrain cerebral ischemia was induced in rat by four vessel occlusion. The activities of the antioxidant enzymes CuZn-SOD, Mn-SOD and CAT were measured in the hippocampus, striatum and cortex after 5 min of ischemia used as a preconditioning and subsequent reperfusion, by spectrophotometric methods. In all ischemia-reperfusion groups (5 h, 1 and 2 days of reperfusion), CuZn-SOD activities were found to be increased if compared to the sham operated controls. The increase was significant (P < 0.05) in all reperfusion groups, particularly after 5 h of reperfusion (3 times) in all studied brain regions; the largest increase was detected in the more vulnerable hippocampus and striatum. Very similar changes were found in Mn-SOD activity. The activity of CAT was increased too, but reached the peak of postischemic activity 24 h after ischemia. Our attempt to understand the mechanisms of increased SOD and CAT activities by application of protein synthesis inhibitor cycloheximide showed that this increase was caused by de novo synthesis of enzymes during first hours after ischemia. Our findings indicate that both major endogenous antioxidant enzymes SOD and CAT are synthesized as soon as 5 h after ischemia. In spite of significant upregulation of these enzymes a large number of neurons in selectively vulnerable CA1 region of hippocampus undergoes to neurodegeneration within 7 days after ischemia.  相似文献   

13.
The reporter genes for Chloramphenicolacetyltransferase (CAT), Neomycinphosphotransferase-(NPT)-II and -Glucuronidase (GUS) were compared in transient gene expression experiments in tobacco mesophyll protoplasts. For this purpose, nearly identical chimeric genes controlled by the CaMV 35 S promoter were constructed. The detection level of each system was determined yielding the following order of relative sensitivity: CAT相似文献   

14.
15.
In the presence of MgSO4 as osmotic stabilizer, nucleated protoplasts of Schizophyllum commune developed a large vacuole and could be isolated on the basis of their low buoyant density. All these protoplasts were capable of wall regeneration and about 50 percent reverted to the hyphal mode of growth in liquid medium. The kinetics of the formation of three main cell-wall components, S-glucan (α-1,3-glucan), R-glucan (β-1,3, β-1,6-glucan) and chitin were studied from the onset of regeneration. S-glucan and chitin accumulation as well as RNA and protein synthesis started simultaneously after a short lag, but R-glucan formation was delayed. The reversion to hyphal tubes only began after several hours of rapid R-glucan synthesis. Cycloheximide (0.5 μg/ml), inhibiting protein synthesis by 98% inhibited the formation of R-glucan and the reversion to hyphal growth but the formation of chitin and S-glucan did start and continued seemingly unimpaired for several hours. This indicates that the enzymes responsible for the synthesis of S-glucan and chitin remained intact during protoplast preparation. Polyoxin D inhibited both the synthesis of chitin and R-glucan and also the reversion to hyphal growth. However, the synthesis of S-glucan was not suppressed. These inhibitor studies as well as the kinetics of R-glucan formation during normal regeneration suggest that the synthesis of R-glucan is required for the initiation of hyphal morphogenesis.  相似文献   

16.
Summary Using a promoter expression vector system based on the tumor-inducing (Ti) plasmid of Agrobacterium tumefaciens, we have studied the molecular structure of the nopaline synthase (nos) promoter which is active constitutively in transformed plant tissues. The system uses the sensitive and reliable chloramphenicol acetyltransferase (CAT) assay for the analysis of promoter strength in plant cells. Two sets of mutants were generated by sequential deletion of the nos promoter region from both 5 and 3 ends. These promoter fragments were linked to the cat coding sequence within the expression vector. The strength of the mutant promoters was measured in transformed tobacco calli as CAT activity. 3 deletions up to-17 bp did not significantly affect the promoter strength. Further deletions into the TATA box region reduced the promoter strength by about ten-fold. Analysis of the 5 deletion mutants showed that an upstream region is required for the nos promoter activity in addition to the TATA box and CCAAT box regions.  相似文献   

17.
18.
Summary Protoplast diameter, a physical parameter controlling the susceptibility to electropermeation, was observed to vary between different batches of Brassica napus and Brassica campestris protoplasts. In order to control the permeation field strength associated with the protoplast size, we investigated the mathematical relationship between permeant field strength and protoplast size by measuring electroloading of the calcein dye under conditions that did not alter protoplast survival. A roughly linear relationship was obtained when the permeant field strength was plotted against the reciprocal of the radius. The plot characteristics were found to be tissue specific (mesophyll, hypocotyl and cotyledon), species specific (turnip, rapeseed) and modulated by the pulse duration. These plots were used as reference curves to determine accurate electrical conditions for DNA transfer whatever the size distributions of different protoplast batches.Abbreviations GUS -glucuronidase - CAT chloramphenicol acetyltransferase - MOPS 3-(N-morpholino)propanesulfonic acid - TRIS tris(hydroxymethyl)aminomelhane - BSA bovine serum albumin - ATP adenosine 5-triphosphate  相似文献   

19.
The influence of two enzyme solutions, differing only in the presence or absence of Macerozyme, on protoplast yield, colony formation and transient GUS (-glucuronidase) activity was studied. For all parameters tested the presence of Macerozyme during protoplast isolation had a negative influence. Using an enzyme solution without Macerozyme suspension aggregates gave up to 4.4 times higher protoplast yield and plating efficiencies were increased up to 10-fold. Further, protoplasts isolated without macerozyme showed a 5.2-fold higher GUS activity in transient gene expression. Apart from the presence of Macerozyme, longer incubation (3 compared with 1.5 h) of cell aggregates in the enzyme solution also had a negative effect on transient transformation efficiency. These data demonstrate that protoplast isolation conditions have a profound effect on transient gene expression and it is proposed that these factors will also influence stable transformation efficiency.Abbreviations CP cellulase pectolyase - CPM cellulase pectolyase Macerozyme - 2,4-d 2,4-dichlorophenoxyacetic acid  相似文献   

20.
Vicilin, a 7S globulin of Pisum sativum L. seed, accumulates in protein-storage vacuoles (protein bodies) of cotyledonary storage-parenchyma cells. The synthesis and proteolytic processing of various genetically engineered proteins within the leaf and seed of a heterologous (tobacco, Nicotiana tabacum L.) host was examined. A modified vicilin gene, in which the DNA sequence corresponding to the signal peptide was removed, resulted in a polypeptide of 50 kDa in the tobacco leaf and seed; none of the normal proteolytic cleavage products characteristic of expression of an unmodified vicilin gene were obtained. Likewise, no vacuolar accumulation of this mutant vicilin occurred in leaf protoplasts, which is also supportive of the predicted cytosolic localization for this protein. In-frame deletions were made within the region of the vicilin gene encoding the mature protein, to eliminate the N-terminal 28 and 121 amino acids and the C-terminal 69 residues, while maintaining an intact signal peptide. All of these mature deletion-mutant proteins were accumulated to only low levels in the host, but exhibited the predicted molecular weight and underwent some normal proteolytic processing in the seed. Mutant vicilin proteins having deletions in either the N-terminus (NT 121) or C-terminus (CT 69) were not found in appreciable amounts within the vacuolar fraction of transgenic tobacco leaf protoplasts, perhaps due to protein degradation in this compartment. Compared with the intact vicilin, oligomer assembly of the C-terminal deletion-mutant protein was disrupted in leaf cells, which may have further affected protein stability. The deletions of mature vicilin protein led to a much less dramatic reduction in protein accumulation in transgenic tobacco seed. Further, the same mutant proteins expressed within transgenic tobacco seed exhibited correct and highly specific proteolytic processing.Abbreviations CaMV cauliflower mosaic virus - Mr relative molecular mass We gratefully acknowledge the technical assistance from Maria J. Still and help from M.R.I. Khan. Part of this research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Operating and Equipment Grants to A.R.K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号