首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary The effect of 2-deoxy-d-glucose on maintenance in culture of B cells of the neonatal rat was examined by supplementation of Medium 199 containing 5.5 mM glucose with 1 mM 2-deoxy-d-glucose. Islets maintained in medium with 5.5 mM glucose (basal medium) for 7 d underwent remarkable decreases in glucose sensitivity, and the levels of insulin in the medium dropped. By contrast, addition of 2-deoxy-d-glucose promoted a higher insulin content in medium and an increase in the glucose-induced insulin release and biosynthesis. Moreover, the addition of the deoxysugar caused a selective deletion of fibroblasts and prevented the deterioration of islet cells in basal medium, yielding clusters mostly consisting of islet cells at the end of culture.  相似文献   

2.
The present investigation examined the effects of pretreatment with 3-O-methyl-d-glucose (3OMG) or 2-deoxy-d-glucose (2DOG) on post-mortem rise in rat brain lactate to evaluate their potential use for minimizing ischemia-induced rise in brain lactate. The results showed that iv administration of either glucose analogue (2 g/kg) at 2.5 min prior to sacrifice significantly attenuated (to 0.61 of control levels) post-mortem brain lactate rise. Pretreating rats with 2-deoxy-d-glucose (2 g/kg) 15 min prior to sacrifice resulted in a greater inhibition (to 0.52 of control) of the post-mortem lactate rise. The effects of these two analogues (3OMG and 2DOG) can be accounted for by their inhibition of brain glucose transport and inhibition of brain glucose metabolism by 2DOG. The present results suggest that intervention with either of these glucose analogues under the proper experimental procedures may minimize the cytopathological consequences of ischemia related to the rise in brain lactate.  相似文献   

3.
The effects of -aminolaevulinic acid (ALA), porphobilinogen (PBG), -aminobutyric acid (GABA), muscimol, glutamic acid and kainic acid on [3H]2-deoxy-d-glucose uptake by cultured neurons were investigated. Exposure of the cultures for 4 days, to ALA at concentrations as low as 10 M caused a significant, dose-dependent decrease in [3H]2-deoxy-d-glucose uptake. Neither ALA nor PBG appeared to interfere directly with glucose transport into the neuron but 1 mM ALA caused an initial stimulation of [3H]2-deoxy-d-glucose uptake which increased to a maximum after 4 hr and fell to below control values after 19 hr exposure. GABA and muscimol caused similar increases in [3H]2-deoxy-d-glucose uptake but these values remained above control levels after 19 hr exposure. Glutamic acid and kainic acid caused an immediate increase in [3H]2-deoxy-d-glucose uptake which declined to mininum values after 4 hr exposure. The effect of ALA on glucose utilization in neurons may be of particular relevance to patients with acute porphyria where a genetic lesion in neural haem and haemoprotein biosynthesis is postulated to occur. ALA appeared to be more toxic to the neurons than any of the other compounds tested, possibly causing a critical depletion of energy reserves and cell death.  相似文献   

4.
Glucose was required for the transport of arabinose into Bifidobacterium breve. The non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) did not facilitate assimilation of arabinose. Studies using d-[U-14C]-labelled arabinose showed that it was fermented to pyruvate, formate, lactate and acetate, whereas the principal metabolic products of d-[U-14C]-labelled glucose were acetate and formate. In contrast to glucose, arabinose was not incorporated into cellular macromolecules. A variety of metabolic inhibitors and inhibitors of sugar transport (proton ionophores, metal ionophores, compounds associated with electron transport) were used to investigate the mechanisms of sugar uptake. Only NaF, an inhibitor of substrate level phosphorylation, and 2-DG inhibited glucose assimilation. 2-DG had no effect on arabinose uptake, but NaF was stimulatory. High levels of phosphorylation of glucose and 2-DG by PEP and to a lesser degree, ATP were seen in phosphoenolpyruvate: phosphotransferase (PEP:PTS) assays. These data together with strong inhibition of glucose uptake by NaF suggest a role for phosphorylation in the transport process. Arabinose uptake in B. breve was not directly dependent on phosphorylation or any other energy-linked form of transport but may be assimilated by glucose-dependent facilitated diffusion.Abbreviations (2,4-DNP) 2,4-dinitrophenol - (2,4-DNP) carbonylcyanide m-chlorophenylhydrazone - (CCCP) (phosphoenolpyruvate phosphotransferase system) - PEP: PTS trichloroacetic acid - (TCA) 2-deoxy-d-glucose - (2-DG) 2-deoxy-d-glucose  相似文献   

5.
We studied the effect of different concentrations of 2-deoxy-d-glucose on the l-[U-14C]leucine, l-[1-14C]leucine and [1-14C]glycine metabolism in slices of cerebral cortex of 10-day-old rats. 2-deoxy-d-glucose since 0.5 mM concentration has inhibited significantly the protein synthesis from l-[U-14C]leucine and from [1-14C]glycine in relation to the medium containing only Krebs Ringer bicarbonate. Potassium 8.0 mM in incubation medium did not stimulate the protein synthesis compared to the medium containing 2.7 mM, and at 50 mM diminishes more than 2.5 times the protein synthesis compared to the other concentration. Only at the concentration of 5.0 mM, 2-deoxy-d-glucose inhibited the CO2 production and lipid synthesis from l-[U-14C] leucine. This compound did not inhibit either CO2 production, or lipid synthesis from [1-14C]glycine. Lactate at 10 mM and glucose 5.0 mM did not revert the inhibitory effect of 2-deoxy-d-glucose on the protein synthesis from l-[U-14C]leucine. 2-deoxy-d-glucose at 2.0 mM did not show any effect either on CO2 production, or on lipid synthesis from l-[U-14C]lactate 10 mM and glucose 5.0 mM.  相似文献   

6.
N. Sauer 《Planta》1986,168(1):139-144
Autotrophically grown cells of Chlorella vulgaris show a strong increase in the uptake rates for hexoses and for seven amino acids when incubated in the presence of hexoses. This increase is due to de-novo synthesis of three transport proteins: one forhexoses and two for amino acids. Mutants deficient in hexose transport were obtained after treatment of wild-type cells with acridine orange, followed by a selection procedure using the toxic hexose analogue, 2-deoxy-D-glucose. Moreover, the two amino-acid-transport systems could not be induced in these mutants by hexoses. The capacity to phosphorylate hexoses was identical in mutants and in the wild-type strain. The loss of transport activities can be correlated with the loss of certain radiolabeled protein bands on fluorograms of sodium dodecylsulfate-polyacrylamide gels. These proteins are assumed to be responsible for the different transport systems in the wild-type strain. With the help of additional mutants defective in one or two of the different aminoacid-transport systems, it has been attempted to assign the different transport activities to individual protein bands on the gel.Abbreviations AUP arginine-uptake-defective mutant - 2-DG 2-deoxy-D-glucose - 6-DG 6-deoxy-D-glucose - HUP hexose-uptake-defective mutant - PUP- proline-uptake-defective mutant - SDS sodium dodecyl sulfate - WT wild type  相似文献   

7.
Brush border membrane vesicles (BBMV) enriched in sucrase, maltase and alkaline phosphatase, and impoverished in Na+-K+-ATPase, were isolated from proximal and distal intestine of the gilthead sea bream (Sparus aurata) by a MgCl2 precipitation method. Vesicles were suitable for the study of the characteristics of D-glucose apical transport. Only one D-glucose carrier was found in vesicles from each intestinal segment. In both cases, the D-glucose transport system was sodium-dependent, phlorizin-sensitive, significantly inhibited by D-glucose, D-galactose, α-methyl-D-glucose, 3-O-methyl-D-glucose and 2-deoxy-D-glucose, and showed stereospecificity. Apparent affinity constants of D-glucose transport (Kt) were 0.24 ± 0.03 mM in proximal and 0.18 ± 0.03 mM in distal intestine. Maximal rate of influx (Jmax) was 47.3 ± 2.2 pmols. mg−1 protein for proximal and 27.3 ± 3.6 pmols. mg−1 protein for distal intestine. Specific phlorizin binding and relative abundance of an anti-SGLT1 reactive protein were significantly higher in proximal than in distal BBMV. These results suggest the presence of the same D-glucose transporter along the intestine, with a higher density in the proximal portion. This transporter is compatible with the sodium-dependent D-glucose carrier described for other fish and with the SGLT1 of higher vertebrates.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

8.
 The strain Penicillium purpurogenum P-26 was subjected to UV irradiation and N-methyl-N′-nitro-N-nitrosoguanidine treatment and mutants were isolated capable of synthesizing cellulase under the conditions of a high concentration of glucose. Initially mutants resistant to catabolite repression by 2-deoxy-D-glucose were isolated on Walseth’s cellulose/agar plates containing 15–45 mM 2-deoxy-D-glucose. These mutants were again screened for resistance to catabolite repression by glycerol or glucose on Walseth’s cellulose/agar plates containing 50 g/l glycerol or 50 g/l glucose respectively. Four mutants with different sizes of clearing zone on Walseth’s cellulose/agar plates containing 50 g/l glucose were selected for flask culture. Among them, the mutant NTUV-45-4 showed better carboxymethylcellulase activity in flask culture containing 1% Avicel plus 3% glucose than did the parental strain. Received: 9 October 1995/Received revision: 27 November 1995/Accepted: 8 January 1996  相似文献   

9.
Li X  Wu X  Camacho R  Schwartz GJ  LeRoith D 《PloS one》2011,6(2):e17058
MKR mice, lacking insulin-like growth factor 1 receptor (IGF-1R) signaling in skeletal muscle, are lean yet hyperlipidemic, hyperinsulinemic, and hyperglycemic, with severe insulin resistance and elevated hepatic and skeletal muscle levels of triglycerides. We have previously shown that chronic peripheral administration of the adipokine leptin improves hepatic insulin sensitivity in these mice independently of its effects on food intake. As central leptin signaling has been implicated in the control of peripheral glucose homeostasis, here we examined the ability of central intracerebroventricular leptin administration to affect energy balance and peripheral glucose homeostasis in non-obese diabetic male MKR mice. Central leptin significantly reduced food intake, body weight gain and adiposity, as well as serum glucose, insulin, leptin, free fatty acid and triglyceride levels relative to ACSF treated controls. These reductions were accompanied by increased fat oxidation as measured by indirect calorimetry, as well as increased oxygen consumption. Central leptin also improved glucose tolerance and hepatic insulin sensitivity determined using the euglycemic-hyperinsulinemic clamps relative to pair fed vehicle treated controls, as well as increasing the rate of glucose disappearance. Hepatic vagotomy only partially reversed the ability of central leptin to improve glucose tolerance. These results demonstrate that central leptin dramatically improves insulin sensitivity independently of its effects on food intake, in a lean mouse model of type 2 diabetes. The findings also suggest that: 1) both hepatic vagal and non-vagal pathways contribute to this improvement, and 2) central leptin alters glucose disposal in skeletal muscle in this model.  相似文献   

10.
Particulate membrane preparations isolated from cambial cells and differentiating and differentiated xylem cells of pine (Pinus sylvestris L.) trees synthesised [14C]glucans using either guanosine 5-diphosphate (GDP)-D-[U-14C]glucose or uridine 5-diphosphate (UDP)-D-[U-14C]glucose as glycosyl donors. Although these glucans had -(13) and -(14) linkages in an approximate ratio 1:1, the distribution of the linkages in the glucan synthesised from GDP-D-glucose was different from that synthesised from UDP-D-glucose. The synthesis of the mixed -(13) and -(14) glucan from GDP-D-[U-14C]glucose was changed to that of -(14) glucomannan in the presence of increasing concentrations of GDP-D-mannose. The glucan formed from UDP-D-[U-14C]glucose was not affected by any concentration of GDP-D-mannose. The membrane preparations epimerized GDP-D-glucose to GDP-D-mannose; however, the low amount of GDP-D-mannose formed was not incorporated into the polymer becaus the affinity of the synthase for GDP-D-glucose was much greater than that for GDP-D-mannose. The glucan formed from GDP-D-glucose and the glucomannan formed from GDP-D-glucose together with GDP-D-mannose were characterized. The apparent K m and V max of the glucan synthase for GDP-D-glucose were 6.38 M and 5.08 M·min-1, respectively. No lipid intermediates were detected during the synthesis of either glucan or glucomannan. The results indicated that an enzyme complex for the formation of the glucomannan was bound to the membrane.Abbreviations GDP guanosine 5-diphosphate - GLC gasliquid chromatography - UDP trridine 5-diphosphate  相似文献   

11.
A study was carried out to determine the effect of trypsin on glucose transport into brain cells. Two suspensions of dissociated cells were prepared from the two brain hemispheres of adult rats—one using only mechanical means to dissociate the cells and one using trypsin. The use of trypsin for preparation of dissociated brain cells caused a marked reduction in the rate of transport of [1,2-3H]-2-deoxy-d-glucose compared to uptakes of this glucose analog by cells prepared without trypsin. Responses of the two cell preparations to inhibitors of glucose transport (cytochalasin B and phloretin) were similar. Rates of oxidation of [6-14C]glucose to14CO2 by trypsin-treated cells were nearly double those in cells prepared without trypsin. Electron microscopic examination of the two preparations revealed much less preservation of structural integrity if trypsin was used to prepare the cells. The findings suggest that trypsin alters cell structure and affects receptor-regulated events in brain cells.  相似文献   

12.
Using primary hepatocytes in culture, various 2-acetamido-2-deoxy-D-glucose (GlcNAc) analogs were examined for their effects on the incorporation of D-[3H]glucosamine, [35S]sulfate, and L-[14C]leucine into cellular glycoconjugates. A series of acetylated GlcNAc analogs, namely methyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-(3) and β-D-glucopyranoside (4) and 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose (5), exhibited a concentration-dependent reduction of D-[3H]glucosamine, but not of [35S]sulfate incorporation into isolated glycosaminoglycans (GAGs), without affecting L-[14C]leucine incorporation into total protein synthesis. These results suggest that analogs 3–5 exhibit an inhibitory effect on D-[3H]glucosamine incorporation into isolated GAGs by diluting the specific activity of cellular D-[3H]glucosamine and by competing for the same metabolic pathways. In the case of the corresponding series of 4-deoxy-GlcNAc analogs, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-α-(6) and β-D-xylo-hexopyranoside (7) and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-D-xylo-hexopyranose (8), compound 8 at 1.0 mM exhibited the greatest reduction of D-[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs, namely to ∼7% of controls, and a moderate inhibition of total protein synthesis, namely to 60% of controls. Exogenous uridine was able to restore the inhibition of total protein synthesis by compound 8 at 1.0 mM. Isolated GAGs from cultures treated with compound 8 were shown to be smaller in size (∼40 kDa) than for control cultures (∼77 kDa). These results suggest that the inhibitory effects of compound 8 on cellular GAG synthesis may be mediated by the incorporation of a 4-deoxy moiety into GAGs resulting in premature chain termination and/or by its serving as an enzymatic inhibitor of the normal sugar metabolites. The inhibition of total protein synthesis from cultures treated with compound 8 suggests a uridine trapping mechanism which would result in the depletion of UTP pools and cause the inhibition of total protein synthesis. A 1-deoxy-GlcNAc analog, namely 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-glucitol (9), also exhibited a reduction in both D -[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs by 19 and 57%, of the control cells, respectively, at 1.0 mM without affecting total protein synthesis. The inability of compound 9 to form a UDP-sugar and, hence, be incorporated into GAGs presents another metabolic route for the inhibition of cellular GAG synthesis. Potential metabolic routes for each analog's effects are presented.  相似文献   

13.
The effect of insulin on dopamine (DA) and serotonin (5-HT) metabolites was determined in the cerebrospinal fluid (CSF) of the rat and compared with glucose levels in blood and CSF. CSF was continuously withdrawn from the third ventricle of freely moving rats at a constant rate of 1 μl/min. Liquid chromatography with electrochemical detection was used for the direct assay of DA and 5-HT metabolites in the CSF. The metabolites were stable during the first hour after insulin injection (6IU/Kg). A progressive increase occurred thereafter in animals which had no access to food during the time of the experiment. The maximal effect was observed 2.5 h after insulin, with respective mean increases of 80% for dihydroxyphenylacetic acid, 47% for homovanillic acid and 33% for 5-hydroxyindolacetic acid. These increases in monoamine metabolites were not observed when rats received glucose (5g/Kg ip) 45 min after insulin or when food was made available. The period for insulin-induced increase in DA and 5-HT metabolites corresponded to a maximal fall of glucose levels both in blood and CSF although the CSF glucose decrease was delayed when compared to the fall of blood glucose. The role of brain glucose and brain insulin in the control of central DA and 5-HT metabolism is discussed.  相似文献   

14.
Summary. To mutant ddY/DAO mice lacking D-amino-acid oxidase activity and normal ddY/DAO+ mice, five D-amino acids (D-Asp, D-Ser, D-Ala, D-Leu and D-Pro) were orally administered for two weeks, and the D-amino acid levels were examined in seven brain regions. The levels of D-Asp markedly increased in the pituitary and pineal glands in both strains. In the ddY/DAO+ mice, the levels of the other D-amino acids did not significantly change in most of the brain regions. While in the ddY/DAO mice the levels of D-Ser significantly increased in most of the brain regions except for the cerebrum and hippocampus. The levels of D-Ala and D-Leu increased in all regions but the levels of D-Pro did not significantly change. The same five D-amino acids were intravenously injected into Wistar rats and the D-amino acid levels in their brains were examined for 60 min after the administration. The levels of D-Asp markedly increased in the pineal gland 3 min after the administration, while the levels of D-Ser, D-Ala, and D-Pro increased both in the pineal and pituitary glands, the levels of D-Leu increased in all brain regions. These results are useful for the elucidation of the origins and regulation of D-amino acids in the mammalian body.  相似文献   

15.
Summary The regulation of extracellular amylase production by the basidiomycetous yeast Filobasidium capsuligenum CCY 64-5-1 was characterized using growing and resting cells. A basal level of amylolytic activity was produced with various carbon sources including glucose. Amylase secretion was repressed by glucose and, more severely, by 2-deoxy-d-glucose, whereas compounds with -1,4-linked glucose, such as methyl glucoside, maltose, -cyclodextrin and soluble starch, served as inducers. Repression was not relieved by exogenously added cAMP. The effects of several metabolic inhibitors on amylase secretion were studied. Following UV-mutagenesis a mutant strain (FC-5) capable of growing in a 2-deoxy-d-glucose supplemented corn starch medium was selected for further characterization. This strain produced more amylase, had acquired an increased resistance against repression by glucose, and retained a growth rate comparable to the wild type. FC-5 was also characterized by a reduced glucokinase activity and an increased hexokinase activity.  相似文献   

16.
On aerobic incubation of rat cerebral cortex slices with anomers ofd-glucose and with 2-deoxy-d-glucose (2DG) for 5 min, the disappearance of -d-glucose from the incubation mixture was greater than that of -d-glucose and both anomers had a greater rate of disappearance than that of 2DG. In addition, there were significantly greater consumption of oxygen and production of lactate with the -anomer than with the -anomer. In similar experiments with3H-labeledd-glucose anomers and [1-3H]-3-O-methyl-d-glucose (3MG), the accumulation of [1-3H]--d-glucose (up to 5 min) by rat cerebral cortex slices was greater than that of [1-3H]--d-glucose. Although initially lower than that of the anomers, the accumulation of [1-3H]-3MG increased at a greater rate and, by 5 min of incubation, was greater than that of both glucose anomers. This preferential accumulation was seen to disappear when the slices were preincubated with 2DG (hexokinase inhibitor) or when the temperature of incubation was reduced to 20°C. Under those conditions the data with the glucose anomers were similar to those obtained with 3MG. Our data then suggested that the greater accumulation of -d-glucose than of -d-glucose by the slices was probably not due to differences in transport through brain cell membranes but rather to the preferential metabolism of the -d-glucose.  相似文献   

17.
Candida shehatae cells pre-grown on D-xylose simultaneously consumed mixtures of D-xylose and D-glucose, under both non-growing (anoxic) and actively growing conditions (aerobic), to produce ethanol. The rate of D-glucose consumption was independent of the D-xylose concentration for cells induced on D-xylose. However, the D-xylose consumption rate was approximately three times lower than the D-glucose consumption rate at a 50% D-glucose: 50% D-xylose mixture. Repression was not observed (substrate utilization rates were approximately equal) when the percentage of D-glucose and D-xylose was changed to 22% and 78%, respectively. In fermentations with actively growing cells (50% glucose and D-xylose), ethanol yields from D-xylose increased, the % D-xylose utilized increased, and the xylitol yield was significantly reduced in the presence of D-glucose, compared to anoxic fermentations (YETOH,xylose = 0.2–0.40 g g−1, 75–100%, and Yxylitol = 0–0.2 g g−1 compared to YETOH,xylose = 0.15 g g−1, 56%, Yxylitol = 0.51 g g−1, respectively). To increase ethanol levels and reduce process time, fed-batch fermentations were performed in a single stage reactor employing two phases: (1) rapid aerobic growth on D-xylose (μ = 0.32 h−1) to high cell densities; (2) D-glucose addition and anaerobic conditions to produce ethanol (YETOH,xylose = 0.23 g g−1). The process generated high cell densities, 2 × 109 cells ml−1, and produced 45–50 g L−1 ethanol within 50 h from a mixture of D-glucose and D-xylose (compared to 30 g L−1 in 80 h in the best batch process). The two-phase process minimized loss of cell viability, increased D-xylose utilization, reduced process time, and increased final ethanol levels compared to the batch process. Received 23 February 1998/ Accepted in revised form 15 July 1998  相似文献   

18.
Summary The initial rates of transport of uridine, thymidine, purines, choline and 2-deoxy-d-glucose by cultured Novikoff rat hepatoma cells were determined as a function of temperature between 5 and 41°C. Arrhenius plots of all transport systems exhibited sharp breaks in slope; between 17 and 23° for uridine, thymidine and hypoxanthine-guanine transport and between 29 and 32° for choline and 2-deoxy-d-glucose transport. The activation energies for the transport systems changed from 15–26 kcal/mole below the transition temperatures to 4–9 kcal/mole above the transition temperatures. Propagation of the cells in the presence ofcis-6-octadecenoic acid which results in marked changes in the lipid composition of cell membrane, had little effect on the temperature characteristics of the various transport systems. Similarly, propagation of the cells for 24 hr in media containing Tween 40 or nystatin had no effect on the capacity of the cells to transport the various substrates or on the temperature dependence of the transport systems. The presence of ethanol, phenethyl alcohol or Persantin at concentrations that inhibited thymidine and 2-deoxy-d-glucose transport between 40 and 70% also did not alter the transition temperatures or activation energies for the transport of these substrates. Cytochalasin B, on the other hand, shifted the transition temperature for 2-deoxy-d-glucose transport to higher temperatures in a concentration-dependent manner, whereas it had no effect on the temperature dependence of thymidine transport.  相似文献   

19.
Summary 2-Deoxy-d-glucose (2DG) and 5-thio-d-glucose (5TG) are glucose antimetabolites that are known to be selectively toxic to hypoxic cells grown as single cells or as monolayer cultures. These analogues were toxic to Chinese hamster V79 cells grown as multicell spheroids even under aerobic conditions. When spheroids, 500- to 600-μm diameter, were exposed to 7.5mm of these chemicals for 3 days, the number of clonogenic cells per spheroid dropped to 50% for 5-thio-d-glucose and 20% for 2-deoxy-d-glucose, relative to control values. Survivals were reduced to less than 1% when the experiment was repeated in glucose-free medium. Scanning electron photomicrographs of spheroids treated with 7.5mm of either analogue showed extensive damage to the outer cells. The cell killing observed was much more than could be predicted on the basis of the hypoxic fraction known to be present in these spheroids. The crowded tumor-like environment may make the cells vulnerable to the cytotoxic action of glucose analogues and other glycolytic inhibitors. Supported by the Ontario Cancer Treatment and Research Foundation, London Clinic.  相似文献   

20.
In the facultatively anaerobic yeastSaccharomyces cerevisiae the uptake rate and the accumulation ratio of 2-aminoisobutyric acid was decreased by some 30% by Fenton's reagent (FR), a powerful source of OH… radicals. Likewise, the uptake of glutamic acid, leucine and arginine was diminished. The mediated diffusion of 6-deoxy-d-glucose was not affected. The H+ symport of maltose and trehalose was inhibited by some 40% both in the initial rate and in the accumulation ratio. FR had a dramatic inhibitory effect when present during preincubation with 50 mmol/L glucose. In the obligately aerobicLodderomyces elongisporus the uptake of all amino acids tested was decreased by 15–30%, that of 6-deoxy-d-glucose by about 10%. The initial rates of uptake of maltose and trehalose were depressed by FR by 40% and the acceleration of uptake observed after 8 min of incubation, was abolished by FR completely. Acidification rate of the external medium byS. cerevisiae in the presence of glucose or galactose was enhanced three-fold, that after subsequently added K+ was substantially decreased. FR appears to have a dual effect on sugar and amino acid transport processes in yeast: (1) it blocks carrier protein synthesis, (2) it inhibits the source of energy for transport. It does not appreciably affect the carrier proteins themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号