首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
DNA gyrase negatively supercoils DNA in a reaction coupled to the binding and hydrolysis of ATP. Limited supercoiling can be achieved in the presence of the non-hydrolysable ATP analogue, 5'-adenylyl beta,gamma-imidodiphosphate (ADPNP). In order to negatively supercoil DNA, gyrase must wrap a length of DNA around itself in a positive sense. In previous work, the effect of ADPNP on the gyrase-DNA interaction has been assessed but has produced conflicting results; the aim of this work was to resolve this conflict. We have probed the wrapping of DNA around gyrase in the presence and in the absence of ADPNP using direct observation by atomic force microscopy (AFM). We confirm that gyrase indeed generates a significant curvature in DNA in the absence of nucleotide and we show that the addition of ADPNP leads to a complete loss of wrap. These results have been corroborated using a DNA relaxation assay involving topoisomerase I. We have re-analysed previous hydroxyl-radical footprinting and crystallography data, and highlight the fact that the gyrase-DNA complex is surprisingly asymmetric in the absence of nucleotide but is symmetric in the presence of ADPNP. We suggest a revised model for the conformation of DNA bound to the enzyme that is fully consistent with these AFM data, in which a closed loop of DNA is stabilised by the enzyme in the absence of ADPNP and is lost in the presence of nucleotide.  相似文献   

2.
Reverse gyrases are topoisomerases that catalyze ATP-dependent positive supercoiling of circular covalently closed DNA. They consist of an N-terminal helicase-like domain, fused to a C-terminal topoisomerase I-like domain. Most of our knowledge on reverse gyrase-mediated positive DNA supercoiling is based on studies of archaeal enzymes. To identify general and individual properties of reverse gyrases, we set out to characterize the reverse gyrase from a hyperthermophilic eubacterium. Thermotoga maritima reverse gyrase relaxes negatively supercoiled DNA in the presence of ADP or the non-hydrolyzable ATP-analog ADPNP. Nucleotide binding is necessary, but not sufficient for the relaxation reaction. In the presence of ATP, positive supercoils are introduced at temperatures above 50 degrees C. However, ATP hydrolysis is stimulated by DNA already at 37 degrees C, suggesting that reverse gyrase is not frozen at this temperature, but capable of undergoing inter-domain communication. Positive supercoiling by reverse gyrase is strictly coupled to ATP hydrolysis. At the physiological temperature of 75 degrees C, reverse gyrase binds and hydrolyzes ATPgammaS. Surprisingly, ATPgammaS hydrolysis is stimulated by DNA, and efficiently promotes positive DNA supercoiling, demonstrating that inter-domain communication during positive supercoiling is fully functional with both ATP and ATPgammaS. These findings support a model for communication between helicase-like and topoisomerase domains in reverse gyrase, in which an ATP and DNA-induced closure of the cleft in the helicase-like domain initiates a cycle of conformational changes that leads to positive DNA supercoiling.  相似文献   

3.
Intrinsic DNA-dependent ATPase activity of reverse gyrase   总被引:4,自引:0,他引:4  
Reverse gyrase is a type I DNA topoisomerase that promotes positive supercoiling of closed-circular double-stranded DNA through an ATP-dependent reaction, and it was purified from an archaebacterium, Sulfolobus. When ATP is replaced by UTP, GTP, or CTP, this enzyme just relaxes the negatively supercoiled closed-circular double-stranded DNA. We found that reverse gyrase hydrolyzes ATP through a double-stranded DNA-dependent reaction. The superhelicity of the DNA did not affect the ATPase activity. However, reverse gyrase does not hydrolyze UTP, GTP, or CTP. Therefore, any of the four nucleotide 5'-triphosphates acts as an effector for the topoisomerase activity of reverse gyrase, but only ATP supports the positive supercoiling of closed-circular double-stranded DNA, through the energy released on its hydrolysis. Single-stranded DNA was a much more potent cofactor for the ATPase activity of the enzyme than double-stranded DNA, and it acted as a potent inhibitor for the topoisomerase activity on double-stranded DNA. These results indicate that reverse gyrase has higher affinity to single-stranded DNA than to double-stranded DNA, which suggests a cellular function of the enzyme.  相似文献   

4.
Brino L  Bronner C  Oudet P  Mousli M 《Biochimie》1999,81(10):973-980
DNA gyrase is an essential enzyme that regulates the DNA topology in bacteria. It belongs to the type II DNA topoisomerase family and is responsible for the introduction of negative supercoils into DNA at the expense of hydrolysis of ATP molecules. The aim of the present work was to study the contribution of I10, one of the most important residues responsible for the stabilization of GyrB dimer and involved in the ATP-binding step, in the ATP-hydrolysis reaction and in the DNA supercoiling mechanism. We constructed MBP-tagged GyrB mutants I10G and Delta4-14. Our results demonstrate that both mutations severely affect the DNA-dependent ATPase activity and DNA supercoiling. Mutation of Y5 residue involved in the formation of ATPase catalytic site (Y5G mutant) had only little effect on the DNA-dependent ATPase activity and DNA supercoiling. Interestingly, the DNA-relaxation activity of MBP-GyrB mutants and wild type was completely inhibited by ATP. Binding of ADPNP to MBP-tagged mutants was significantly decreased. ADPNP had no effect on DNA-relaxation activity of MBP-tagged mutants but was able to inhibit MBP-tagged wild type enzyme. Our results demonstrate that GyrB N-terminal arm, and specially I10 residue is essential for ATP binding/hydrolysis efficiency and DNA transfer through DNA gyrase.  相似文献   

5.
DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. While all type II DNA topoisomerases relax supercoiled DNA, DNA gyrase is the only enyzme that introduces negative supercoils into DNA at the expense of ATP hydrolysis. We present here a biophysical characterization of the nucleotide cycle of DNA gyrase from Bacillus subtilis, both in the absence and presence of DNA. B. subtilis DNA gyrase is highly homologous to its well-studied Escherichia coli counterpart, but exhibits unique mechanistic features. The active heterotetramer of B. subtilis DNA gyrase is formed by mixing the GyrA and GyrB subunits. GyrB undergoes nucleotide-induced dimerization and is an ATP-operated clamp. The intrinsic ATPase activity of gyrase is stimulated tenfold in the presence of plasmid DNA. However, in contrast to the E. coli homolog, the rate-limiting step in the nucleotide cycle of B. subtilis GyrB is ATP hydrolysis, not product dissociation or an associated conformational change. Furthermore, there is no cooperativity between the two DNA and ATP binding sites in B. subtilis DNA gyrase. Nevertheless, the enzyme is as efficient in negative supercoiling as the E. coli DNA gyrase. Our results provide evidence that the evolutionary goal of efficient DNA supercoiling can be realized by similar architecture, but differences in the underlying mechanism. The basic mechanistic features are conserved among DNA gyrases, but the kinetics of individual steps can vary significantly even between closely related enzymes. This suggests that each topoisomerase represents a different solution to the complex reaction sequence in DNA supercoiling.  相似文献   

6.
Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum was inhibited by preincubation with vanadate. When the inhibited enzyme was preincubated in the presence of vanadate and assayed in its absence, a slow reactivation process was observed. This slow, hysteretic, process was exploited to study the influence of Ca2+ and ATP on the dissociation of vanadate. Ca2+ alone slowly displaced vanadate from the inhibited enzyme, and a rate constant of 0.1 min-1, at 25 degrees C, was calculated for this re-activation process. However, ATP re-activated with an apparent constant that hyperbolically depended on ATP concentration, and from it a rate constant for vanadate dissociation induced by ATP of 0.5 min-1 was calculated. It is deduced from the kinetic studies that ATP binds to the enzyme-vanadate complex, forming a ternary complex, with a dissociation constant of 4 microM, and that this binding accelerates vanadate dissociation. Binding experiments with [14C]ATP showed that ATP binds to the enzyme-vanadate complex with a dissociation constant of 12 microM, i.e. the affinities calculated with the isotope technique and the kinetic procedure are of the same order of magnitude.  相似文献   

7.
DNA gyrase catalyses DNA supercoiling by passing one segment of DNA (the T segment) through another (the G segment) in a reaction coupled to the binding and hydrolysis of ATP. The N-terminal domains of the gyrase B dimer constitute an ATP-operated clamp that is proposed to capture the T segment during the DNA supercoiling reaction. We have locked this clamp in the closed conformation using the non-hydrolysable ATP analogue ADPNP (5'-adenylyl beta,gamma-imidodiphosphate). The clamp-locked enzyme is able to bind and cleave DNA, albeit at a reduced level. Although the locked enzyme is not capable of carrying out DNA supercoiling, it can catalyse limited DNA relaxation, consistent with the ability to complete one strand passage event per enzyme molecule via entry of the T segment through the exit gate of the enzyme. The DNA-protein complex of the clamp-locked enzyme has a conformation that differs from the normal positively wrapped conformation of the gyrase-DNA complex. These experiments confirm the role of the ATP-operated clamp in the strand-passage reactions of gyrase and suggest a model for the interaction of DNA with gyrase in which a conformation with the T segment in equilibrium across the DNA gate can be achieved via T-segment entry through the ATP-operated clamp or through the exit gate.  相似文献   

8.
DNA gyrase can supercoil DNA circles as small as 174 base pairs.   总被引:9,自引:2,他引:7       下载免费PDF全文
DNA gyrase introduces negative supercoils into closed-circular DNA using the free energy of ATP hydrolysis. Consideration of steric and thermodynamic aspects of the supercoiling reaction indicates that there should be a lower limit to the size of DNA circle which can be supercoiled by gyrase. We have investigated the supercoiling reaction of circles from 116-427 base pairs (bp) in size and have determined that gyrase can supercoil certain relaxed isomers of circles as small as 174 bp, dependent on the final superhelix density of the supercoiled product. Furthermore, this limiting superhelical density (-0.11) is the same as that determined for the supercoiling of plasmid pBR322. We also find that although circles in the range 116-152 bp cannot be supercoiled, they can nevertheless be relaxed by gyrase when positively supercoiled. These data suggest that the conformational changes associated with the supercoiling reaction can be carried out by gyrase in a circle as small as 116 bp. We discuss these results with respect to the thermodynamics of DNA supercoiling and steric aspects of the gyrase mechanism.  相似文献   

9.
We have examined the effects of the bacterial toxin microcin B17 (MccB17) on the reactions of Escherichia coli DNA gyrase. MccB17 slows down but does not completely inhibit the DNA supercoiling and relaxation reactions of gyrase. A kinetic analysis of the cleavage-religation equilibrium of gyrase was performed to determine the effect of the toxin on the forward (cleavage) and reverse (religation) reactions. A simple mechanism of two consecutive reversible reactions with a nicked DNA intermediate was used to simulate the kinetics of cleavage and religation. The action of MccB17 on the kinetics of cleavage and religation was compared with that of the quinolones ciprofloxacin and oxolinic acid. With relaxed DNA as substrate, only a small amount of gyrase cleavage complex is observed with MccB17 in the absence of ATP, whereas the presence of the nucleotide significantly enhances the effect of the toxin on both the cleavage and religation reactions. In contrast, ciprofloxacin, oxolinic acid, and Ca2+ show lesser dependence on ATP to stabilize the cleavage complex. MccB17 enhances the overall rate of DNA cleavage by increasing the forward rate constant (k2) of the second equilibrium. In contrast, ciprofloxacin increases the amount of cleaved DNA by a combined effect on the forward and reverse rate constants of both equilibria. Based on these results and on the observations that MccB17 only slowly inhibits the supercoiling and relaxation reactions, we suggest a model of the interaction of MccB17 with gyrase.  相似文献   

10.
Stoichiometric amounts of pure reverse gyrase, a type I topoisomerase from the archaebacterium Sulfolobus acidocaldarius were incubated at 75 degrees C with circular DNA containing a single-chain scission. After covalent closure by a thermophilic ligase and removal of bound protein molecules, negatively supercoiled DNA was produced. This finding, obtained in the absence of ATP, contrasts with the ATP-dependent positive supercoiling catalyzed by reverse gyrase and is interpreted as the result of enzyme binding to DNA at high temperature. Another consequence of reverse gyrase stoichiometric binding to DNA is the formation of a cleavable complex which results in the production of single-strand breaks in the presence of detergent. Like eubacterial type I topoisomerase (protein omega), reverse gyrase is tightly attached to the 5' termini of the cleaved DNA. In the light of these results, a comparison is tentatively made between reverse gyrase and the eubacterial type I (omega) and type II (gyrase) topoisomerases.  相似文献   

11.
The kinetics of the binding of mebendazole (MBZ) to tubulin from the third-stage (L3) larvae of the parasitic nematode, Haemonchus contortus, have been characterized. In partially purified preparations, the association of [3H]MBZ to nematode tubulin was rapid, k1 = (2.6 +/- 0.3) x 10(5) M-1 min-1, but dissociation was slow, k-1 = (1.58 +/- 0.02) x 10(-3) min-1. The affinity constant (K(a)) for the interaction, determined by the ratio k1/k-1, was (1.6 +/- 0.2) x 10(8) M-1. Similar results were obtained with crude cytosolic fractions. In equilibrium studies, performed with partially purified nematode tubulin under similar conditions, a K(a) of (5.3 +/- 1.6) x 10(6) M-1 was obtained. The best estimate for the K(a) of the MBZ-nematode tubulin interaction is considered to be the 'kinetic' value determined from the ratio of rate constants. The slow dissociation of MBZ from nematode tubulin, which contrasts with the rapid dissociation of MBZ from mammalian tubulin, supports the hypothesis that the selective toxicity of the benzimidazole anthelmintics results from a difference between the affinities of mammalian and nematode tubulins for these drugs.  相似文献   

12.
Cytosols from 7, 12-dimethylbenz (alpha) anthracene-induced rat mammary tumors which exhibit different hormone-responsiveness were compared with respect to their cAMP-dissociation kinetics. At 22 degree C, pH 4.5, 1 micrometer cAMP, hormone-dependent mammary tumors exhibited monophasic dissociation rates with a rate constant of k-1 = 0.06 min-1. In contrast, hormone-independent mammary tumors exhibited biphasic dissociation curves with rate constants of k-1 = 0.47 and k-2 = 0.06 min-1. The binding of cAMP was completely reversible; radio-labeled ligand was completely dissociated by 1mM nonradioactive cAMP; the binding protein could be reassociated to its original binding level after dextran-coated charcoal adsorption. The mammary cytosols exhibited specific binding for cAMP which could be displaced partially by cGMP but not by ATP, ADP, AMP, or adenosine. Receptor inactivation during the course of incubation was negligible. Both mammary tissue cytosols exhibited similar association rates at 22 degree C, pH 4.5, 1 micrometer cAMP (k+1 = 5-7 x 10(5)M-1 min-1). These data indicate that mammary tissues exhibit 2 cAMP dissociation rates. Hormone-dependent mammary tumors exhibit a dissociation constant of a high affinity binding site (k-1/k+1 = 0.07 micrometer) whereas hormone-independent mammary tumors exhibit dissociation constants of one high affinity (k-1/k+1 = 0.07 micrometer) and a second low affinity site (k-1/k+1 = 0.05 micrometer).  相似文献   

13.
A rapid and simple method for assaying the binding activity of thiamine-binding protein is described. By this assay method, the binding characteristics of rice bran thiamine-binding protein have been evaluated with [14C]thiamine as ligand. Analysis of these data by Scatchard plot resulted in linear plots giving a dissociation constant (Kd) for thiamine of 0.55 microM and a maximum binding (Bmax) of 14.5 pmol of ligand bound/microgram of protein. Thiamine binding to the binding protein was time dependent and reached equilibrium at approximately 20 min. The Kob was 0.18 min-1 and the k1 was 1.25 X 10(5) min-1 M-1. Reversibility of thiamine binding at equilibrium was completed at 60 min with a k2 value of 0.052 min-1. The Kd calculated from the reverse rate constant was 0.42 microM. These results indicated that this binding assay method was substantially reliable and accurate.  相似文献   

14.
The kinetics of binding of glucocorticoids to the soluble, specific binding protein of mouse fibroblasts has been examined. The rate at which both potent and weak glucocorticoids achieve binding equilibrium is very slow. Second order rate constants of association range from 3 times 10-5 M- minus 1 min- minus 1 for cortisol to 6.7 times 10-5 M- minus 1 min- minus 1 for triamcinolone acetonide. Studies of the rates of binding at high steroid concentrations suggest that the slow rate of binding may be explained by a two-step mechanism. Active glucocorticoids, regardless of their potency, bind initially in a rapid manner to form a weak complex with the binding protein. The dissociation constant for the weak binding reaction is 0.87 times 10- minus 7 M for triamcinolone acetonide and 2.4 times 10- minus 7 M for cortisol. The weak binding complex becomes converted slowly to a tight complex. The first order rate constants for this conversion and the rate constants of dissociation from the tight complex have been determined for cortisol, dexamethasone and triamcinolone acetonide. The binding affinity of steroids of different biological potency is correlated with their rate of dissociation from this second tight binding state.  相似文献   

15.
DNA gyrase catalyzes ATP-dependent negative supercoiling of DNA by a strand passage mechanism that requires coordinated opening and closing of three protein interfaces, the N-, DNA-, and C-gates. ATP binding to the GyrB subunits of gyrase causes dimerization and N-gate closure. The closure of the N-gate is a key step in the gyrase catalytic cycle, as it captures the DNA segment to be transported and poises gyrase toward strand passage. We show here that K(+) ions are required for DNA supercoiling but are dispensable for ATP-independent DNA relaxation. Although DNA binding, distortion, wrapping, and DNA-induced narrowing of the N-gate occur in the absence of K(+), nucleotide-induced N-gate closure depends on their presence. Our results provide evidence that K(+) ions relay small conformational changes in the nucleotide-binding pocket to the formation of a tight dimer interface at the N-gate by connecting regions from both GyrB monomers and suggest an important role for K(+) in synchronization of N-gate closure and DNA-gate opening.  相似文献   

16.
A topoisomerase capable of introducing positive supercoils into closed-circular DNA has been isolated from the extremely thermophilic anaerobic archaebacterium Desulfurococcus amylolyticus. This polypeptide has an Mr of 135,000, as determined by electrophoresis under denaturing conditions. The enzyme is active in the temperature range from 65 degrees C to 100 degrees C and catalyzes positive supercoiling both in negatively supercoiled DNA and in relaxed DNA. These reactions require the presence of ATP. The enzyme's action on a single topoisomer has shown the linking number to increase by an integral number upon the relaxation of negative supercoils and the introduction of positive ones. This means that the reverse gyrase from D. amylolyticus is a type I topoisomerase. The presence of an extended AT sequence within the closed-circular DNA enhances the activity of the Desulfurococcus topoisomerase. Even though the enzyme is isolated from a strictly anaerobic bacterium, it is fully active in the presence of oxygen.  相似文献   

17.
Partial reactions of potassium-stimulated ATP phosphohydrolase from hog gastric mucosa were studied by means of a rapid-mixing apparatus. At 21 degrees C, in the presence of 2 mM MgCl2 and 5 microM [gamma-32P]ATP there was a rapid phosphorylation of the enzyme with a pseudofirst order rate constant of 1400 min-1. Addition of the ATP about 120 ms before the MgCl2 increased this rate constant to 4400 min-1. In the absence of MgCl2 there was no phosphorylation. Addition of 4 or 10 mM KCl to the phosphoenzyme which had been formed in the absence of KCl produced a rapid initial rate of dephosphorylation (k = 2600 and 3200 min-1 respectively). An additional slow component of dephosphorylation was observed when unlabeled ATP was added together with the KCl (k = 700 to 900 min-1). At a 4 mM concentration, KCl stimulated the ATPase activity about 9-fold. At higher concentrations, the activity was reduced in parallel with a reduction of the steady state level of phosphoenzyme. Addition of KCl to the enzyme before the addition of ATP plus MgCl2 resulted in a low rate and extent of phosphorylation. KCl appeared to inhibit the phosphorylation at a level preceeding the E.ATP complex.  相似文献   

18.
Reverse gyrase is a type I-5' topoisomerase, which catalyzes a positive DNA supercoiling reaction in vitro. To ascertain how this reaction takes places, we looked at the DNA sequences recognized by reverse gyrase. We used linear DNA fragments of its preferred substrate, the viral SSV1 DNA, which has been shown to be positively supercoiled in vivo. The Sulfolobus shibatae B12 strain, an SSV1 virus host, was chosen for production of reverse gyrase. This naturally occurring system (SSV1 DNA-S. shibatae reverse gyrase) allowed us to determine which SSV1 DNA sequences are bound and cleaved by the enzyme with particularly high selectivity. We show that the presence of ATP decreases the number of cleaved complexes obtained whereas the non-hydrolyzable ATP analog adenosine 5'-[beta, gamma-imido]triphosphate increases it without changing the sequence specificity.  相似文献   

19.
In prokaryotes, DNA supercoiling regulates the expression of many genes; for example, the expression of Klebsiella pneumoniae nifLA operon depends on DNA negative supercoiling in anaerobically grown ceils, which indicates that DNA supercoiling might play a role in gene regulation of the anaerobic response. Since the expression of the nifH promoter in Sinorhizobium meliloti is not repressed by oxygen, it is proposed that the status of DNA supercoiling may not affect the expression of the nifH promoter. We tested this hypothesis by analyzing nifH promoter activity in wild-type and gyr- Escherichia coli in the presence and absence of DNA gyrase inhibitors. Our results show that gene expression driven by the S.meliloti nifH promoter requires the presence of active DNA gyrase. Because DNA gyrase increases the number of negative superhelical turns in DNA in the presence of ATP, our data indicate that negative supercoiling is also important for nifH promoter activity. Our study also shows that the DNA supercoiling-dependent S. meliloti nifH promoter activity is related to the trans-acting factors NtrC and NifA that activate it. DNA supercoiling appeared to have a stronger effect on NtrC-activated nifH promoter activity than on NifA-activated promoter activity. Collectively, these results from the S. meliloti nifH promoter model system seem to indicate that, in addition to regulating gene expression during anaerobic signaling, DNA supercoiling may also provide a favorable topology for trans-acting factor binding and promoter activation regardless of oxygen status.  相似文献   

20.
The binding of secretory component (SC) to epithelial cells and its role in the specific uptake of immunoglobulin A (IgA) dimer has been studied in rabbit mammary gland and liver. SC, Mr approximately 80,000, secreted by epithelial cells of the mammary gland was found associated with the cell surface of mammary cells in intact tissue. Dispersed mammary cells and plasma membrane-enriched fractions obtained from mammary glands of midpregnant rabbits bound 125I-labeled SC in a saturable time- and temperature-dependent process. The association rate followed a second order reversible reaction (k+1 approximately equal to 2.7 x 10(6) M-1 min-1 at 4 degrees C) and equilibrium was reached in about 4 h at 4 degrees C. The dissociation rate for membranes was first order (k-1 approximately equal to 1.7 x 10(-2) min-1 at 4 degrees C), whereas displacement from cells was incomplete. The apparent affinity constant was similar for membranes and cells (Ka approximately equal to 5 x 10(8) M-1) with one class of binding sites. The number of binding sites varied from one animal to another (260 to 7,000 sites/mammary cell) in relation to endogenous occupancy by SC, which was assessed by immunocytochemistry and complement-mediated cytotoxicity. Rabbit liver and heart membranes did not bind SC, and serum proteins present in rabbit milk failed to interact with mammary cells or membranes. Mammary membranes or cells and liver membranes bound 125I-labeled IgA dimer in a saturable, reversible time- and temperature-dependent process. Association and dissociation rate constants at 4 degrees C (k+1 approximately equal to 5 x 10(6) M-1 min-1 and k-1 approximately equal to 5 x 10(-3) min-1, respectively) and the apparent affinity constant (Ka approximately equal to 10(9) M-1) were similar for liver and mammary membranes; these parameters differed, however, from those reported for free SC-IgA dimer interaction. The binding capacity of membranes for IgA dimer was directly related to the amount of free SC bound to membranes. Interaction of IgA dimer with mammary or liver membranes or cells was abrogated by excess of free SC and was prevented by preincubation of membranes or cells with Fab antibody fragments directed against SC. These data indicate that the first step in the translocation process of polymeric immunoglobulins across epithelia consists of binding of SC to the surface of epithelial cells which in turn acts as a receptor for the specific uptake of IgA dimer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号