首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We have previously demonstrated that the shortening of the canine parasternal intercostals during inspiration results primarily from the muscles' own activation (J. Appl. Physiol. 64: 1546-1553, 1988). In the present studies, we have tested the hypothesis that other inspiratory rib cage muscles may contribute to the parasternal inspiratory shortening. Eight supine, spontaneously breathing dogs were studied. Changes in length of the third or fourth right parasternal intercostal were measured during quiet breathing and during single-breath airway occlusion first with the animal intact, then after selective denervation of the muscle, and finally after bilateral phrenicotomy. Denervating the parasternal virtually eliminated the muscle shortening during quiet inspiration and caused the muscle to lengthen during occluded breaths. After phrenicotomy, however, the parasternal, while being denervated, shortened again a significant amount during both quiet inspiration and occluded breaths. These data thus confirm that a component of the parasternal inspiratory shortening is not active and results from the action of other inspiratory rib cage muscles. Additional studies in four animals demonstrated that the scalene and serratus muscles do not play any role in this phenomenon; it must therefore result from the action of intrinsic rib cage muscles.  相似文献   

3.
To assess the mechanical coupling between the parasternal and external intercostals in the cranial portion of the rib cage, we measured the respiratory changes in length and the electromyograms of the two muscles in the same third or fourth intercostal space in 24 spontaneously breathing dogs. We found that 1) the amount of inspiratory shortening of the external intercostal was considerably smaller than the amount of shortening of the parasternal; 2) after selective denervation of the parasternal, the inspiratory shortening of both the parasternal and the external intercostal was almost abolished; 3) on the other hand, after selective denervation of the external intercostal, the inspiratory shortening of the parasternal was unchanged, and the inspiratory shortening of the external intercostal was reduced but not suppressed; and 4) this persistent shortening of the external intercostal was reversed into a clear-cut inspiratory lengthening when the parasternal was subsequently denervated. We conclude that in the dog 1) the inspiratory contraction of the external intercostals in the cranial portion of the rib cage is agonistic in nature as is the contraction of the parasternals; 2) during resting breathing, however, the changes in length of these external intercostals are largely determined by the action of the parasternals. These observations are consistent with the idea that in the dog, the parasternals play a larger role than the external intercostals in elevating the ribs during resting inspiration.  相似文献   

4.
Patterns of intercostal muscle activity in humans   总被引:3,自引:0,他引:3  
Coordination of activity of inspiratory intercostal muscles in conscious human subjects was studied by means of an array of electromyograph (EMG) electrodes. Bipolar fine wire electrodes were placed in the second and fourth parasternal intercostal muscles and in two or three external intercostal muscles in the midaxillary line from the fourth to eighth intercostal spaces. Subjects breathed quietly or rebreathed from a bag containing 8% CO2 in O2 in both supine and upright postures. Respiration was monitored by means of flow, volume, and separate rib cage and abdominal volumes. Onset of EMG activity in each breath was found near the beginning of inspiration in the uppermost intercostal spaces but progressively later in inspiration in lower spaces, indicating that activity spreads downward across the rib cage through inspiration. At higher ventilation stimulated by CO2, activity spread further and faster downward. In voluntary deep breathing, external intercostal muscles tended to be recruited earlier in inspiration than in CO2-stimulated breathing. The change from supine to sitting resulted in small and inconsistent changes. There was no lung volume or rib cage volume threshold for appearance of EMG activity in any of the spaces.  相似文献   

5.
The order of recruitment of single-motor units in parasternal intercostal muscles during inspiration was studied in normal human subjects during quiet breathing and voluntary hyperventilation. Electromyograms were recorded from the second and third intercostal spaces by means of bipolar fine wire electrodes. Flow at the mouth, volume, end-expired CO2, and rib cage and abdominal anterior-posterior diameters were monitored. Single-motor units were identified using criteria of amplitude and shape, and the time of first appearance of each unit in each inspiration was noted. Hyperventilation was performed with visual feedback of the display of rib cage and abdomen excursions, keeping the ratio of rib cage to abdominal expansion. Subjects were normocapnic in quiet breathing and developed hypocapnia during hyperventilation. Recruitment order was stable in quiet breathing, but in some cases was altered during voluntary hyperventilation. Some low threshold units that fired early in the breath in quiet breathing fired earlier at the beginning of a period of voluntary hyperventilation but progressively later in the breath as hyperventilation went on, whereas later firing units moved progressively toward the early part of inspiration. This suggests that different groups of motoneurons in the pool supplying parasternal intercostal muscles receive different patterns of synaptic input.  相似文献   

6.
We studied the effect of microgravity (0 Gz) on the anteroposterior diameters of the upper (URC-AP) and lower (LRC-AP) rib cage, the transverse diameter of the lower rib cage (LRC-TR), and the xiphipubic distance and on the electromyographic (EMG) activity of the scalene and parasternal intercostal muscles in five normal subjects breathing quietly in the seated posture. Gastric pressure was also recorded in four subjects. At 0 Gz, end-expiratory LRC-AP and xiphipubic distance increased but LRC-TR invariably decreased, as did end-expiratory gastric pressure. No consistent effect was observed on tidal LRC-TR and xiphipubic displacements, but tidal changes in URC-AP and LRC-AP were reduced. Although scalene and parasternal phasic inspiratory EMG activity tended to decrease at 0 Gz, both muscle groups demonstrated an increase in tonic activity. We conclude that during brief periods of weightlessness 1) the rib cage at end expiration is displaced in the cranial direction and adopts a more circular shape, 2) the tidal expansion of the ventral rib cage is reduced, particularly in its upper portion, and 3) the scalenes and parasternal intercostals generally show a decrease in phasic inspiratory EMG activity and an increase in tonic activity.  相似文献   

7.
In an attempt to obtain insight in the forces developed by the parasternal intercostal muscles during breathing, changes in parasternal intramuscular pressure (PIP) were measured in 14 supine anesthetized dogs using a microtransducer method. In six animals, during bilateral parasternal stimulation a linear relationship between contractile force exerted on the rib and PIP was demonstrated (r greater than 0.95). In eight animals, during quiet active inspiration, substantial (55 +/- 11.5 cmH2O) PIP was developed. During inspiratory resistive loading and airway occlusion the inspiratory rise in PIP increased in proportion to the inspiratory fall in pleural pressure (r = 0.82). Phrenicotomy and vagotomy resulted in an increase in the inspiratory rise in PIP of 21% and 99%, respectively. During passive deflation, when the parasternal intercostals were passively lengthened, large rises (320 +/- 221 cmH2O) in intramuscular pressure were observed. During passive inflation intramuscular pressure remained constant or even decreased slightly (-8 +/- 25 cmH2O) as expected on the basis of the passive shortening of the muscles. PIP thus invariably increased when tension increased either actively or passively. From PIP it is clear that the parasternals exert significant forces on the ribs during respiratory maneuvers.  相似文献   

8.
To assess the relative contributions of the different groups of inspiratory intercostal muscles to the cranial motion of the ribs in the dog, we have measured the axial displacement of the fourth rib and recorded the electromyograms of the parasternal intercostal, external intercostal, and levator costae in the third interspace in 15 anesthetized animals breathing at rest. In eight animals, the parasternal intercostals were denervated in interspaces 1-5. This procedure caused a marked increase in the amount of external intercostal and levator costae inspiratory activity, and yet the inspiratory cranial motion of the rib was reduced by 55%. On the other hand, the external intercostals in interspaces 1-5 were sectioned in seven animals, and the reduction in the cranial rib motion was only 22%; the amount of parasternal and levator costae activity, however, was unchanged. When the parasternals in these animals were subsequently denervated, the levator costae inspiratory activity increased markedly, but the inspiratory cranial motion of the rib was abolished or reversed into an inspiratory caudal motion. These studies thus confirm that, in the dog breathing at rest, the parasternal intercostals have a larger role than the external intercostals and levator costae in causing the cranial motion of the ribs during inspiration. A quantitative analysis suggests that the parasternal contribution is approximately 80%.  相似文献   

9.
In the present study, we assessed the reproducibility and responsiveness of transcutaneous electromyography (EMG) of the respiratory muscles in patients with chronic obstructive pulmonary disease (COPD) and healthy subjects during breathing against an inspiratory load. In seven healthy subjects and seven COPD patients, EMG signals of the frontal and dorsal diaphragm, intercostal muscles, abdominal muscles, and scalene muscles were derived on 2 different days, both during breathing at rest and during breathing through an inspiratory threshold device of 7, 14, and 21 cm H2O. For analysis, we used the logarithm of the ratio of the inspiratory activity during the subsequent loads and the activity at baseline [log EMG activity ratio (EMGAR)]. Reproducibility of the EMG was assessed by comparing the log EMGAR values measured at test days 1 and 2 in both groups. Responsiveness (sensitivity to change) of the EMG was assessed by comparing the log EMGAR values of the COPD patients to those of the healthy subjects at each load. During days 1 and 2, log EMGAR values of the diaphragm and the intercostal muscles correlated significantly. For the scalene muscles, significant correlations were found for the COPD patients. Although inspiratory muscle activity increased significantly during the subsequent loads in all participants, the COPD patients displayed a significantly greater increase in intercostal and left scalene muscle activity compared with the healthy subjects. In conclusion, the present study showed that the EMG technique is a reproducible and sensitive technique to assess breathing patterns in COPD patients and healthy subjects.  相似文献   

10.
Maintenance of airway patency during breathing involves complex interactions between pharyngeal dilator muscles. The few previous studies of geniohyoid activity using multiunit electromyography (EMG) have suggested that geniohyoid shows predominantly inspiratory phasic activity. This study aimed to quantify geniohyoid respiration-related activity with single motor unit (SMU) EMG recordings. Six healthy subjects of normal body mass index were studied. Intramuscular EMG recordings of geniohyoid activity were made with a monopolar needle with subjects in supine and seated positions. The depth of the geniohyoid was identified by ultrasound, and the electrode position was confirmed with maneuvers to isolate activity in geniohyoid and genioglossus. Activity was recorded at 85 sites in the geniohyoid during quiet breathing (45 supine and 40 seated). When subjects were supine, 33 sites (73%) showed no activity during breathing and 10 (22%) showed tonic activity. In addition, one site showed a tonic SMU with increased expiratory discharge, and one site in another subject had one unit with expiratory phasic activity. When subjects were seated, 27 sites (68%) in the geniohyoid showed no activity, 12 sites (30%) showed tonic activity that was not respiration related, and one unit at one site showed phasic expiratory activity. The average peak discharge frequency of geniohyoid motor units was 16.2 ± 3.1 impulses/s during the "geniohyoid maneuver," which was the first part of a swallow. In contrast to previous findings, the geniohyoid shows some tonic activity but minimal respiration-related activity in healthy subjects in quiet breathing. The geniohyoid has little active role in airway stability under these conditions.  相似文献   

11.
Previous studies have shown in awake dogs that activity in the crural diaphragm, but not in the costal diaphragm, usually persists after the end of inspiratory airflow. It has been suggested that this difference in postinspiratory activity results from greater muscle spindle content in the crural diaphragm. To evaluate the relationship between muscle spindles and postinspiratory activity, we have studied the pattern of activation of the parasternal and external intercostal muscles in the second to fourth interspaces in eight chronically implanted animals. Recordings were made on 2 or 3 successive days with the animals breathing quietly in the lateral decubitus position. The two muscles discharged in phase with inspiration, but parasternal intercostal activity usually terminated with the cessation of inspiratory flow, whereas external intercostal activity persisted for 24.7 +/- 12.3% of inspiratory time (P < 0.05). Forelimb elevation in six animals did not affect postinspiratory activity in the parasternal but prolonged postinspiratory activity in the external intercostal to 45.4 +/- 16.3% of inspiratory time (P < 0.05); in two animals, activity was still present at the onset of the next inspiratory burst. These observations support the concept that muscle spindles are an important determinant of postinspiratory activity. The absence of such activity in the parasternal intercostals and costal diaphragm also suggests that the mechanical impact of postinspiratory activity on the respiratory system is smaller than conventionally thought.  相似文献   

12.
The respiratory muscles constitute the respiratory pump, which determines the efficacy of ventilation. Any functional disorder in their performance may cause insufficient ventilation. This study was designed to quantitatively explore the relative contribution of major groups of respiratory muscles to global lung ventilation throughout a range of maneuvers in healthy subjects. A computerized experimental system was developed for simultaneous noninvasive measurement of inspired/expired airflow, mouth pressure and up to 8 channels of EMG surface signals from major respiratory muscles which are located near the skin (e.g., sternomastoid, external intercostal, rectus abdominis and external oblique) during various respiratory maneuvers. Lung volumes values were calculated by integration of airflow data. Hill's muscle model was utilized to calculate the forces generated by the muscles from the acquired EMG data. Analysis of EMG measurements and respiratory muscles forces revealed the following characteristics: (a) muscle activity increased with increased breathing effort, (b) inspiratory muscles contributed to inspiration even at relatively low flow rates, while expiratory muscles are recruited at higher flow rates, (c) the forces generated by the muscle depended on the muscle properties as well as on their EMG performance and (d) the pattern of the muscle's force curves varied between subjects, but were generally consistent for the same subject regardless of breathing effort.  相似文献   

13.
When the parasternal intercostal in a single interspace is selectively denervated in dogs with diaphragmatic paralysis, it continues to shorten during both quiet and occluded inspiration. In the present studies, we have tested the hypothesis that this passive parasternal inspiratory shortening is due to the action of the other parasternal intercostals. Changes in length of the denervated third right parasternal were measured in eight supine phrenicotomized animals. We found that 1) the inspiratory muscle shortening increased after denervation of the third left parasternal but gradually decreased with denervation of the parasternals situated in the second, fourth, and fifth interspaces; 2) the muscle, however, always continued to shorten during inspiration, even after denervation of all the parasternals; 3) stimulating selectively the third left parasternal caused a muscle lengthening; and 4) bilateral stimulation of the parasternals in the second or the fourth interspace produced a muscle shortening. We conclude that 1) the two parasternals situated in the same interspace on both sides of the sternum are mechanically arranged in series, whereas the parasternals located in adjacent interspaces are mechanically arranged in parallel; and 2) if a denervated parasternal continues to shorten during inspiration, this is in part because of the action of the parasternals in the adjacent interspaces and in part because of other inspiratory muscles of the rib cage, possibly the external intercostals and the levator costae.  相似文献   

14.
The influence of nasal airflow, temperature, and pressure on upper airway muscle electromyogram (EMG) was studied during steady-state exercise in five normal subjects. Alae nasi (AN) and genioglossus EMG activity was recorded together with nasal and oral airflows and pressures measured simultaneously by use of a partitioned face mask. At constant ventilations between 30 and 50 l/min, peak inspiratory AN activity during nasal breathing (7.2 +/- 1.4 arbitrary units) was greater than that during oral breathing (1.0 +/- 0.3 arbitrary units; P less than 0.005). In addition, the onset of AN EMG activity preceded inspiratory flow by 0.38 +/- 0.03 s during nasal breathing but by only 0.17 +/- 0.04 s during oral breathing (P less than 0.04). When the subject changed from nasal to oral breathing, both these differences were apparent on the first breath. However, peak AN activity during nasal breathing was uninfluenced by inspiration of hot saturated air (greater than 40 degrees C), by external inspiratory nasal resistance, or by changes in the expiratory route. The genioglossus activity did not differ between nasal and oral breathing (n = 2). Our findings do not support reflex control of AN activity sensitive to nasal flow, temperature, or surface pressure. We propose a centrally controlled feedforward modulation of phasic inspiratory AN activity linked with the tonic drive to the muscles determining upper airway breathing route.  相似文献   

15.
To assess the effect of diaphragmatic ischemia on the inspiratory motor drive, we studied the in situ isolated and innervated left diaphragm in anesthetized, vagotomized, and mechanically ventilated dogs. The arterial and venous vessels of the left diaphragm were catheterized and isolated from the systemic circulation. Inspiratory muscle activation was assessed by recording the integrated electromyographic (EMG) activity of the left and right costal diaphragms and parasternal intercostal and alae nasi muscles. Tension generated by the left diaphragm during spontaneous breathing attempts was also measured. In eight animals, left diaphragmatic ischemia was induced by occluding the phrenic artery for 20 min, followed by 10 min of reperfusion. This elicited a progressive increase in EMG activity of the left and right diaphragms and parasternal and alae nasi muscles to 170, 157, 152, and 128% of baseline values, respectively, an increase in the frequency of breathing efforts, and no change in left diaphragmatic spontaneous tension. Thus the ratio of left diaphragmatic EMG to tension rose progressively during ischemia. During reperfusion, only the frequency of breathing efforts and alae nasi EMG recovered completely. In four additional animals, left diaphragmatic ischemia was induced after the left phrenic nerve was sectioned. Neither EMG activity of inspiratory muscles nor respiratory timing changed significantly during ischemia. In conclusion, diaphragmatic ischemia increases inspiratory motor drive through activation of phrenic afferents. The changes in alae nasi activity and respiratory timing indicate that this influence is achieved through supraspinal pathways.  相似文献   

16.
The electrical activity and the respiratory changes in length of the third parasternal intercostal muscle were measured during single-breath airway occlusion in 12 anesthetized, spontaneously breathing dogs in the supine posture. During occluded breaths in the intact animal, the parasternal intercostal was electrically active and shortened while pleural pressure fell. In contrast, after section of the third intercostal nerve at the chondrocostal junction and abolition of parasternal electrical activity, the muscle always lengthened. This inspiratory muscle lengthening must be related to the fall in pleural pressure; it was, however, approximately 50% less than the amount of muscle lengthening produced, for the same fall in pleural pressure, by isolated stimulation of the phrenic nerves. These results indicate that 1) the parasternal inspiratory shortening that occurs during occluded breaths in the dog results primarily from the muscle inspiratory contraction per se, and 2) other muscles of the rib cage, however, contribute to this parasternal shortening by acting on the ribs or the sternum. The present studies also demonstrate the important fact that the parasternal inspiratory contraction in the dog is really agonistic in nature.  相似文献   

17.
Dissociation between diaphragmatic and rib cage muscle fatigue   总被引:2,自引:0,他引:2  
To assess rib cage muscle fatigue and its relationship to diaphragmatic fatigue, we recorded the electromyogram (EMG) of the parasternal intercostals (PS), sternocleidomastoid (SM), and platysma with fine wire electrodes and the EMG of the diaphragm (DI) with an esophageal electrode. Six normal subjects were studied during inspiratory resistive breathing. Two different breathing patterns were imposed: mainly diaphragmatic or mainly rib cage breathing. The development of fatigue was assessed by analysis of the high-to-low (H/L) ratio of the EMG. To determine the appropriate frequency bands for the PS and SM, we established their EMG power spectrum by Fourier analysis. The mean and SD for the centroid frequency was 312 +/- 16 Hz for PS and 244 +/- 48 Hz for SM. When breathing with the diaphragmatic patterns, all subjects showed a fall in H/L of the DI and none had a fall in H/L of the PS or SM. During rib cage emphasis, four out of five subjects showed a fall in H/L of the PS and five out of six showed a fall in H/L of the SM. Four subjects showed no fall in H/L of the DI; the other two subjects were unable to inhibit diaphragm activity to a substantial degree and did show a fall in H/L of the DI. Activity of the platysma was minimal or absent during diaphragmatic emphasis but was usually strong during rib cage breathing. We conclude that fatigue of either the diaphragm or the parasternal and sternocleidomastoid can occur independently according to the recruitment pattern of inspiratory muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It is established that during tidal breathing the rib cage expands more than the abdomen in the upright posture, whereas the reverse is usually true in the supine posture. To explore the reasons for this, we studied nine normal subjects in the supine, standing, and sitting postures, measuring thoracoabdominal movement with magnetometers and respiratory muscle activity via integrated electromyograms. In eight of the subjects, gastric and esophageal pressures and diaphragmatic electromyograms via esophageal electrodes were also measured. In the upright postures, there was generally more phasic and tonic activity in the scalene, sternocleidomastoid, and parasternal intercostal muscles. The diaphragm showed more phasic (but not more tonic) activity in the upright postures, and the abdominal oblique muscle showed more tonic (but not phasic) activity in the standing posture. Relative to the esophageal pressure change with inspiration, the inspiratory gastric pressure change was greater in the upright than in the supine posture. We conclude that the increased rib cage motion characteristic of the upright posture owes to a combination of increased activation of rib cage inspiratory muscles plus greater activation of the diaphragm that, together with a stiffened abdomen, acts to move the rib cage more effectively.  相似文献   

19.
The geniohyoid (Genio) upper airway muscle shows phasic, inspiratory electrical activity in awake humans but no activity and lengthening in anesthetized cats. There is no information about the mechanical action of the Genio, including length and shortening, in any awake, nonanesthetized mammal during respiration (or swallowing). Therefore, we studied four canines, mean weight 28.8 kg, 1.5 days after Genio implantation with sonomicrometry transducers and bipolar electromyogram (EMG) electrodes. Awake recordings of breathing pattern, muscle length and shortening, and EMG activity were made with the animal in the right lateral decubitus position during quiet resting, CO2-stimulated breathing, inspiratory-resisted breathing (80 cmH2O. l-1. s), and airway occlusion. Genio length and activity were also measured during swallowing, when it shortened, showing a 9.31% change from resting length, and its EMG activity increased 6.44 V. During resting breathing, there was no phasic Genio EMG activity at all, and Genio showed virtually no movement during inspiration. During CO2-stimulated breathing, Genio showed minimal lengthening of only 0.07% change from resting length, whereas phasic EMG activity was still absent. During inspiratory-resisted breathing and airway occlusion, Genio showed phasic EMG activity but still lengthened. We conclude that the Genio in awake, nonanesthetized canines shows active contraction and EMG activity only during swallowing. During quiet or stimulated breathing, Genio is electrically inactive with passive lengthening. Even against resistance, Genio is electrically active but still lengthens during inspiration.  相似文献   

20.
Electromyographic activity of expiratory muscles in the rat   总被引:2,自引:0,他引:2  
We examined the participation of expiratory muscles on breathing in the rat. The experiments were performed on 16 male rats in halothane [1.5%] or urethane [1.3 g/kg i.p.] anaesthesia. We recorded the electromyographic [EMG] activity of intercostal and abdominal muscles with a concentric needle electrode during quiet breathing, breathing against increased pressure in the airways and during the expiration reflex. In halothane anaesthesia the EMG expiratory phasic activity was observed only in internal intercostal muscles in 40% of spots examined during quiet breathing and in 58.5% when breathing against increased pressure. The EMG activity during the expiratory reflex was difficult to evaluate. In the abdominal muscles permanent EMG activity was found in 66% of trials. In urethane anaesthesia no phasic expiratory EMG activity was observed in intercostal or abdominal muscles. In abdominal muscles in 9% of trials a permanent activity was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号