首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was an investigation of the interaction of lactate on pyruvate and glucose metabolism in the early mouse embryo. Pyruvate uptake and metabolism by mouse embryos were significantly affected by increasing the lactate concentration in the culture medium. In contrast, glucose uptake was not affected by lactate in the culture medium. At the zygote stage, the percentage of pyruvate taken up and oxidized was significantly reduced in the presence of increasing lactate, while at the blastocyst stage, increasing the lactate concentration increased the percentage of pyruvate oxidized. Lactate oxidation was determined to be 3-fold higher (when lactate was present at 20 mM) at the blastocyst stage compared to the zygote. Analysis of the kinetics of lactate dehydrogenase (LDH) determined that while the V(max) of LDH was higher at the zygote stage, the K(m) of LDH was identical for both stages of development, confirming that the LDH isozyme was the same. Furthermore, the activity of LDH isolated from both stages was reduced by 40% in the presence of 20 mM lactate. The observed differences in lactate metabolism between the zygote and blastocyst must therefore be attributed to in situ regulation of LDH. Activity of isolated LDH was found to be affected by nicotinamide adenine dinucleotide(+) (NAD(+)) concentration. In the presence of increasing concentrations of lactate, zygotes exhibited an increase in autofluorescence consistent with a depletion of NAD(+) in the cytosol. No increase was observed for later-stage embryos. Therefore it is proposed that the differences in pyruvate and lactate metabolism at the different stages of development are due to differences in the in situ regulation of LDH by cytosolic redox potential.  相似文献   

2.
NAD+ glycohydrolase (EC 3.2.2.5) activity was detected in the plasma membrane prepared from the primary culture of rat astrocytes. The enzyme has a broad optimum pH range. From the kinetic analysis, a Michaelis constant of 91.2 microM and a maximum velocity of 0.785 mumol/min/mg protein were obtained. ADPribose exhibited a competitive inhibition with respect to NAD. The inhibition by nicotinamide was shown to be of a non-competitive type. ATP and GTP were found to be competitive inhibitors. NAD+ glycohydrolase activity was not detected in the plasma membrane prepared from the primary culture of neuronal cells of chick embryos.  相似文献   

3.
Mutants of Salmonella typhimurium LT-2 deficient in nicotinamidase activity (pncA) or nicotinic acid phosphoribosyltransferase activity (pncB) were isolated as resistant to analogs of nicotinic acid and nicotinamide. Information obtained from interrupted mating experiments placed the pncA gene at 27 units and the pncB gene at 25 units on the S. typhimurium LT-2 linkage map. A major difference in the location of the pncA gene was found between the S. typhimurium and Escherichia coli linkage maps. The pncA gene is located in a region in which there is a major inversion of the gene order in S. typhimurium as compared to that in E. coli. Growth experiments using double mutants blocked in the de novo pathway to nicotinamide adenine dinucleotide (NAD) (nad) and in the pyridine nucleotide cycle (pnc) at either the pncA or pncB locus, or both, have provided evidence for the existence of an alternate recycling pathway in this organism. Mutants lacking this alternate cycle, pncC, have been isolated and mapped via cotransduction at 0 units. Utilization of exogenous NAD was examined through the use of [14C]carbonyl-labeled NAD and [14C]adenine-labeled NAD. The results of these experiments suggest that NAD is degraded to nicotinamide mononucleotide at the cell surface. A portion of this extracellular nicotinamide mononucleotide is then transported across the cell membrane by nicotinamide mononucleotide glycohydrolase and degraded to nicotinamide in the process. The remaining nicotinamide mononucleotide accumulates extracellularly and will support the growth of nadA pncB mutants which cannot utilize the nicotinamide resulting from the major pathway of NAD degradation. A model is presented for the utilization of exogenous NAD by S. typhimurium LT-2.  相似文献   

4.
Effects of hyperthermia and nicotinamide on ADP-ribosyl transferase activity (ADPRT), unscheduled DNA synthesis (UDS), NAD+- and ATP-pools and cytotoxicity were investigated in gamma-irradiated human mononuclear leukocytes. A significant decrease in radiation-induced UDS after heat treatment for 45 min was found. Nicotinamide increased the UDS levels in irradiated cells, but no effect of hyperthermia on these increased UDS values was observed. In the presence of 2 mM nicotinamide radiation-induced ADPRT activity was reduced to about 50 per cent. However, hyperthermia for 45 min was found to have no effect on the enzyme activity for temperatures below 46 degrees C. Nicotinamide increased the NAD+ pool in unirradiated cells. Damaging the cells with gamma-radiation leads to a severe depletion of the NAD+ pool. The NAD+ pool is restored, however, if the cells repair for 5 h at 37 degrees C. When radiation-damaged cells were treated with hyperthermia, exogenously supplied nicotinamide could not be converted to NAD+ in sufficient amounts to prevent NAD+ depletion. These data indicate that the radiosensitizing effect of heat and nicotinamide could both be explained by effects on the enzyme ADPRT, i.e. nicotinamide by directly blocking the enzyme and hyperthermia by limiting the co-substrate (NAD+).  相似文献   

5.
Nicotinamide phosphoribosyltransferase, (EC 2.4.2.12) was examined in extracts of diploid human fibroblasts grown in culture. The enzyme was found to have an apparent Km for nicotinamide of 1.6 × 10?6M, to be specific for nicotinamide, stimulated by adenosine triphosphate (ATP) and inhibited by nicotinamide adenine dinucleotide (NAD). In these respects it is very similar to rat liver nicotinamide phosphoribosyltransferase but not like the enzyme previously observed in human tissue extracts which had a Km for nicotinamide of approximately 0.1 M and was insensitive to ATP. Discovery of this enzyme activity supports previous studies using radiolabeled nicotinamide which show that human fibroblasts can incorporate nicotinamide into NAD directly through nicotinamide mononucleotide.  相似文献   

6.
1. The pathway of NAD synthesis in mammary gland was examined by measuring the activities of some of the key enzymes in each of the tryptophan, nicotinic acid and nicotinamide pathways. 2. In the tryptophan pathway, 3-hydroxyanthranilate oxidase and quinolinate transphosphoribosylase activities were investigated. Neither of these enzymes was found in mammary gland. 3. In the nicotinic acid pathway, nicotinate mononucleotide pyrophosphorylase, NAD synthetase, nicotinamide deamidase and NMN deamidase were investigated. Both NAD synthetase and nicotinate mononucleotide pyrophosphorylase were present but were very inactive. Nicotinamide deamidase, if present, had a very low activity and NMN deamidase was absent. 4. In the nicotinamide pathway both enzymes, NMN pyrophosphorylase and NMN adenylyltransferase, were present and showed very high activity. The activity of the pyrophosphorylase in mammary gland is by far the highest yet found in any tissue. 5. The apparent K(m) values for the substrates of these enzymes in mammary gland were determined. 6. On the basis of these investigations it is proposed that the main, and probably only, pathway of synthesis of NAD in mammary tissue is from nicotinamide via NMN.  相似文献   

7.
The metabolic fate of [carbonyl-(14)C]nicotinamide, [8-(14)C]adenine and [8-(14)C]inosine was examined in microspore-derived canola (Brassica napus) embryos at different developmental stages: globular stage (day 10, stage 1), early cotyledonary stage (day 20, stage 2), late cotyledonary stage (day 25, stage 3), and fully developed stage (day 35, stage 4). Uptake of [8-(14)C]nicotinamide by the embryos was always rapid. A lower uptake rate was found for [8-(14)C]adenine and [8-(14)C]inosine, especially at stages 1 and 2. [Carbonyl-(14)C]nicotinamide was converted to nicotinic acid and further metabolized to pyridine nucleotides (NAD/NADP). Some radioactivity was also associated to nicotinic acid glucoside. [8-(14)C]adenine was efficiently utilized for the synthesis of adenine nucleotides and RNA. A small fraction of adenine was degraded to CO(2) via ureides. Up to 40% of [8-(14)C]inosine was salvaged to nucleotides and RNA, although degradation of [8-(14)C]inosine to CO(2) was pronounced. At stage 1, highest salvage activities of nicotinamide, adenine and inosine were observed. In contrast, the lowest purine salvage and highest purine catabolism were found in stage 3 embryos. These results suggest that both nicotinamide and purine salvage for NAD/NADP and purine nucleotides synthesis are extremely high in the globular stage (stage 1). These activities decrease gradually until the late cotyledonary stage (stage 3), before increasing again in the fully developed embryos (stage 4). Overall it appears that nicotinamide and purine salvage are required in support of active growth during the initial phases of embryogenesis and at the end of the maturation period, in preparation for post-embryonic growth.  相似文献   

8.
NAD(+) is both a co-enzyme for hydride transfer enzymes and a substrate of sirtuins and other NAD(+) consuming enzymes. NAD(+) biosynthesis is required for two different regimens that extend lifespan in yeast. NAD(+) is synthesized from tryptophan and the three vitamin precursors of NAD(+): nicotinic acid, nicotinamide and nicotinamide riboside. Supplementation of yeast cells with NAD(+) precursors increases intracellular NAD(+) levels and extends replicative lifespan. Here we show that both nicotinamide riboside and nicotinic acid are not only vitamins but are also exported metabolites. We found that the deletion of the nicotinamide riboside transporter, Nrt1, leads to increased export of nicotinamide riboside. This discovery was exploited to engineer a strain to produce high levels of extracellular nicotinamide riboside, which was recovered in purified form. We further demonstrate that extracellular nicotinamide is readily converted to extracellular nicotinic acid in a manner that requires intracellular nicotinamidase activity. Like nicotinamide riboside, export of nicotinic acid is elevated by the deletion of the nicotinic acid transporter, Tna1. The data indicate that NAD(+) metabolism has a critical extracellular element in the yeast system and suggest that cells regulate intracellular NAD(+) metabolism by balancing import and export of NAD(+) precursor vitamins.  相似文献   

9.
Abstract Poly-β-hydroxybutyrate biosynthesis was studied in Alcaligenes eutrophus under various nutrient-limiting conditions. When the cells were cultivated in nitrogen-limited media, both the levels of NAD(P)H and the ratios of NAD(P)H/NAD(P) were higher than those under nitrogen-sufficient conditions. The specific poly-β-hydroxybutyrate production rate was found to increase with the values of both NADH/NAD and NADPH/NADP, indicating that poly-β-hydroxybutyrate synthesis is directly regulated by the ratios of nicotinamide nucleotides. The effects of nicotinamide nucleotides on poly-β-hydroxybutyrate biosynthesis was investigated with regard to enzyme kinetics. Citrate synthase activity was significantly inhibited by NADH and NADPH, indicating that poly-β-hydroxybutyrate accumulation could be enhanced by facilitating the metabolic flux of acetyl-CoA to poly-β-hydroxybutyrate synthetic pathway. It was also found that cellular NADPH was a limiting substrate for NADPH-linked reductase, controlling the overall biosynthetic activity of poly-/3-hydroxybutyrate in this strain.  相似文献   

10.
Utilization and metabolism of NAD by Haemophilus parainfluenzae   总被引:2,自引:0,他引:2  
The utilization of exogenous nicotinamide adenine dinucleotide (NAD) by Haemophilus parainfluenzae was studied in suspensions of whole cells using radiolabelled NAD, nicotinamide mononucleotide (NMN), and nicotinamide ribonucleoside (NR). The utilization of these compounds by H. parainfluenzae has the following characteristics. (1) NAD is not taken up intact, but rather is degraded to NMN or NR prior to internalization. (2) Uptake is carrier-mediated and energy-dependent with saturation kinetics. (3) There is specificity for the beta-configuration of the glycopyridine linkage. (4) An intact carboxamide groups is required on the pyridine ring. The intracellular metabolism of NAD was studied in crude cell extracts and in whole cells using carbonyl-14C-labelled NR, NMN, NAD, nicotinamide, and nicotinic acid as substrates in separate experiments. A synthetic pathway from NR through NMN to NAD that requires Mg2+ and ATP was demonstrated. Nicotinamide was found as an end-product of NAD degradation. Nicotinic acid mononucleotide and nicotinic acid adenine dinucleotide were not found as intermediates. The NAD synthetic pathway in H. parainfluenzae differs from the Preiss-Handler pathway and the pyridine nucleotide cycles described in other bacteria.  相似文献   

11.
Extracts of Salmonella typhimurium were chromatographed by using Sephadex G-150 to separate the various enzymes involved with pyridine nucleotide cycle metabolism. This procedure revealed a previously unsuspected nicotinamide adenine dinucleotide (NAD) glycohydrolase (EC 3.2.2.5) activity, which was not observed in crude extracts. In contrast to NAd glycohydrolase, NAD pyrophosphatase (EC 3.6.1.22) was readily measured in crude extracts. This enzyme possessed a native molecular weight of 120,000. Other enzymes examined included nicotinamide mononucleotide (NMN) deamidase (EC 3.5.1.00), molecular weight of 43,000; NMN glycohydrolase (EC 3.2.2.14), molecular weight of 67,000; nicotinic acid phosphoribosyl transferase (EC 2.4.2.11), molecular weight of 47,000; and nicotinamide deamidase (EC 3.5.1.19), molecular weight of 35,000. NMN deamidase and NMN glycohydrolase activities were both examined for end product repression by measuring their activities in crude extracts prepared from cells grown with and without 10(-5) M nicotinic acid. No repression was observed with either activity. Both activities were also examined for feedback inhibition by NAD, reduced NAD, and NADP. NMN deamidase was unaffected by any of the compounds tested. NMN glycohydrolase was greatly inhibited by NAD and reduced NAD, whereas NADP was much less effective. Inhibition of NMN glycohydrolase was found to level off at an NAD concentration of ca. 1 mN, the approximate intracellular concentration of NAD.  相似文献   

12.
ADP-ribosyltransferase in isolated nuclei from sea-urchin embryos.   总被引:3,自引:1,他引:2       下载免费PDF全文
The activity of ADP-ribosyltransferase in nuclei isolated from sea-urchin embryos was estimated by the incorporation of [adenosine-14C]NAD+ into the acid-insoluble fraction. Hydrolysis of this acid-insoluble product by snake venom phosphodiesterase yielded radioactive 5'-AMP and phosphoribosyl-AMP. The incorporation of [14C]-NAD+ was inhibited by 3-aminobenzamide and nicotinamide, potent inhibitors of ADP-ribosyltransferase. [14C]NAD+ incorporation into the acid-insoluble fraction results from the reaction of ADP-ribosyltransferase. The optimum pH for the enzyme in isolated nuclei was 7.5. The enzyme, in 50 mM-Tris/HCl buffer, pH 7.5, containing 0.5 mM-NAD+ and 0.5 mM-dithiothreitol, exhibited the highest activity at 18 degrees C in the presence of 14 mM-MgCl2. The apparent Km value for NAD+ was 25 microM. The activity of the enzyme was measured in nuclei isolated from the embryos at several stages during early development. The activity was maximum at the 16-32-cell stage and then decreased to a minimum at the mesenchyme blastula stage. Thereafter its activity slightly increased at the onset of gastrulation and decreased again at the prism stage.  相似文献   

13.
M Henderson  P A Kitos 《Teratology》1982,26(2):173-181
The hypothesis that organophosphate (OP) insecticides reduce the NAD+ levels of chick embryos by inhibiting kynurenine formamidase was tested. Fertile chicken eggs at 3 days of incubation were treated with a teratogenic dose of the organophosphate insecticide diazinon (DZN) in the presence or absence of exogenous L-tryptophan or nicotinamide, or one of the metabolic intermediates (L-kynurenine, 3-hydroxyanthranilic acid, quinolinic acid) between tryptophan and NAD+. By day 10 of development, DZN reduced the NAD+ content of the hind limbs of the embryos to less than 20% of normal and by day 15 it caused severe type I and type II teratogenic responses. The co-presence of tryptophan or one of its metabolites served to maintain the NAD+ levels of DZN-treated embryos close to or above normal and significantly alleviated the symptoms of type I teratisms. Tryptophan is virtually as effective as most of its metabolites in suppressing the effects of DZN on the NAD+ content and physical development of the embryos. This equivalence does not support the proposition that the inhibition of kynurenine formamidase causes the lowered NAD+ levels involved in OP-induced type I teratogenesis. It is consistent with the concept that the insecticide acts to decrease the availability of tryptophan to the embryo.  相似文献   

14.
Following discovery of NAD(+)-dependent reactions that control gene expression, cytoprotection, and longevity, there has been a renewed therapeutic interest in precursors, such as nicotinamide and its derivatives. We tested 20 analogues of nicotinamide for their ability to protect endothelial cells from peroxynitrite stress and their effect on poly (ADP-ribose) polymerase (PARP) activity. Several nicotinamide derivatives protected endothelial cells from peroxynitrite-induced depletion of cellular NAD(+) and ATP concentrations, but only some of these compounds inhibited PARP. We conclude that some nicotinamide derivatives provide protection of endothelial cells against peroxynitrite-induced injury independent of inhibition of PARP activity. Preservation of the NAD(+) pool was a common effect of these compounds.  相似文献   

15.
Nicotinamide nucleotide synthesis in regenerating rat liver   总被引:1,自引:1,他引:0  
1. The concentrations and total content of the nicotinamide nucleotides were measured in the livers of rats at various times after partial hepatectomy and laparotomy (sham hepatectomy) and correlated with other events in the regeneration process. 2. The NAD content and concentration in rat liver were relatively unaffected by laparotomy, but fell to a minimum, 25 and 33% below control values respectively, 24h after partial hepatectomy. NADP content and concentration were affected similarly by both laparotomy and partial hepatectomy, falling rapidly and remaining depressed for up to 48h. 3. The effect of injecting various doses of nicotinamide on the liver DNA and NAD 18h after partial hepatectomy was studied and revealed an inverse correlation between NAD content and DNA content. 4. Injections of nicotinamide at various times after partial hepatectomy revealed that the ability to synthesize NAD from nicotinamide was impaired during the first 12h, rose to a peak at 26h and fell again by 48h after partial hepatectomy. 5. The total liver activity of NAD pyrophosphorylase (EC 2.7.7.1) remained at or slightly above the initial value for 12h after partial hepatectomy and then rose continuously until 48h after operation. The activity of NMN pyrophosphorylase (EC 2.4.2.12) showed a similar pattern of change after partial hepatectomy, but was at no time greater than 5% of the activity of NAD pyrophosphorylase. 6. The results are discussed with reference to the control of NAD synthesis in rapidly dividing tissue. It is suggested that the availability of cofactors and substrates for NAD synthesis is more important as a controlling factor than the maximum enzyme activities. It is concluded that the low concentrations of nicotinamide nucleotides in rapidly dividing tissues are the result of competition between NAD synthesis and nucleic acid synthesis for common precursor and cofactors.  相似文献   

16.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

17.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

18.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

19.
A high-pressure-liquid-chromatography (HPLC)-based technique was developed to assess the oxidized nicotinamide adenine dinucleotide (NAD(+))-glycohydrolase activity of the catalytic domain of Pseudomonas exotoxin A containing a hexa-His tag. The assay employs reverse-phase chromatography to separate the substrate (NAD(+)) and products (adenosine 5'-diphosphate-ribose and nicotinamide) produced over the reaction time course, whereby the peak area of nicotinamide is correlated using a standard curve. This technique was used to determine whether the NAD(+) analogue, 2'-F-ribo-NAD(+), was a competing substrate or a competitive inhibitor for this toxin. This NAD(+) analogue was hydrolyzed at a rate of 0.2% that of NAD(+) yet retained the same binding affinity for the toxin as the parent compound. Finally, the rate that a fluorescent NAD(+) analogue, epsilon-NAD(+), is hydrolyzed by the toxin was also investigated. This analogue was hydrolyzed six times slower than NAD(+) as determined using HPLC. The rate of hydrolysis of epsilon-NAD(+) calculated using the fluorometric version of the assay shows a sixfold increase in reaction rate compared to that determined by HPLC. This HPLC-based assay is adaptable to any affinity-tagged enzyme that possesses NAD(+)-glycohydrolase activity and offers the advantage of directly measuring the enzyme-catalyzed hydrolytic rate of NAD(+) and its analogues.  相似文献   

20.
The activity of tyrosine aminotransferase (TAT) (EC 2.6.1.5) was enhanced 3-fold after a 5-h exposure of cultured rat liver cells (RLC) to streptozotocin (SZ) at concentrations higher than 100 microgram/ml (0.38 mM) in the presence of 10 nM dexamethasone, a potent glucocorticoid inducer for the enzyme. The structurally related carcinogen N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) also enhanced the aminotransferase in the presence of the glucocorticoid, but its optimal concentration was at 100 ng/ml (0.68 microM). While the cellular NAD (NAD+ + NADH) concentration was reduced to 60% of the control levels, the rate of poly(ADP-ribose) formation in the isolated cell nuclei was unaffected by treating the cells with SZ. The enhancement of tyrosine aminotransferase by SZ and MNNG was effectively prevented by nicotinamide. Using nicotinamide and its derivatives such as 1-methyl-, N'-methyl- or 6-amino-derivatives it was found that the degree of enzyme induction is almost inversely proportional to the cellular NAD content, though the activity of nuclear poly(ADP-ribose)polymerase remains unchanged. The results indicate that SZ or MNNG, in combination with dexamethasone, stimulate the induction of tyrosine aminotransferase through their NAD lowering action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号