首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the structural basis of ribosomal function requires close comparison between biochemical and structural data. Although a large amount of biochemical data are available for the Escherichia coli ribosome, the structure has not been solved to atomic resolution. Using a new RNA homology procedure, we have modeled the all-atom structure of the E. coli 30S ribosomal subunit. We find that the tertiary structure of the ribosome core, including the A-, P- and E-sites, is highly conserved. The hypervariable regions in our structure, which differ from the structure of the 30S ribosomal subunit from Thermus thermophilus, are consistent with the cryo-EM map of the E. coli ribosome.  相似文献   

2.
The prokaryotic ribosome is an important target of antibiotic action. We determined the X-ray structure of the aminoglycoside kasugamycin (Ksg) in complex with the Escherichia coli 70S ribosome at 3.5-A resolution. The structure reveals that the drug binds within the messenger RNA channel of the 30S subunit between the universally conserved G926 and A794 nucleotides in 16S ribosomal RNA, which are sites of Ksg resistance. To our surprise, Ksg resistance mutations do not inhibit binding of the drug to the ribosome. The present structural and biochemical results indicate that inhibition by Ksg and Ksg resistance are closely linked to the structure of the mRNA at the junction of the peptidyl-tRNA and exit-tRNA sites (P and E sites).  相似文献   

3.
We have probed the structure and dynamics of ribosomal RNA in the Escherichia coli ribosome using equilibrium and time-resolved hydroxyl radical (OH) RNA footprinting to explore changes in the solvent-accessible surface of the rRNA with single-nucleotide resolution. The goal of these studies is to better understand the structural transitions that accompany association of the 30 S and 50 S subunits and to build a foundation for the quantitative analysis of ribosome structural dynamics during translation. Clear portraits of the subunit interface surfaces for 16 S and 23 S rRNA were obtained by constructing difference maps between the OH protection maps of the free subunits and that of the associated ribosome. In addition to inter-subunit contacts consistent with the crystal structure, additional OH protections are evident in regions at or near the subunit interface that reflect association-induced conformational changes. Comparison of these data with the comparable difference maps of the solvent-accessible surface of the rRNA calculated for the Thermus thermophilus X-ray crystal structures shows extensive agreement but also distinct differences. As a prelude to time-resolved OH footprinting studies, the reactivity profiles obtained using Fe(II)EDTA and X-ray generated OH were comprehensively compared. The reactivity patterns are similar except for a small number of nucleotides that have decreased reactivity to OH generated from Fe(II)EDTA compared to X-rays. These nucleotides are generally close to ribosomal proteins, which can quench diffusing radicals by virtue of side-chain oxidation. Synchrotron X-ray OH footprinting was used to monitor the kinetics of association of the 30 S and 50 S subunits. The rates individually measured for the inter-subunit contacts are comparable within experimental error. The application of this approach to the study of ribosome dynamics during the translation cycle is discussed.  相似文献   

4.
刘望夷 《生命科学》2009,(6):771-780
二十多年来,国际上几家实验室独立地竞争性地应用高分辨率X-射线衍射技术在原子水平上绘制出了细菌完整核糖体及其亚基精细的三维结构图,为其生物功能的研究提供了清晰的结构基础。由于这项伟大的科学成果,美国科学家文卡特拉曼·拉马克里希南(Venkatraman Ramakrishnan)、托马斯.施泰茨(Thomas A.Steitz)和以色列女科学家阿达.约纳特(Ada E.Yonath)三人荣获2009年度诺贝尔化学奖。细菌核糖体是细胞中合成蛋白质的一种细胞器,包括大小不同的两个亚基,由3种RNA和50多种不同的蛋白质组成。  相似文献   

5.
The L1 protuberance of the 50S ribosomal subunit is implicated in the release/disposal of deacylated tRNA from the E site. The apparent mobility of this ribosomal region has thus far prevented an accurate determination of its three-dimensional structure within either the 50S subunit or the 70S ribosome. Here we report the crystal structure at 2.65 A resolution of ribosomal protein L1 from Sulfolobus acidocaldarius in complex with a specific 55-nucleotide fragment of 23S rRNA from Thermus thermophilus. This structure fills a major gap in current models of the 50S ribosomal subunit. The conformations of L1 and of the rRNA fragment differ dramatically from those within the crystallographic model of the T. thermophilus 70S ribosome. Incorporation of the L1-rRNA complex into the structural models of the T. thermophilus 70S ribosome and the Deinococcus radiodurans 50S subunit gives a reliable representation of most of the L1 protuberance within the ribosome.  相似文献   

6.
Significant progress is occurring at an accelerated rate in structural studies of ribosomes. A 3D cryoelectron microscopy map of the 70S ribosome from Escherichia coli is available at 15 A resolution and a combination of cryoelectron microscopy with X-ray crystallography has yielded a 9 A resolution map of the 50S subunit from Haloarcula marismortui, an archaebacterium. For eukaryotes, 3D cryomaps of the 80S ribosomes from yeast and from mammals have now been produced at resolutions in the range 20 to 30 A. The most ground-breaking results have been obtained from the 3D mapping of ligands in functional studies of prokaryotic ribosomes. These studies, which directly visualize the protein synthesis machine in action, have brought new excitement to a field that was relatively dormant during the past decade.  相似文献   

7.
The review summarizes the recent structural data obtained for 70S ribosome complexes with various mRNAs and tRNAs by X-ray analysis and cryoelectron microscopy. The mRNA region interacting with the ribosome at translation initiation and elongation is described. A specific part (platform) of the 30S ribosome subunit was assumed to bind the regulatory elements located in the 5′-untranslated region of mRNA.  相似文献   

8.
9.
The key reaction of protein synthesis, peptidyl transfer, is catalysed in all living organisms by the ribosome - an advanced and highly efficient molecular machine. During the last decade extensive X-ray crystallographic and NMR studies of the three-dimensional structure of ribosomal proteins, ribosomal RNA components and their complexes with ribosomal proteins, and of several translation factors in different functional states have taken us to a new level of understanding of the mechanism of function of the protein synthesis machinery. Among the new remarkable features revealed by structural studies, is the mimicry of the tRNA molecule by elongation factor G, ribosomal recycling factor and the eukaryotic release factor 1. Several other translation factors, for which three-dimensional structures are not yet known, are also expected to show some form of tRNA mimicry. The efforts of several crystallographic and biochemical groups have resulted in the determination by X-ray crystallography of the structures of the 30S and 50S subunits at moderate resolution, and of the structure of the 70S subunit both by X-ray crystallography and cryo-electron microscopy (EM). In addition, low resolution cryo-EM models of the ribosome with different translation factors and tRNA have been obtained. The new ribosomal models allowed for the first time a clear identification of the functional centres of the ribosome and of the binding sites for tRNA and ribosomal proteins with known three-dimensional structure. The new structural data have opened a way for the design of new experiments aimed at deeper understanding at an atomic level of the dynamics of the system.  相似文献   

10.
BACKGROUND: In recent years, the three-dimensional structure of the ribosome has been visualised in different functional states by single-particle cryo-electron microscopy (cryo-EM) at 13-25 A resolution. Even more recently, X-ray crystallography has achieved resolution levels better than 10 A for the ribosomal structures of thermophilic and halophilic organisms. We present here the 7.5 A solution structure of the 50S large subunit of the Escherichia coli ribosome, as determined by cryo-EM and angular reconstitution. RESULTS: The reconstruction reveals a host of new details including the long alpha helix connecting the N- and C-terminal domains of the L9 protein, which is found wrapped like a collar around the base of the L1 stalk. A second L7/L12 dimer is now visible below the classical L7/L12 'stalk', thus revealing the position of the entire L8 complex. Extensive conformational changes occur in the 50S subunit upon 30S binding; for example, the L9 protein moves by some 50 A. Various rRNA stem-loops are found to be involved in subunit binding: helix h38, located in the A-site finger; h69, on the rim of the peptidyl transferase centre cleft; and h34, in the principal interface protrusion. CONCLUSIONS: Single-particle cryo-EM is rapidly evolving towards the resolution levels required for the direct atomic interpretation of the structure of the ribosome. Structural details such as the minor and major grooves in rRNA double helices and alpha helices of the ribosomal proteins can already be visualised directly in cryo-EM reconstructions of ribosomes frozen in different functional states.  相似文献   

11.
Elongation factor (EF) G promotes tRNA translocation on the ribosome. We present three-dimensional reconstructions, obtained by cryo-electron microscopy, of EF-G-ribosome complexes before and after translocation. In the pretranslocation state, domain 1 of EF-G interacts with the L7/12 stalk on the 50S subunit, while domain 4 contacts the shoulder of the 30S subunit in the region where protein S4 is located. During translocation, EF-G experiences an extensive reorientation, such that, after translocation, domain 4 reaches into the decoding center. The factor assumes different conformations before and after translocation. The structure of the ribosome is changed substantially in the pretranslocation state, in particular at the head-to-body junction in the 30S subunit, suggesting a possible mechanism of translocation.  相似文献   

12.
Aminoglycosides are one of the most widely used and clinically important classes of antibiotics that target the ribosome. Hygromycin B is an atypical aminoglycoside antibiotic with unique structural and functional properties. Here we describe the structure of the intact Escherichia coli 70S ribosome in complex with hygromycin B. The antibiotic binds to the mRNA decoding center in the small (30S) ribosomal subunit of the 70S ribosome and induces a localized conformational change, in contrast to its effects observed in the structure of the isolated 30S ribosomal subunit in complex with the drug. The conformational change in the ribosome caused by hygromycin B binding differs from that induced by other aminoglycosides. Also, in contrast to other aminoglycosides, hygromycin B potently inhibits spontaneous reverse translocation of tRNAs and mRNA on the ribosome in vitro. These structural and biochemical results help to explain the unique mode of translation inhibition by hygromycin B.  相似文献   

13.
The arrival of high resolution crystal structures for the ribosomal subunits opens a new phase of molecular analysis and asks for corresponding analyses of ribosomal function. Here we apply the phosphorothioate technique to dissect tRNA interactions with the ribosome. We demonstrate that a tRNA bound to the P site of non-programmed 70 S ribosomes contacts predominantly the 50 S, as opposed to the 30 S subunit, indicating that codon-anticodon interaction at the P site is a prerequisite for 30 S binding. Protection patterns of tRNAs bound to isolated subunits and programmed 70 S ribosomes were compared. The results suggest the presence of a movable domain in the large ribosomal subunit that carries tRNA and reveal that only approximately 15% of a tRNA, namely residues 30 +/- 1 to 43 +/- 1, contact the 30 S subunit of programmed 70 S ribosomes, whereas the remaining 85% make contact with the 50 S subunit. Identical protection patterns of two distinct elongator tRNAs at the P site were identified as tRNA species-independent phosphate backbone contacts. The sites of protection correlate nicely with the predicted ribosomal-tRNA contacts deduced from a 5.5-A crystal structure of a programmed 70 S ribosome, thus refining which ribosomal components are critical for tRNA fixation at the P site.  相似文献   

14.
A three-dimensional reconstruction of the eukaryotic 80S monosome from a frozen-hydrated electron microscopic preparation reveals the native structure of this macromolecular complex. The new structure, at 38A resolution, shows a marked resemblance to the structure determined for the E. coli 70S ribosome (Frank, J., A. Verschoor, Y. Li, J. Zhu, R.K. Lata, M. Radermacher, P. Penczek, R. Grassucci, R.K. Agrawal, and Srivastava. 1996b. In press; Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava ., A. Verschoor, M. Radermacher, R. Grassucci, R.K. Lata, and R. Agrawal. 1995. Nature (Lond.).376:441-444.) limited to a comparable resolution, but with a number of eukaryotic elaborations superimposed. Although considerably greater size and intricacy of the features is seen in the morphology of the large subunit (60S vs 50S), the most striking differences are in the small subunit morphology (40S vs 30S): the extended beak and crest features of the head, the back lobes, and the feet. However, the structure underlying these extra features appears to be remarkably similar in form to the 30S portion of the 70S structure. The intersubunit space also appears to be strongly conserved, as might be expected from the degree of functional conservation of the ribosome among kingdoms (Eukarya, Eubacteria, and Archaea). The internal organization of the 80S structure appears as an armature or core of high-density material for each subunit, with the two cores linked by a single bridge between the platform region of the 40S subunit and the region below the presumed peptidyltransferase center of the 60S subunit. This may be equated with a close contact of the 18S and 28S rRNAs in the translational domain centered on the upper subunit:subunit interface.  相似文献   

15.
J W Fox  D P Owens  K P Wong 《Biochemistry》1978,17(8):1357-1364
The denaturation of ribosome and RNA by ethylene glycol (EG) has been studied in an attempt to further understand the conformation and stability of the ribosome. At high concentrations of EG, the ribosome, its subunits, and 16S RNA undergo drastic structural changes as shown by circular dichroism, ultraviolet absorption spectroscopy, and sedimentation velocity. Two separate conformational transitions were observed for the 30S subunit; one from 30 to 50% EG and another from 60 to 90% EG. This observation suggests the presence of two "domains" in the 30S subunit which differ in their stability. However, the 50S subunit undergoes a single sharp transition at 60 to 90% EG, consistent with the notion of a highly cooperative conformation. Association of the subunits stablizes part of the 30S subunit since the transition curve for the 70S ribosome does not exhibit significant change at the low EG concentration region as seen for the 30S subunit. Removal of proteins from the 30S subunit broadens the transition curve to lower EG concentrations and suggests the role of proteins in stabilizing the conformation of the 16S RNA.  相似文献   

16.
Synthesis of ribosomal subunits in eukaryotes is a complex and tightly regulated process that has been mostly characterized in yeast. The discovery of a growing number of diseases linked to defects in ribosome biogenesis calls for a deeper understanding of these mechanisms and of the specificities of human ribosome maturation. We present the 19 Å resolution cryo-EM reconstruction of a cytoplasmic precursor to the human small ribosomal subunit, purified by using the tagged ribosome biogenesis factor LTV1 as bait. Compared to yeast pre-40S particles, this first three-dimensional structure of a human 40S subunit precursor shows noticeable differences with respect to the position of ribosome biogenesis factors and uncovers the early deposition of the ribosomal protein RACK1 during subunit maturation. Consistently, RACK1 is required for efficient processing of the 18S rRNA 3′-end, which might be related to its role in translation initiation. This first structural analysis of a human pre-ribosomal particle sets the grounds for high-resolution studies of conformational transitions accompanying ribosomal subunit maturation.  相似文献   

17.
18.
The ribosomal protein L30e is an indispensable component of the eukaryotic 80S ribosome, where it is part of the large (60S) ribosomal subunit. Here, we determined the localization of L30e in the cryo-EM map of the 80S wheat germ (wg) ribosome at a resolution of 9.5 A. L30e is part of the interface between large and small subunits, where it dynamically participates in the formation of the two intersubunit bridges eB9 and B4.  相似文献   

19.
The analysis of initial velocity kinetic data was used to examine the order in which fMet-tRNA and the coat cistron of genomic bacteriophage R17 or Q beta RNA bind to the 30 S ribosome subunit. These data were obtained using a quantitative assay for protein synthesis in Escherichia coli extracts where the rate of accumulation of protein product is dependent on the concentration of mRNA and is partially dependent on fMet-tRNA. Under the conditions of this assay, the amount of protein synthesized was proportional to the formation of ternary complexes between the mRNA, fMet-tRNA, and the 30 S ribosomal subunit. The results from the initial velocity and alternative substrate experiments are consistent with a rapid equilibrium ordered mechanism as opposed to a rapid equilibrium random mechanism. Analysis of the rate of coat protein synthesis at varied concentrations of mRNA and fixed concentrations of fMet-tRNA indicated that fMet-tRNA was the first substrate to bind to the 30 S subunit when either coat cistron was used as the mRNA. This scheme assumes the existence of a relatively slow step in protein synthesis that occurs after both the initiating tRNA and mRNA are bound to the ribosome and which allows substrate addition to reach thermodynamic equilibrium.  相似文献   

20.
Using a sordarin derivative, an antifungal drug, it was possible to determine the structure of a eukaryotic ribosome small middle dotEF2 complex at 17.5 A resolution by three-dimensional (3D) cryo-electron microscopy. EF2 is directly visible in the 3D map and the overall arrangement of the complex from Saccharomyces cerevisiae corresponds to that previously seen in Escherichia coli. However, pronounced differences were found in two prominent regions. First, in the yeast system the interaction between the elongation factor and the stalk region of the large subunit is much more extensive. Secondly, domain IV of EF2 contains additional mass that appears to interact with the head of the 40S subunit and the region of the main bridge of the 60S subunit. The shape and position of domain IV of EF2 suggest that it might interact directly with P-site-bound tRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号