首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Genome-wide changes of DNA methylation by active and passive demethylation processes are typical features during preimplantation development. Here we provide an insight that epigenetic reprogramming of DNA methylation is regulated in a region-specific manner, not a genome-wide fashion. To address this hypothesis, methylation states of three repetitive genomic regions were monitored at various developmental stages in the mouse embryos. Active demethylation was not observed in the IAP sequences whereas methylation reprogramming of the satellite sequences was regulated only by the active mechanism. Etn elements were actively demethylated after fertilization, passively demethylated by the 8-cell stage, and de novo methylated at the morular and blastocyst stages, showing dynamic epigenetic changes. Thus, our findings suggest that the specific genomic regions or sequences may spatially/temporally have their unique characteristics in the reprogramming of the DNA methylation during preimplantation development.  相似文献   

5.
6.
7.
旨在在体外通过胚胎生殖细胞(EGC)和细胞外基质共同构建一个EGC的小生境(niche)模型,通过比较Oct4DNA甲基化的变化,研究niche中特有的表观遗传效应对胚胎生殖细胞自我更新的影响.构建EGC细胞标准培养方案(对照组)和改良培养方案(试验组),采用甲基化特异性PCR( MS-PCR)技术、RT-PCR技术,对比分析两种培养方案中Oct4启动子的甲基化状态,判断基因表达与其CpG岛甲基化的关系,分析DNA甲基化模式与EGC细胞自我更新的关系.结果显示,试验组可扩增出Oct4的非甲基化扩增产物,而对照组为其甲基化扩增产物,试验组Oct4表达水平明显高于对照组.试验组EGC生长状态明显好于对照组.试验表明,在改良培养条件下,Oct4基因启动子DNA甲基化程度较低,且与基因表达水平呈负相关,更有利于维持胚胎生殖细胞的自我更新状态.  相似文献   

8.
Precise recapitulation of methylation change in early cloned embryos   总被引:1,自引:0,他引:1  
Change of DNA methylation during preimplantation development is very dynamic, which brings this term to the most attractive experimental target for measuring the capability of cloned embryo to reprogram its somatic genome. However, one weak point is that the preimplantation stage carries little information on genomic sequences showing a site-specific re-methylation after global demethylation; these sequences, if any, may serve as an advanced subject to test how exactly the reprogramming/programming process is recapitulated in early cloned embryos. Here, we report a unique DNA methylation change occurring at bovine neuropeptide galanin gene sequence. The galanin gene sequence in early bovine embryos derived by in vitro fertilization (IVF) maintained a undermethylated status till the morula stage. By the blastocyst, certain CpG sites became methylated specifically, which may be an epigenetic sign for the galanin gene to start a differentiation programme. The same sequence was moderately methylated in somatic donor cell and, after transplanted into an enucleated oocyte by nuclear transfer (NT), came rapidly demethylated to a completion, and then, at the blastocyst stage, re-methylated at exactly the same CpG sites, as observed so in normal blastocysts. The precise recapitulation of normal methylation reprogramming and programming at the galanin gene sequence in bovine cloned embryos gives a cue for the potential of cloned embryo to superintend the epigenetic states of foreign genome, even after global demethylation.  相似文献   

9.
10.
Chen J  Liu J  Yang J  Chen Y  Chen J  Ni S  Song H  Zeng L  Ding K  Pei D 《Cell research》2011,21(1):205-212
Generation of induced pluripotent stem cells by defined factors has become a useful model to investigate the mechanism of reprogramming and cell fate determination. However, the precise mechanism of factor-based reprogramming remains unclear. Here, we show that Klf4 mainly acts at the initial phase of reprogramming to initiate mesenchymal-to-epithelial transition and can be functionally replaced by bone morphogenetic proteins (BMPs). BMPs boosted the efficiency of Oct4/Sox2-mediated reprogramming of mouse embryonic fibroblasts (MEFs) to ~1%. BMPs also promoted single-factor Oct4-based reprogramming of MEFs and tail tibial fibroblasts. Our studies clarify the contribution of Klf4 in reprogramming and establish Oct4 as a singular setter of pluripotency in differentiated cells.  相似文献   

11.
12.
13.
14.
Highly diverse results have been reported for mitochondrial DNA (mtDNA) hetero-plasmy in nuclear-transferred farm animals. In this study, we cloned genetically defined mice and investigated donor mtDNA inheritance following somatic cell cloning. Polymerase chain reaction (PCR) analysis with primers that were specific for either the recipient oocytes or donor cells revealed that the donor mtDNA coexisted with the recipient mtDNA in the brain, liver, kidney, and tail tissues of 96% (24/25) of the adult clones. When the proportion of donor mtDNA in each tissue was measured by allele-specific quantitative PCR and subjected to ANOVA analysis, a tissue-specific mtDNA segregation pattern (P < 0.05) was observed, with the liver containing the highest proportion of donor mtDNA. Therefore, the donor mtDNA was inherited consistently by the cloned offspring, whereas donor mtDNA segregation was not neutral, which is in accordance with previous notions about tissue-specific nuclear control of mtDNA segregation.  相似文献   

15.
DNA methylation/demethylation of donor genomes in recipient ooplasm after nuclear transfer occurs in a species-specific way. In cloned rabbit and bovine embryos, repetitive sequences maintain the donor-type methylation status, but typical demethylation of repetitive sequences takes place in cloned porcine embryos. To clarify whether the demethylation is controlled by donor nucleus intrinsic property or by recipient ooplasm, we used interspecies somatic cell nuclear transfer (iSCNT) model to examine the methylation status of repetitive sequences in pig-to-rabbit and rabbit-to-pig interspecies embryos. We found that no demethylation of pig repetitive sequences was observed in pig-to-rabbit iSCNT embryos, while the examined rabbit repetitive sequence Rsat IIE was demethylated in rabbit-to-pig iSCNT embryos. These results indicate that demethylation of donor repetitive sequences is determined by ooplasm but not by donor intrinsic property and that ooplasm from different species have different capabilities to demethylate genes.  相似文献   

16.
17.
In order to investigate DNA methylation profiles of five pluripotency-related genes (Oct4, Sox2, Nanog, Rexl and Fgf4) during bovine maternal to zygotic transition (MZT) in both in vitro fertilized (IVF) and nuclear transfer (NT) embryos, sodium bisulfite sequencing method was used to detect DNA methylation levels, accompanied by the statistical analysis of embryo developmental rates. The results showed that Oct4, Nanog, Rexl and Fgf4 were respectively demethylated by 25.22% (P < 0.01), 3.84% (P > 0.05), 31.82% (P < 0.01) and 10% (P > 0.05) while Sox2 retained unmethylation during MZT in IVF embryos. By contrast, Oct4 and Rexl respectively underwent demethylation by 23.04% (P < 0.01) and 6.02% (P > 0.05), and, reversely, Sox2, Nanog and Fgf4 respectively experienced remethylation by 0.84% (P > 0.05), 5.39% (P > 0.05) and 5.46% (P > 0.05) during MZT in NT embryos. Interestingly, the CpG 14 site of Sox2 was specifically methylated in both 8-cell and morula NT embryos. In addition, the development of blastocysts between IVF and NT embryos showed no significant difference. DNA methylation analysis showed that only Oct4 and Sox2 underwent the correct methylation reprogramming process, which may be responsible for the development of blastocysts of NT embryos to a certain extent. In conclusion,the five genes respectively experienced demethylation to different extents and incomplete DNA methylation reprogramming during bo-vine MZT in both IVF and NT embryos, suggesting that they may be used as indicators for bovine embryo developmental competence.  相似文献   

18.
In mammalian zygotes, the 5‐methyl‐cytosine (5mC) content of paternal chromosomes is rapidly changed by a yet unknown but presumably active enzymatic mechanism. Here, we describe the developmental dynamics and parental asymmetries of DNA methylation in relation to the presence of DNA strand breaks, DNA repair markers and a precise timing of zygotic DNA replication. The analysis shows that distinct pre‐replicative (active) and replicative (active and passive) phases of DNA demethylation can be observed. These phases of DNA demethylation are concomitant with the appearance of DNA strand breaks and DNA repair markers such as γH2A.X and PARP‐1, respectively. The same correlations are found in cloned embryos obtained after somatic cell nuclear transfer. Together, the data suggest that (1) DNA‐methylation reprogramming is more complex and extended as anticipated earlier and (2) the DNA demethylation, particularly the rapid loss of 5mC in paternal DNA, is likely to be linked to DNA repair mechanisms.  相似文献   

19.
DNA甲基化与克隆动物的发育异常   总被引:2,自引:1,他引:2  
杨荣荣  李相运 《遗传》2007,29(9):1043-1048
通过核移植技术得到的大多数克隆动物在出生前就已经死亡, 只有极少数可以发育至妊娠期末或者存活至成年, 即使是存活下来的克隆动物也伴有不同程度的发育缺陷和表型异常。DNA甲基化是支配基因正常表达的一种重要的表观遗传修饰方式, 是调节基因组功能的重要手段, 在胚胎的正常发育过程中具有显著作用。通过对DNA甲基化模式的研究, 人们发现克隆动物中存在着异常的DNA甲基化状态, 而这些异常的DNA甲基化模式可能就是导致克隆胚早期死亡以及克隆动物发育畸形的主要原因。文章主要论述了DNA甲基化的作用, 克隆动物中异常的DNA甲基化模式, 以及造成克隆胚胎甲基化异常的原因等问题。  相似文献   

20.
In order to investigate DNA methylation profiles of five pluripotency-related genes(Oct4,Sox2,Nanog,Rex1 and Fgf4)during bovine maternal to zygotic transition(MZT)in both in vitro fertilized(IVF)and nuclear transfer(NT)embryos,sodium bisulfite sequencing method was used to detect DNA methylation levels,accompanied by the statistical analysis of embryo developmental rates.The results showed that Oct4,Nanog,Rex1 and Fgf4 were respectively demethylated by 25.22%(P < 0.01),3.84%(P > 0.05),31.82%(P < 0.01)and 10...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号