首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastids represent a diverse group of organelles that perform essential metabolic and signaling functions within all plant cells. The differentiation of specific plastid types relies on the import of selective sets of proteins from among the approximately 2500 nucleus-encoded plastid proteins. The Toc159 family of GTPases mediates the initial targeting of proteins to plastids. In Arabidopsis thaliana, the Toc159 family consists of four genes: atTOC159, atTOC132, atTOC120, and atTOC90. In vivo analysis of atToc159 function indicates that it is required specifically for the import of proteins necessary for chloroplast biogenesis. In this report, we demonstrate that atToc120 and atToc132 represent a structurally and functionally unique subclass of protein import receptors. Unlike atToc159, mutants lacking both atToc120 and atToc132 are inviable. Furthermore, atToc120 and atToc132 exhibit preprotein binding properties that are distinct from atToc159. These data indicate that the different members of the Toc159 family represent distinct pathways for protein targeting to plastids and are consistent with the hypothesis that separate pathways have evolved to ensure balanced import of essential proteins during plastid development.  相似文献   

2.
Diatoms are important primary producers in the world's oceans, yet their growth is constrained in large regions by low bioavailable iron (Fe). Low-Fe stress-induced limitation of primary production is due to requirements for Fe in components of essential metabolic pathways including photosynthesis and other chloroplast plastid functions. Studies have shown that under low-Fe stress, diatoms alter plastid-specific processes, including components of electron transport. These physiological changes suggest changes of protein content and in protein abundances within the diatom plastid. While in silico predictions provide putative information on plastid-localized proteins, knowledge of diatom plastid proteins remains limited in comparison to well-studied model photosynthetic organisms. To address this, we employed shotgun proteomics to investigate the proteome of subcellular plastid-enriched fractions from Thalassiosira pseudonana to gain a better understanding of how the plastid proteome is remodeled in response to Fe limitation. Using mass spectrometry-based peptide identification and quantification, we analyzed T. pseudonana grown under Fe-replete and -limiting conditions. Through these analyses, we inferred the relative quantities of each protein, revealing that Fe limitation regulates major metabolic pathways in the plastid, including the Calvin cycle. Additionally, we observed changes in the expression of light-harvesting proteins. In silico localization predictions of proteins identified in this plastid-enriched proteome allowed for an in-depth comparison of theoretical versus observed plastid-localization, providing evidence for the potential of additional protein import pathways into the diatom plastid.  相似文献   

3.
Plastids are a diverse group of plant organelles that perform essential functions including important steps in many biosynthetic pathways. Chloroplasts are the best characterized type of plastid, and constitute the site of oxygenic photosynthesis in plants, a process essential to all higher life forms. It is well established that the majority (>90%) of chloroplast proteins are nucleus-encoded and must be post-translationally imported into these envelope-bound compartments. Most nucleus-encoded chloroplast proteins are translated in precursor form on cytosolic ribosomes, targeted to the chloroplast surface, and then imported across the double-membrane envelope by translocons in the outer and inner envelope membranes of the chloroplast, termed TOC and TIC, respectively. Recently, significant progress has been made in our understanding of how proteins are targeted to the chloroplast surface and translocated across the chloroplast envelope into the stroma. Evidence suggesting the existence of multiple import pathways at the outer envelope membrane for different classes of precursor proteins has been presented. These pathways appear to utilize similar TOC complexes equipped with different combinations of homologous GTPase receptors, providing preprotein recognition specificity.  相似文献   

4.
The elaborate compartmentalization of plant cells requires multiple mechanisms of protein targeting and trafficking. In addition to the organelles found in all eukaryotes, the plant cell contains a semi-autonomous organelle, the plastid. The plastid is not only the most active site of protein transport in the cell, but with its three membranes and three aqueous compartments, it also represents the most topologically complex organelle in the cell. The chloroplast contains both a protein import system in the envelope and multiple protein export systems in the thylakoid. Although significant advances have identified several proteinaceous components of the protein import and export apparatuses, the lipids found within plastid membranes are also emerging as important players in the targeting, insertion, and assembly of proteins in plastid membranes. The apparent affinity of chloroplast transit peptides for chloroplast lipids and the tendency for unsaturated MGDG to adopt a hexagonal II phase organization are discussed as possible mechanisms for initiating the binding and/or translocation of precursors to plastid membranes. Other important roles for lipids in plastid biogenesis are addressed, including the spontaneous insertion of proteins into the outer envelope and thylakoid, the role of cubic lipid structures in targeting and assembly of proteins to the prolamellar body, and the repair process of D1 after photoinhibition. The current progress in the identification of the genes and their associated mutations in galactolipid biosynthesis is discussed. Finally, the potential role of plastid-derived tubules in facilitating macromolecular transport between plastids and other cellular organelles is discussed.  相似文献   

5.
The NADPH-dependent protochlorophyllide (Pchlide) oxidoreductase (POR) is a photoenzyme that requires light for its catalytic activity and uses Pchlide itself as a photoreceptor. In Arabidopsis there are three PORs denoted PORA, PORB and PORC. The PORA and PORB genes are strongly expressed early in seedling development. In contrast to PORB the import of PORA into plastids of cotyledons is substrate-dependent and organ-specific. These differences in the import reactions between PORA and PORB most likely are due to different import mechanisms that are responsible for the uptake of these proteins. The two major core constituents of the translocon of the outer plastid envelope, Toc159 and Toc34, have been implicated in the binding and recognition of precursors of nuclear-encoded plastid proteins. Their involvement in conferring substrate dependency and organ specificity of PORA import was analyzed in intact Arabidopsis seedlings of wild type and the three mutants ppi3, ppi1 and ppi2 that are deficient in atToc34, atToc33, a closely related isoform of atToc34, and atToc159. Whereas none of these three Toc constituents is required for maintaining the organ specificity and substrate dependency of PORA import, atToc33 is indispensable for the import of PORB in cotyledons and true leaves suggesting that in these parts of the plant translocation of PORA and PORB occurs via two distinct import pathways. The analysis of PORA and PORB import into plastids of intact seedlings revealed an unexpected multiplicity of import routes that differed by their substrate, cell, tissue and organ specificities. This versatility of pathways for protein targeting to plastids suggests that in intact seedlings not only the constituents of the core complex of import channels but also other factors are involved in mediating the import of nuclear-encoded plastid proteins.  相似文献   

6.
The plastids, including chloroplasts, are a group of interrelated organelles that confer photoautotrophic growth and the unique metabolic capabilities that are characteristic of plant systems. Plastid biogenesis relies on the expression, import, and assembly of thousands of nuclear encoded preproteins. Plastid proteomes undergo rapid remodeling in response to developmental and environmental signals to generate functionally distinct plastid types in specific cells and tissues. In this review, we will highlight the central role of the plastid protein import system in regulating and coordinating the import of functionally related sets of preproteins that are required for plastid-type transitions and maintenance.  相似文献   

7.
Plastids are cellular organelles which originated when a photosynthetic prokaryote was engulfed by the eukaryotic ancestor of green and red algae and land plants. Plastids have diversified in plants from their original function as chloroplasts to fulfil a variety of other roles in metabolite biosynthesis and in storage, or purely to facilitate their own transmission, according to the cell type that harbours them. Therefore cellular development and plastid biogenesis pathways must be closely intertwined. Cell biological, biochemical, and genetic approaches have generated a large body of knowledge on a variety of plastid biogenesis processes. A brief overview of the components and functions of the plastid genetic machinery, the plastid division apparatus, and protein import to and targeting inside the organelle is presented here. However, key areas in which our knowledge is still surprisingly limited remain, and these are also discussed. Chloroplast-defective mutants suggest that a substantial number of important plastid biogenesis proteins are still unknown. Very little is known about how different plastid types differentiate, or about what mechanisms co-ordinate cell growth with plastid growth and division, in order to achieve what is, in photosynthetic cells, a largely constant cellular plastid complement. Further, it seems likely that major, separate plastid and chloroplast 'master switches' exist, as indicated by the co-ordinated gene expression of plastid or chloroplast-specific proteins. Recent insights into each of these developing areas are reviewed. Ultimately, this information should allow us to gain a systems-level understanding of the plastid-related elements of the networks of plant cellular development.  相似文献   

8.
Plastids are the organelles of plants and algae that house photosynthesis and many other biochemical pathways. Plastids contain a small genome, but most of their proteins are encoded in the nucleus and posttranslationally targeted to the organelle. When plants and algae lose photosynthesis, they virtually always retain a highly reduced "cryptic" plastid. Cryptic plastids are known to exist in many organisms, although their metabolic functions are seldom understood. The best-studied example of a cryptic plastid is from the intracellular malaria parasite, Plasmodium, which has retained a plastid for the biosynthesis of fatty acids, isoprenoids, and heme by the use of plastid-targeted enzymes. To study a completely independent transformation of a photosynthetic plastid to a cryptic plastid in another alga-turned-parasite, we conducted an expressed sequence tag (EST) survey of Helicosporidium. This parasite has recently been recognized as a highly derived green alga. Based on phylogenetic relationships to other plastid homologues and the presence of N-terminal transit peptides, we have identified 20 putatively plastid-targeted enzymes that are involved in a wide variety of metabolic pathways. Overall, the metabolic diversity of the Helicosporidium cryptic plastid exceeds that of the Plasmodium plastid, as it includes representatives of most of the pathways known to operate in the Plasmodium plastid as well as many others. In particular, several amino acid biosynthetic pathways have been retained, including the leucine biosynthesis pathway, which was only recently recognized in plant plastids. These two parasites represent different evolutionary trajectories in plastid metabolic adaptation.  相似文献   

9.
Some nuclear‐encoded proteins are imported into higher plant plastids via the endomembrane (EM) system. Compared with multi‐protein Toc and Tic translocons required for most plastid protein import, the relatively uncomplicated nature of EM trafficking led to suggestions that it was the original transport mechanism for nuclear‐encoded endosymbiont proteins, and critical for the early stages of plastid evolution. Its apparent simplicity disappears, however, when EM transport is considered in light of selective constraints likely encountered during the conversion of stable endosymbionts into fully integrated organelles. From this perspective it is more parsimonious to presume the early evolution of post‐translational protein import via simpler, ancestral forms of modern Toc and Tic plastid translocons, with EM trafficking arising later to accommodate glycosylation and/or protein targeting to multiple cellular locations. This hypothesis is supported by both empirical and comparative data, and is consistent with the relative paucity of EM‐based transport to modern primary plastids.  相似文献   

10.
The surprising complexity of peroxisome biogenesis   总被引:7,自引:0,他引:7  
Peroxisomes are small organelles with a single boundary membrane. All of their matrix proteins are nuclear-encoded, synthesized on free ribosomes in the cytosol, and post-translationally transported into the organelle. This may sound familiar, but in fact, peroxisome biogenesis is proving to be surprisingly unique. First, there are several classes of plant peroxisomes, each specialized for a different metabolic function and sequestering specific matrix enzymes. Second, although the mechanisms of peroxisomal protein import are conserved between the classes, multiple pathways of protein targeting and translocation have been defined. At least two different types of targeting signals direct proteins to the peroxisome matrix. The most common peroxisomal targeting signal is a tripeptide limited to the carboxyl terminus of the protein. Some peroxisomal proteins possess an amino-terminal signal which may be cleaved after import. Each targeting signal interacts with a different cytosolic receptor; other cytosolic factors or chaperones may also form a complex with the peroxisomal protein before it docks on the membrane. Peroxisomes have the unusual capacity to import proteins that are fully folded or assembled into oligomers. Although at least 20 proteins (mostly peroxins) are required for peroxisome biogenesis, the role of only a few of these have been determined. Future efforts will be directed towards an understanding of how these proteins interact and contribute to the complex process of protein import into peroxisomes.  相似文献   

11.
With the available Arabidopsis genome and near-completion of the rice genome sequencing project, large-scale analysis of plant proteins with mass spectrometry has now become possible. Determining the proteome of a cell is a challenging task, which is complicated by proteome dynamics and complexity. The biochemical heterogeneity of proteins constrains the use of standardized analytical procedures and requires demanding techniques for proteome analysis. Several proteome studies of plant cell organelles have been reported, including chloroplasts and mitochondria. Chloroplasts are of particular interest for plant biologists because of their complex biochemical pathways for essential metabolic functions. Information from the chloroplast proteome will therefore provide new insights into pathway compartmentalization and protein sorting. Some approaches for the analysis of the chloroplast proteome and future prospects of plastid proteome research are discussed here.  相似文献   

12.
Recent advances in the study of plant peroxisomes are shedding new light on the importance of these organelles for plant development, and are revealing similarities and differences in peroxisome protein import pathways between plants, animals and fungi. For example, the import of matrix proteins that carry the PTS1 and PTS2 targeting signals is coupled in plants as it is in mammals, whereas these import pathways are separate in fungi. The expression of a human peroxisomal ATPase partially rescues the equivalent Arabidopsis mutant. Ubiquitination might play a role in receptor recycling in Saccharomyces cerevisiae and exciting progress is being made through studies of the targeting of membrane proteins.  相似文献   

13.
The photosynthetic chloroplast is the hallmark organelle of green plants. During the endosymbiotic evolution of chloroplasts, the vast majority of genes from the original cyanobacterial endosymbiont were transferred to the host cell nucleus. Chloroplast biogenesis therefore requires the import of nucleus-encoded proteins from their site of synthesis in the cytosol. The majority of proteins are imported by the activity of Toc and Tic complexes located within the chloroplast envelope. In addition to chloroplasts, plants have evolved additional, non-photosynthetic plastid types that are essential components of all cells. Recent studies indicate that the biogenesis of various plastid types relies on distinct but homologous Toc-Tic import pathways that have specialized in the import of specific classes of substrates. These different import pathways appear to be necessary to balance the essential physiological role of plastids in cellular metabolism with the demands of cellular differentiation and plant development.  相似文献   

14.
The molecular biology of plastid division in higher plants   总被引:11,自引:0,他引:11  
Plastids are essential plant organelles vital for life on earth, responsible not only for photosynthesis but for many fundamental intermediary metabolic reactions. Plastids are not formed de novo but arise by binary fission from pre-existing plastids, and plastid division therefore represents an important process for the maintenance of appropriate plastid populations in plant cells. Plastid division comprises an elaborate pathway of co-ordinated events which include division machinery assembly at the division site, the constriction of envelope membranes, membrane fusion and, ultimately, the separation of the two new organelles. Because of their prokaryotic origin bacterial cell division has been successfully used as a paradigm for plastid division. This has resulted in the identification of the key plastid division components FtsZ, MinD, and MinE, as well as novel proteins with similarities to prokaryotic cell division proteins. Through a combination of approaches involving molecular genetics, cell biology, and biochemistry, it is now becoming clear that these proteins act in concert during plastid division, exhibiting both similarities and differences compared with their bacterial counterparts. Recent efforts in the cloning of the disrupted loci in several of the accumulation and replication of chloroplasts mutants has further revealed that the division of plastids is controlled by a combination of prokaryote-derived and host eukaryote-derived proteins residing not only in the plastid stroma but also in the cytoplasm. Based on the available data to date, a working model is presented showing the protein components involved in plastid division, their subcellular localization, and their protein interaction properties.  相似文献   

15.
Plastids originated from an endosymbiotic event between an early eukaryotic host cell and an ancestor of today's cyanobacteria. During the events by which the engulfed endosymbiont was transformed into a permanent organelle, many genes were transferred from the plastidal genome to the nucleus of the host cell. Proteins encoded by these genes are synthesised in the cytosol and subsequently translocated into the plastid. Therefore they contain an N-terminal cleavable transit sequence that is necessary for translocation. The sequence is plastid-specific, thus preventing mistargeting into other organelles. Receptors embedded into the outer envelope of the plastid recognise the transit sequences, and precursor proteins are translocated into the chloroplast by a proteinaceous import machinery located in both the outer and inner envelopes. Inside the stroma the transit sequences are cleaved off and the proteins are further routed to their final locations within the plastid.  相似文献   

16.
The genome of the plastid has generated much interest as a target for plant transformation. The characteristics of plastid transgenes both reflect the prokaryotic origin of plastid organelles and provide a unique set of features that are currently lacking in genes introduced into the plant nucleus. Recent progress has been made in understanding plastid expression of recombinant proteins.  相似文献   

17.
18.
Peroxisomes are cell organelles bounded by a single membrane with a basically oxidative metabolism. Peroxisomes house catalase and H2O2‐producing flavin‐oxidases as the main protein constituents. However, since their discovery in early fifties, a number of new enzymes and metabolic pathways have been reported to be also confined to these organelles. Thus, the presence of exo‐ and endo‐peptidases, superoxide dismutases, the enzymes of the plant ascorbate‐glutathione cycle plus ascorbate and glutathione, several NADP‐dehydrogenases, and also L‐arginine‐dependent nitric oxide synthase activity has evidenced the relevant role of these organelles in cell physiology. In recent years, the study of new functions of peroxisomes has become a field of intensive research in cell biology, and these organelles have been proposed to be a source of important signal molecules for different transduction pathways. In plants, peroxisomes participate in seed germination, leaf senescence, fruit maturation, response to abiotic and biotic stress, photomorphogenesis, biosynthesis of the plant hormones jasmonic acid and auxin, and in cell signaling by reactive oxygen and nitrogen species (ROS and RNS, respectively). In order to decipher the nature and specific role of the peroxisomal proteins in these processes, several approaches including in vivo and in vitro import assays and generation of mutants have been used. In the last decade, the development of genomics and the report of the first plant genomes provided plant biologists a powerful tool to assign to peroxisomes those proteins which harbored any of the two peroxisomal targeting signals (PTS, either PTS1 or PTS2) described so far. Unfortunately, those molecular approaches could not give any response to those proteins previously localized in plant peroxisomes by classical biochemical and cell biology methods that did not contain any PTS. However, more recently, proteomic studies of highly purified organelles have provided evidence of the presence in peroxisomes of new proteins not previously reported. Thus, the contribution of proteomic approaches to the biology of peroxisomes is essential, not only for elucidation of the mechanisms involved in the import of the PTS1‐ and PTS2‐independent proteins, but also to the understanding of the role of these organelles in the cell physiology of plant growth and development.  相似文献   

19.
Developmental Regulation of the Plastid Protein Import Apparatus   总被引:12,自引:2,他引:10       下载免费PDF全文
Dahlin C  Cline K 《The Plant cell》1991,3(10):1131-1140
Plastid development involves the programmed accumulation of proteins. Most plastid proteins are synthesized in the cytosol and imported into the organelle by an envelope-based protein import apparatus. Previous studies have shown that developmental rates of protein accumulation correspond to mRNA levels. Here, we examined the relationship between plastid development and the activity of the protein import apparatus. Developing plastids, primarily from wheat leaves, were analyzed for their protein import capability in vitro. Import capability, initially high in proplastids, declined as much as 20-fold as plastid development approached either the mature etioplast or the mature chloroplast. The observed decline was not due to senescence, nonspecific inhibitors, or protein turnover. Furthermore, the import capability of mature etioplasts, initially very low, was transiently reactivated during light-mediated redifferentiation into chloroplasts. These results suggest that plant cells regulate the import apparatus in concert with the protein demands of the developing plastids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号