首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Among the large number of immediate early genes, nuclear proto-oncogenes of the Fos and Jun families, have been postulated to be involved in the long-term effects of several growth factors on cell differentiation and/or multiplication. Since adrenal cell differentiated functions appear to be regulated by specific hormones and growth factors, the effects of these factors on proto-oncogene mRNA levels were analysed in bovine adrenal fasciculata cells (BAC) in culture. Corticotropin (ACTH) and insulin-like growth factor I increased c-fos and jun-B mRNA, but had no effect on c-jun mRNA and these early changes were associated with a later increase in BAC specific function [ACTH receptors, cytochrome P 450 17) and 3β-hydroxysteroid dehydrogenase (3β-HSD)] and an enhanced steroidogenic responsiveness to both ACTH and angiotensin-II (A-II). On the other hand, A-II increased the three proto-oncogene (c-fos, c-jun and jun-B) mRNAs, induced a decreased of P 450 17 and 3β-HSD and caused a marked homologous and heterologous (ACTH) densitization. Transforming growth factor β1 which only increased jun-B mRNA, markedly reduced BAC differentiated functions and the steroidogenic responsiveness to both ACTH and A-II. Thus, it is postulated that the proto-oncoproteins encoded by the immediate early genes may play a role in the long-term effects of peptide hormones and growth factors on BAC differentiated functions.  相似文献   

2.
3.
This report examines the effect of hypotonic stress on ornithine decarboxylase (ODC) activity and ODC mRNA concentrations in LLC-PK1 cells. Earle's balanced salts solution minus glucose (EBSS-G) with decreasing concentrations of NaCl was utilized as the ODC induction medium. Hypotonic EBSS-G increased both the concentration of ODC mRNA and the specific activity of ODC in LLC-PK1 cells. Actinomycin D and cycloheximide prevented the increase in enzyme activity resulting from hypotonic stress. Actinomycin D was also a potent inhibitor of ODC mRNA expression resulting from hypotonic stress. Cycloheximide had very little effect on the induction of ODC mRNA in cells incubated in hypotonic EBSS-G. The magnitude of the increase in both ODC mRNA concentrations and enzyme activity was dependent on the incubation time in hypotonic media. The increase in ODC mRNA concentrations preceded the elevation in enzyme activity. ODC mRNA concentrations and the specific activity of ODC increased as a function of decreasing media osmolarity. The addition of putrescine, spermidine, and spermine to EBSS-G containing reduced NaCl suppressed the increase in LLC-PK1 ODC activity related to hypotonic stress. In contrast, these polyamines did not prevent the increase in ODC mRNA resulting from hypotonic shock. Furthermore, it was demonstrated that hypotonic stress increases ODC mRNA levels and enzyme activity in four additional cell lines from two different species. Based on these results it is suggested that one or more signal transducers associated with cell volume expansion enhance expression of the ODC gene.  相似文献   

4.
This study examined whether in vivo exposure to a β2-adrenoceptor agonist, tulobuterol, induces human Period1 (hPer1) mRNA expression in cells from peripheral whole blood. In one experiment, oral tulobuterol was administered to five healthy volunteers at 22:00 h, while in another, a transdermally tulobuterol patch was applied to the same five subjects at 20:00 h. In each experiment, serum tulobuterol concentrations were measured at four time points, and total RNA was isolated from peripheral blood cells for determinations of hPer1 mRNA expression by real-time polymerase chain reaction. Both the tulobuterol tablet and the transdermal patch increased hPer1 mRNA expression, suggesting that analyses of human peripheral blood cells could reliably represent peripheral clock gene mRNA expression in vivo.  相似文献   

5.
The initiation and maintenance of reproductive function in mammals is critically dependent on the pulsatile secretion of gonadotropin-releasing hormone (GnRH). This peptide drives the pulsatile release of FSH and LH from the pituitary pars distalis via signaling pathways that are activated by the type I GnRH receptor (GnRH-R). Recently, a microarray analysis study reported that a number of genes, including mPer1, are induced by GnRH in immortalized gonadotrope cells. In view of these data, we have begun to analyze in detail the signaling pathways mediating the action of GnRH on mPer1 expression in these cells. Using quantitative real-time polymprose cho read (PCR), we could confirm that exposure of immortalized gonadotropes (LβT2 cells) to the GnRH analog, buserelin, markedly induces mPer1 (but not mPer2) expression. Consistent with GnRH receptor signaling via the protein kinase (PK)-C pathway, exposure of the cells to phorbol 12,13-dibutyrate rapidly elevates both mPer1 and LHβ subunit mRNA levels, while pharmacological inhibition of PKC prevents the mPer1 and LHβ response to buserelin. As GnRH is known to regulate gonadotropin synthesis via activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathways, we then examined the involvement of this pathway in regulating mPer1 expression in gonadotropes. Our data reveal that GnRH-induced mPer1 expression is blocked following acute exposure to a MAPK kinase inhibitor. Although the involvement of this signaling mechanism in the regulation of mPer1 is known in neurons, e.g., in the suprachiasmatic nuclei, the induction of mPer1 in gonadotropes represents a novel mechanism of GnRH signaling, whose functional significance is still under investigation.  相似文献   

6.
7.
8.
We have previously reported that steroidogenesis is dramatically reduced in mouse Y1 adrenocortical cells which express the human apolipoprotein E gene (Y1-E cells). This suppression results in part from inhibition of cAMP-mediated events. In this report we have examined the expression of protein kinase C (PKC) in the Y1-E cell lines. Total cellular PKC activity in vitro is increased 3-5-fold in the Y1-E cell lines. PKC activity in the particulate and cytosolic fractions is increased to the same relative extent. Increased PKC activity reflects increased levels of PKC mRNA, as determined by Northern blot analysis, and PKC protein, as determined by immunoblot analysis. Increased expression of PKC in the Y1-E cell lines is accompanied by a 2-3-fold increase in diacylglycerol, an in vivo activator of PKC. To determine the contribution of elevated PKC expression to the Y1-E cell phenotype, we utilized the PKC inhibitors, staurosporine and calphostin C. Upon treatment with staurosporine or calphostin C, expression of P450-cholesterol side chain cleavage mRNA is increased severalfold to a level equal to, or greater than, basal expression in the Y1-neo control cell line. Treatment with calphostin C also results in recovery of steroidogenesis in the Y1-E cells to a level comparable to the basal level observed in the Y1-neo control cell line. These results indicate that increased expression of PKC in the Y1-E cell lines decreases basal steroidogenesis by suppressing P450-cholesterol side chain cleavage mRNA expression. Inhibition of PKC, however, does not reverse the block in cAMP-stimulated steroidogenesis in Y1-E cells, suggesting that the pleiotropic effects of apoE expression are not mediated entirely through altered PKC expression.  相似文献   

9.
The potential of polycyclic aromatic hydrocarbons (PAHs) to modulate microsomal epoxide hydrolase activity, determined using benzo[a]pyrene 5-oxide as substrate, in human liver, was evaluated and compared to rat liver. Precision-cut liver slices prepared from fresh human liver were incubated with six structurally diverse PAHs, at a range of concentrations, for 24 h. Of the six PAHs studied, benzo[a]pyrene, dibenzo[a,h]anthracene and fluoranthene gave rise to a statistically significant increase in epoxide hydrolase activity, which was accompanied by a concomitant increase in epoxide hydrolase protein levels determined by immunoblotting. The other PAHs studied, namely dibenzo[a,l]pyrene, benzo[b]fluoranthene and 1-methylphenanthrene, influenced neither activity nor enzyme protein levels. When rat slices were incubated under identical conditions, only benzo[a]pyrene and dibenzo[a,h]anthracene elevated epoxide hydrolase activity, which was, once again accompanied by a rise in protein levels. At the mRNA level, however, all six PAHs caused an increase, albeit to different extent. In rat, epoxide hydroxylase activity in lung slices was much lower than in liver slices. In lung slices, epoxide hydrolase activity was elevated following exposure to benzo[a]pyrene and dibenzo[a,l]pyrene and, to a lesser extent, 1-methylphenanthrene; similar observations were made at the protein level. At both activity and protein levels extent of induction was far more pronounced in the lung compared with the liver. It is concluded that epoxide hydrolase activity is an inducible enzyme by PAHs, in both human and rat liver, but induction potential by individual PAHs varies enormously, depending on the nature of the compound involved. Marked tissue differences in the nature of PAHs stimulating activity in rat lung and liver were noted. Although in the rat basal lung epoxide hydrolase activity is much lower than liver, it is more markedly inducible by PAHs.  相似文献   

10.
11.
Fumonisin B1 (FB1) is a toxic mycotoxin produced by Fusarium verticillioides, predominantly present in corn. The principal biochemical responses of FB1 involve disruption of sphingolipid metabolism from the inhibition of ceramide synthesis leading to accumulation of free sphingoid bases, particularly sphinganine. The ability of FB1 to modulate signal transduction pathways plays a role in its toxicity. We recently reported that FB1 selectively and transiently activates protein kinase Calpha (PKCalpha) in porcine renal epithelial cells (LLC-PK1). The aim of current study was to investigate the effect of PKCalpha activation by FB1 on NF-kappaB activation and subsequently on TNFalpha gene expression and caspase 3 induction in LLC-PK1 cells. FB1 (1 micromol/L for 5 min) transiently activated PKCalpha and increased nuclear translocation of NF-kappaB, followed by their down-regulation at later time points. Preincubating the cells with the PKC inhibitor, calphostin C, prevented the activation of NF-kappaB by FB1. TNFalpha mRNA expression was increased after 15 min exposure to FB1 or the PKC activator, phorbol 12-myristate 13-acetate. In addition, an increase in caspase 3 activity was observed after addition of FB1 for 1 h. Calphostin C prevented both the FB1-induced increase in TNFalpha expression and caspase 3 activation. In summary, we hereby demonstrate that the FB1 activation of NF-kappaB and sequential induction of TNFalpha expression resulting in the subsequent increase in caspase 3 activity are all dependent on PKCalpha stimulation in LLC-PK1 cells.  相似文献   

12.
13.
14.
The rate-limiting step in luteal biosynthesis of progesterone consists of cleavage of the side chain of cholesterol by mitochondrial cytochrome P450 side-chain cleavage enzyme (P450scc) to form pregnenolone. Luteal mRNA encoding P450scc, quantitated on selected days of the 16-day ovine estrous cycle, was similar on days 3 and 6, increased by 2-fold on day 9 (P < 0.05) and remained elevated on day 15. Levels of P450scc mRNA on day 15 of pregnancy were not different from those found on any day of the cycle (P < 0.05). To determine whether levels of mRNA encoding P450scc are hormonally regulated, ewes on day 10 of the estrous cycle were injected with hCG or prostaglandin F2 (PGF2). P450scc mRNA was not increased for up to 36 h after injection of hCG, nor decreased within 8 h after injection of PGF2 (P < 0.05). An assay for P450scc activity was developed which utilized ovine small and large luteal cells in the presence of 22R-hydroxycholesterol and ovine high density lipoprotein. Enzyme activity was quantitated by measurement of progesterone production. In small luteal cells activation of the protein kinase A (PKA) second-messenger system by treatment with LH resulted in 910% increase in progesterone production without altering activity of P450scc. Activation of the protein kinase C (PKC) second-messenger system with phorbol 12-myristate 13-acetate caused a 51% reduction in progesterone secretion from large luteal cells but did not alter activity of P450scc. These findings suggest that in mature luteal tissue steady state levels of mRNA encoding P450scc, and enzyme activity are independent of acute regulation by activation of PKA or PKC second-messenger systems.  相似文献   

15.
The viral src protein kinase, pp60v-src, is a powerful intracellular mitogen which can initiate and maintain the proliferation of quiescent cells in the absence of any exogenous growth factors. In an attempt to understand how pp60v-src induces proliferation, we examined the early events in the G0 to G1 transition caused by the activation of a thermolabile v-src protein in quiescent, serum-starved tsRSV-transformed NRK cells. The reactivation of pp60v-src, in the presence of exogenous growth factors, triggered a rapid biphasic surge of membrane-associated protein kinase C (PKC) activity. Unlike TPA-stimulated PKC activity, the pp60v-src-induced increase in PKC was readily extracted from membranes by EGTA. The down-regulation of PKC activity in these quiescent cells by prolonged exposure to TPA strongly inhibited the ability of the reactivated v-src protein to stimulate DNA replication in serum-deficient medium, suggesting that PKC plays a role in the initial signal by which the viral enzyme induces the G0 to G1 transition in NRK cells.  相似文献   

16.
We have previously reported that pretreatment of HL-60 human promyelocytic leukemia cells with the non-tumor-promoting protein kinase C (PKC) activator bryostatin 1 potentiates induction of apoptosis by the antimetabolite 1-[beta-D-arabinofuranosyl]cytosine (ara-C) (Biochem Pharmacol 47:839,1994). To determine whether this phenomenon results from altered expression of Bcl-2 or related proteins, Northern and Western analysis was employed to assess the effects of bryostatin 1 and other PKC activators on steady-state levels of Bcl-2, Bax, Bcl-x, and Mcl-1 mRNA and protein. Pretreatment of cells for 24 h with 10 nM bryostatin 1, or, to a lesser extent, the stage-1 tumor-promoter phorbol dibutyrate (PDB) significantly potentiated apoptosis induced by ara-C (100 microM; 6 h); in contrast, equivalent exposure to the stage-2 tumor promoter, mezerein (MZN), which, unlike bryostatin 1, is a potent inducer of differentiation in this cell line, failed to modify ara-C-related cell death. Neither bryostatin 1 nor PDB altered expression of bcl-2/Bcl-2 over this time frame. In contrast, MZN down-regulated bcl-2 mRNA levels, but this effect was not accompanied by altered expression of Bcl-2 protein. None of the PKC activators modified expression of Bax or Bcl-x(L) mRNA or protein; levels of Bcl-x(S) were undetectable in both treated and untreated cells. However, expression of Mcl-1 mRNA and protein increased modestly after treatment with either bryostatin 1 or PDB, and to a greater extent following exposure to MZN. Combined treatment of cells with bryostatin 1 and MZN resulted in undiminished potentiation of ara-C-mediated apoptosis and by antagonism of cellular maturation. These effects were accompanied by unaltered expression of Bcl-2, Bax, and Bcl-x(L), and by a further increase in Mcl-1 protein levels. When cells were co-incubated with bryostatin 1 and calcium ionophore (A23187), an identical pattern of expression of Bcl-2 family members was observed, despite the loss of bryostatin 1's capacity to potentiate apoptosis, and the restoration of its ability to induce differentiation. Finally, treatment of cells with bryostatin 1+/-ara-C (but not ara-C alone) resulted in a diffuse broadening of the Bcl-2 protein band, whereas exposure of cells to taxol (250 nM, 6 h) led to the appearance of a distinct Bcl-2 species with reduced mobility, phenomena compatible with protein phosphorylation. Together, these findings indicate that the ability of bryostatin 1 to facilitate drug-induced apoptosis in human myeloid leukemia cells involves factors other than quantitative changes in the expression of Bcl-2 family members, and raise the possibility that qualitative alterations in the Bcl-2 protein, such as phosphorylation status, may contribute to this capacity. They also suggest that increased expression of Mcl-1 occurs early in the pre-commitment stage of myeloid cell differentiation, and that this event does not protect cells from drug-induced apoptosis.  相似文献   

17.
18.
We have reported that plasma adrenomedullin (AM) in hyperglycemic patients was significantly increased compared with normal volunteers. In this report we examined the effects of hyperglycemia on AM expression in the vasculature, the main site of AM production. AM mRNA level in the aorta was higher in the diabetic rats than in the control rats. AM mRNA level and protein kinase C (PKC) activity in cultured vascular smooth muscle cells (VSMC) increased as the glucose concentration in the medium changed from 100mg/dl to 450mg/dl. PKC inhibitors blocked this increase of AM mRNA. Similar osmotic change with mannitol had no effect on AM expression. We conclude that (1) hyperglycemia increases vascular AM expression through PKC-dependent pathway, and (2) the elevated plasma AM in hyperglycemic patients originates from the glucose induced vascular AM expression. We propose the possible role of AM in the pathogenesis of diabetic vascular complications.  相似文献   

19.
In osteoblasts parathyroid hormone (PTH) stimulates the PTH/PTH-related peptide (PTHrP) receptor (PTH1R) that couples via G(s) to adenylyl cyclase stimulation and via G(11) to phospholipase C (PLC) stimulation. We have investigated the effect of increasing G(11)alpha levels in UMR 106-01 osteoblastic cells by transient transfection with cDNA encoding G(11)alpha on PTH stimulation of PLC and protein kinase C (PKC) as well as PTH regulation of mRNA encoding matrix metalloproteinase-13 (MMP-13). Transfection with G(11)alpha cDNA resulted in a 5-fold increase in PTH-stimulated PLC activity with no change in PTH-stimulated adenylyl cyclase. PTH-induced translocation of PKC-betaI, -delta, and -zeta to the cell membrane and PKC-zeta to the nucleus was also increased. Increased G(11)alpha protein resulted in increased stimulation of MMP-13 mRNA levels at all doses of PTH. There was a 2.5 +/- 0.35 fold increase in maximal PTH-stimulation of c-jun mRNA and smaller but significant increases in c-fos accompanied by increased basal and PTH-stimulated AP-1 binding in cells expressing increased G(11)alpha. Runx-2 mRNA and protein levels were not significantly increased by increased G(11)alpha expression. The increase in PTH stimulation of c-jun, c-fos, and MMP-13 in G(11)alpha-transfected cells were all blocked by bisindolylmaleimide I, a selective inhibitor of PKC. These results demonstrate that regulation of the PLC pathway through the PTH1R is significantly increased by elevating expression of G(11)alpha in osteoblastic cells. This leads to increased PTH stimulation of MMP-13 expression by increased stimulation of AP-1 factors c-jun and c-fos.  相似文献   

20.
We have studied phospholipase D (PLD) activation in relation to protein kinase C (PKC) and the involvement of PLD in extracellularly regulated kinase 1 (MAPK) (ERK1) activation and c-fos mRNA expression in C3H/10T1/2 (Cl8) fibroblasts. In these cells, the PLD activity was significantly increased by porcine platelet-derived growth factor (PDGF-BB), phorbol 12-myristate 13-acetate (PMA), and epidermal growth factor (EGF). PLD activation by PDGF-BB and PMA, but not EGF, was inhibited in Cl8 cells expressing the HAbetaC2-1 peptide (Cl8 HAbetaC2-1 cells), with a sequence (betaC2-1) shown to bind receptor for activated C kinase 1 (RACK1) and inhibit c-PKC-mediated cell functions [Science 268 (1995) 247]. A role of alpha-PKC in PLD activation is further underscored by co-immunoprecipitation of alpha-PKC with PLD1 and PLD2 in non-stimulated as well as PMA- and PDGF-BB-stimulated Cl8 cells. However, only PKC in PLD1 precipitates was activated by these agonists, while the PKC in the PLD2 precipitates was constitutively activated. The c-fos mRNA levels in Cl8 cells increased more than 30-fold in response to either PDGF-BB, EGF, or PMA. Approximately 60% inhibition of this increase in c-fos mRNA levels was observed in Cl8 HAbetaC2-1 cells. Formation of phosphatidylbutanol (PtdBut) at the expense of phosphatidic acid (PtdH) in the presence of n-butanol inhibited ERK1 activation and c-fos mRNA expression in PDGF-BB-treated Cl8 cells. ERK activation by PMA was unaffected by n-butanol in Cl8 cells but almost abolished by n-butanol in Cl8 HAbetaC2-1 cells, showing that ERK activation by PMA is heavily dependent on PKC and PLD1. In contrast, ERK activation by EGF in both cell types was not sensitive to n-butanol. These results indicate (1) a role of a functional interaction between the RACK1 scaffolding protein and a alphaPKC-PLD complex for achieving full PLD activity in PDGF-BB- and PMA-stimulated Cl8 cells; (2) PLD-mediated PtdH formation is needed for optimal ERK1 activation by PDGF-BB and maximal increase in c-fos mRNA expression. These findings place PLD as an important component in PDGF-BB- and PMA-stimulated intracellular signalling leading to gene activation in Cl8 cells, while EGF does not require PLD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号