首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Modulation of granulocyte CSF (G-CSF) receptors on murine peritoneal exudate macrophages (PEM) by various cytokines was investigated. At 4 degrees C, 125I-G-CSF receptor binding on PEM reached a plateau after 6 h and was specifically competed by unlabeled human rG-CSF but not by other cytokines, including human rG-CSF-1, murine recombinant granulocyte-macrophage CSF, murine rIFN-gamma, human rIL-1 beta, and murine rTNF-alpha. 125I-G-CSF bound to PEM has a half-life of 30 min at 37 degrees C. Preincubation of PEM with murine rTNF, murine recombinant granulocyte-macrophage CSF, CSF-1, or G-CSF for 30 min at 37 degrees C resulted in partial reduction of 125I-G-CSF binding capacity, whereas IL-1 or IFN-gamma did not inhibit G-CSF binding. Further studies indicated that reduction of G-CSF binding caused by TNF was a dose- and time-dependent process and did not require FCS. The reduction was transient, and receptor binding was recovered by incubation at 37 degrees C for 8 h. The recovery of G-CSF binding was inhibited in the presence of cycloheximide. In addition, G-CSF binding studies suggested that the TNF-induced decrease in G-CSF binding to PEM was probably due to a reduction in receptor number rather than receptor affinity. Modulation of G-CSFR by TNF was also observed on nonelicited macrophages from various strains of mice. Our results demonstrate a physiologic response of G-CSFR on macrophages that is modulated by TNF. This phenomenon may play an important, as yet unknown, role in the macrophage inflammatory response.  相似文献   

2.
3.
BACKGROUND: The receptor of ciliary neurotrophic factor (CNTF) contains the signal transduction protein gp130, which is also a component of the receptors of cytokines such as interleukin (IL)-6, leukemia-inhibitory factor (LIF), IL-11, and oncostatin M. This suggests that these cytokines might share common signaling pathways. We previously reported that CNTF augments the levels of corticosterone (CS) and of IL-6 induced by IL-1 and induces the production of the acute-phase protein serum amyloid A (SAA). Since the elevation of serum CS is an important feedback mechanism to limit the synthesis of proinflammatory cytokines, particularly tumor necrosis factor (TNF), we have investigated the effect of CNTF on both TNF production and lipopolysaccharide (LPS) toxicity. MATERIALS AND METHODS: To induce serum TNF levels, LPS was administered to mice at 30 mg/kg i.p. and CNTF was administered as a single dose of 10 micrograms/mouse i.v., either alone or in combination with its soluble receptor sCNTFR alpha at 20 micrograms/mouse. Serum TNF levels were the measured by cytotoxicity on L929 cells. In order to measure the effects of CNTF on LPS-induced TNF production in the brain, mice were injected intracerebroventricularly (i.c.v.) with 2.5 micrograms/kg LPS. Mouse spleen cells cultured for 4 hr with 1 microgram LPS/ml, with or without 10 micrograms CNTF/ml, were also analyzed for TNF production. RESULTS: CNTF, administered either alone or in combination with its soluble receptor, inhibited the induction of serum TNF levels by LPS. This inhibition was also observed in the brain when CNTF and LPS were administered centrally. In vitro, CNTF only marginally affected TNF production by LPS-stimulated mouse splenocytes, but it acted synergistically with dexamethasone (DEX) in inhibiting TNF production. Most importantly, CNTF administered together with sCNTFR alpha protected mice against LPS-induced mortality. CONCLUSIONS: These data suggest that CNTF might act as a protective cytokine against TNF-mediated pathologies both in the brain and in the periphery.  相似文献   

4.
The role of surfactant-associated protein (SP) A in the mediation of pulmonary responses to bacterial lipopolysaccharide (LPS) was assessed in vivo with SP-A gene-targeted [SP-deficient; SP-A(-/-)] and wild-type [SP-A(+/+)] mice. Concentrations of tumor necrosis factor (TNF)-alpha, macrophage inflammatory protein-2, and nitric oxide were determined in recovered bronchoalveolar lavage fluid after intratracheal administration of LPS. SP-A(-/-) mice produced significantly more TNF-alpha and nitric oxide than SP-A(+/+) mice after LPS treatment. Intratracheal administration of human SP-A (1 mg/kg) to SP-A(-/-) mice restored regulation of TNF-alpha, macrophage inflammatory protein-2, and nitric oxide production to that of SP-A(+/+) mice. Other markers of lung injury including bronchoalveolar fluid protein, phospholipid content, and neutrophil numbers were not influenced by SP-A. Data from experiments designed to test possible mechanisms of SP-A-mediated suppression suggest that neither binding of LPS by SP-A nor enhanced LPS clearance are the primary means of inhibition. Our data and others suggest that SP-A acts directly on immune cells to suppress LPS-induced inflammation. These results demonstrate that endogenous or exogenous SP-A inhibits pulmonary LPS-induced cytokine and nitric oxide production in vivo.  相似文献   

5.
The effects of recombinant human tumor necrosis factor (TNF), lymphotoxin (LT), and interferon-gamma (IFN-gamma) on the growth of human hemopoietic progenitor cells in clonal culture have been examined. Colony growth was induced by using granulocyte colony-stimulating factor (G-CSF), or granulocyte-macrophage colony-stimulating factor (GM-CSF). A suppressive effect of TNF, LT, and IFN-gamma on the development of granulocyte, macrophage, and mixed granulocyte/macrophage colonies was shown. Suppression of colonies formed after stimulation with G-CSF was greater than that observed after stimulation with GM-CSF. In the presence of a monoclonal antibody to TNF, or polyclonal antibodies to either LT or IFN-gamma, the inhibitory effect of the molecule to which the antibody was directed was abrogated. These findings suggest that progenitor cells responsive to G-CSF or GM-CSF have different sensitivities to the effects of TNF, LT, and IFN-gamma. Defining the interactions of growth factors and inhibitors should increase understanding of mechanisms underlying diseases associated with suppression of normal hemopoiesis, and in predicting the effects in vivo of these bioregulatory molecules in clinical medicine.  相似文献   

6.
Piracetam is a nootropic drug that protects neurons in neuropathological and age-related diseases and the activation and modulation of peripheral blood cells in patients with neuropathological conditions is well known. Therefore, in the present study, in vivo, ex vivo, and in vitro tests were conducted to investigate the effect of piracetam on leukocytes and macrophages. Lipopolysaccharide (LPS) causes oxidative DNA damage; thus, in the present study, LPS was used as a tool to induce DNA damage. In vivo experiments were conducted on Sprague Dawley rats, and piracetam (600mg/kg, oral) was provided for five consecutive days. On the fifth day, a single injection of LPS (10mg/kg, i.p.) was administered. Three hours after LPS injection, blood leukocytes and peritoneal macrophages were collected and processed, and a variety of different assays were conducted. Ex vivo treatments were performed on isolated rat blood leukocytes, and in vitro experiments were conducted on rat macrophage cell line J774A.1. Cell viability and the level of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and DNA damage were estimated in untreated (control) and piracetam-, LPS- and LPS+piracetam-treated leukocytes and macrophages. In vivo experiments revealed that rats pretreated with piracetam were significantly protected against LPS-induced increases in ROS levels and DNA damage. Ex vivo isolated leukocytes and J774A.1 cells treated with LPS exhibited augmented ROS levels and DNA damage, which were attenuated with piracetam treatment. Thus, the present study revealed the salutary effect of piracetam against LPS-induced oxidative stress and DNA damage in leukocytes and macrophages.  相似文献   

7.
We investigated, in vitro and in vivo, the cyclosporin A (CsA) regulation of LPS-induced TNF gene expression and subsequent pathophysiologic changes. In vitro dose-response kinetics data showed that CsA inhibited TNF bioactivity in the supernatant without delaying its production, whereas Northern blot and in situ hybridization analysis demonstrated that CsA did not inhibit TNF mRNA expression. We then sought to examine the in vivo effects of CsA (75 mg/kg) in CBA/J mice that were primed with CFA, and injected 2 wk later with LPS. CsA demonstrated suppression of local levels (ascites) of TNF as measured by either bioactivity or an anti-murine TNF ELISA. However, CsA did not decrease mRNA for TNF, or cell-associated TNF. In vivo kinetics studies were performed to show that CsA blocked both local (ascites) and systemic (plasma) LPS-induced TNF production without delaying these effects. CsA inhibited the neutrophilia and lymphopenia that developed after the LPS challenge, but did not block the lung neutrophilic infiltrate. These observations are helpful in understanding the role of the macrophage in CsA immunosuppression, particularly with regard to the ability of CsA to block LPS-induced TNF secretion.  相似文献   

8.
The present study deals with whether lipopolysaccharide (LPS)-induced intra-uterine fetal death (IUFD) is related to LPS-susceptibility of either mother or fetus and how LPS or LPS-induced TNF causes IUFD. LPS-susceptible C3H/HeN or -hypo-susceptible C3H/HeJ pregnant mice and the mice mated reciprocally with these mice were used on days 14 to 16 of gestation for experiments. All of fetuses in pregnant C3H/HeN mice mated with either C3H/HeN males [HeN(HeN)] or C3H/HeJ males [HeN(HeJ)] were killed within 24 hr when injected intravenously (i.v.) with 50 or 100 microg of LPS. On the other hand, the majority of fetuses in C3H/HeJ females mated with either C3H/HeJ males [HeJ(HeJ)] or C3H/HeN males [HeJ(HeN)] survived when injected i.v. with even 400 microg of LPS. These findings indicate that LPS-induced IUFD depends on the maternal LPS-responsiveness. LPS injected into mothers could pass through placenta to fetuses, since an injection with 125I-labeled LPS or IgG into pregnant mice resulted in considerable levels of radioactivity in fetuses as well as placenta. Cultured peritoneal macrophages derived from F1 mice of HeJ(HeN) or HeN(HeJ) mice, produced nitric oxide (NO) and tumor necrosis factor (TNF) in response to LPS, although the levels of NO and TNF were lower in comparison with those of C3H/HeN macrophage cultures, suggesting a possibility that the fetus as well as F1 cells might be responsible to LPS. LPS-induced IUFD was not blocked by treatment with anti-TNF antibody which inhibited LPS-induced TNF production in pregnant females, although an injection of recombinant TNFalpha instead of LPS could induce IUFD, suggesting that the cause of IUFD cannot be attributed to mother-derived TNF alone. The roles of LPS passed through placenta and LPS-induced mediators on IUFD were discussed.  相似文献   

9.
The effect of bacterial lipopolysaccharide (LPS) on macrophage receptors for tumor necrosis factor/cachectin (TNF-R) was studied. At equilibrium, iodinated recombinant human TNF alpha (rTNF alpha) bound to 1100 +/- 200 sites/cell on macrophage-like RAW 264.7 cells with a Kd of 1.3 +/- 0.1 x 10(-9) M. Preexposure of RAW 264.7 cells to 10 ng/ml LPS for 1 h at 37 degrees C resulted in complete loss of cell surface TNF alpha binding sites. 50% loss ensued after 1 h with 0.6 ng/ml LPS, or after 15 min with 10 ng/ml LPS. Complete loss of TNF alpha binding sites occurred without change in numbers of complement receptor type 3. No decrease in TNF-R followed preexposure to LPS at 4 degrees C, nor could LPS displace 125I-rTNF alpha from its binding sites. Although TNF-R disappeared from the surface of intact macrophages following exposure to LPS, specific TNF alpha binding sites were unchanged in permeabilized macrophages, indicating that TNF-R were rapidly internalized. Conditioned media from LPS-treated RAW 264.7 cells induced 30% down-regulation of TNF-R on macrophages from LPS-hyporesponsive mice (C3H/HeJ), suggesting that a soluble macrophage product may be responsible for a minor portion of the LPS effect. Additional evidence against endogenous TNF alpha being the major cause of TNF-R internalization was the rapid onset of the effect of LPS on TNF-R compared to the reported onset of TNF alpha production, the relatively high concentrations of exogenous rTNF alpha required to mimic the effect of LPS, and the inability of TNF alpha-neutralizing antibody to block the effect of LPS. LPS-induced down-regulation of TNF-R was complete or nearly complete not only in RAW 264.7 cells, but also in primary macrophages of both human and murine origin, was less marked in human endothelial cells, and was absent in human granulocytes and melanoma cells and mouse L929 cells. Thus, in situ, macrophages and some other host cells may be resistant to the actions of TNF alpha produced during endotoxinemia, because such cells may internalize their TNF-R in response to LPS before TNF alpha is produced.  相似文献   

10.
We studied the effects of pretreatment with granulocyte-colony stimulating factor (G-CSF) on the production of pro- and anti-inflammatory cytokines induced by lipopolysaccharide (LPS). Mice received G-CSF or control saline once a day for 7 days or once at 1 h before the injection of LPS. Cytokines were measured by enzyme-linked immunosorbent assay or antibody-based electrochemiluminescence assay and cytokine mRNA was measured by RNAse protection assay. Mice pretreated with G-CSF for 7 days before LPS had lower serum levels of LPS-induced interferon-gamma (IFN-gamma) and higher levels of interleukin (IL)-6 and IL-10 than controls. G-CSF-pretreated mice also had lower mRNA levels of IFN-gamma and higher mRNA levels of IL-6 and IL-10 in the spleen and/or liver than controls. G-CSF-pretreated mice had serum levels of tumor necrosis factor, IL-12 p70 and IL-12 p40 similar to controls. G-CSF-pretreated mice had lower levels of spleen IL-18 than controls-serum IL-18 being undetectable in mice after LPS-and lower levels of IL-18 mRNA in the spleen. Mice pretreated with G-CSF 1 h before LPS had lower levels of serum IFN-gamma and spleen IL-18 than controls. G-CSF pretreatment alters the expression of LPS-induced cytokines with a decrease in pro-inflammatory IFN-gamma and an increase in anti-inflammatory IL-6 and IL-10. G-CSF decrease of IL-18 production may be a major mechanism explaining the effects of G-CSF on the production of IFN-gamma.  相似文献   

11.
12.
We evaluated the metabolic capability of murine peripheral granulocytes after administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF) by quantitative flow cytometric assay for H2O2-dependent oxidative product formation. Intraperitoneal administration of a daily dose of 10 micrograms of rhG-CSF for 5 days induced doubling of the leukocyte population. Differential counting of peripheral leukocytes and scattergram by flow cytometry showed an increased mature granulocyte population. After stimulation with phorbol myristate acetate, the granulocytes of the rhG-CSF-administered mice demonstrated some hyperresponsive population and an increased H2O2 production. The hyperresponsive population showed H2O2 production 4-6 times higher than did normal cells. Granulocytes from the G-CSF-treated mice revealed an augmented phagocytic activity and an increased expression of Mac-1 molecules. Moreover, mice treated with G-CSF showed an enhanced resistance against intravenous infection with a lethal dose of E. coli. Granulocytes showing such markedly increased oxidative metabolism may be a significant component of the host defence to various infective organisms.  相似文献   

13.
We examined the effect of dietary alpha-linolenate (18:3n-3)/linoleate (18:2n-6) balance on lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF) production in mouse macrophages. Resident and casein-induced peritoneal macrophages from mice fed a high alpha-linolenate diet produced a higher amount of TNF than in the high linoleate diet group. However, TNF production was not affected by the dietary alpha-linolenate/linoleate balance when thioglycollate- and complete Freund's adjuvant-induced macrophages were stimulated with LPS. Serum TNF levels of mice intraperitoneally injected with LPS was also higher in the high alpha-linolenate group than in the high linoleate group. These diets affected the n-3/n-6 ratios of 20 and 22 carbon highly unsaturated fatty acids in macrophage lipids. Thus, the dietary enrichment with alpha-linolenate was found to enhance TNF production of macrophages isolated under limited conditions.  相似文献   

14.
Abstract Dextran sulphate (DS) 500 (M.W. 500 000) is commonly used as a reticuloendothelial (RE) blocker. We found that lipopolysaccharide (LPS)-induced tumour necrosis factor (TNF) production in sera was enhanced when mice were pretreated with DS500. When mice were pretreated with DS1000 (M.W. 1 000 000), TNF activity in sera was also significantly enhanced by the LPS injection in comparison with the saline-treated group, but not by the pretreatment with the low molecular weight of DS5 (M.W. 5 000), neutral dextran (Dex) 500, or positively-charged diethylaminoethyl dextran (DEAE-Dex) 500. The enhancement of LPS-induced TNF production occurred from 2 h after DS500 pretreatment. Pretreatment with DS500 or DS1000 significantly suppressed the carbon clearance from the blood in mice from 2 h after DS injection, but this suppression was not detected by the pretreatment with DS5, Dex500, or DEAE-Dex500. We suggest that negative-charge and high molecular weight are essential for dextran derivatives to enhance LPS-induced TNF production, and that the enhancing effect of DS is closely related to the suppression of the RE function.  相似文献   

15.
A sugar cane extract (SCE) has been found to have an immunostimulating effect in several animals. Lipopolysaccharide (LPS) is known to induce endotoxin shock via the production of inflammatory modulators such as tumor necrosis factor (TNF)-alpha and nitric oxide (NO). We examined in the present study the effects of SCE on the TNF-alpha and NO production in LPS-stimulated mice peritoneal cells and the endotoxin shock in mice. The supplementation of SCE to peritoneal macrophages cultured with LPS resulted in a significant decrease in NO production. All the mice injected intraperitoneally with LPS and D-galactosamine (LPS+GalN) died within 24 h. However, a peritoneal injection, but no intravenous or oral administration, of SCE (500-1,000 mg/kg) at 3 to 48 h before the LPS+GalN-challenge resulted in a significantly improved survival rate. These results suggest that SCE had a protective effect on LPS-induced endotoxin shock via one of possible mechanisms involving the suppression of NO production in the mouse peritoneal cavity.  相似文献   

16.
为探讨热休克因子1(heatshockfactor 1,HSF1)活化和过表达对内毒素(endotoxin ,ET)所致粒细胞集落刺激因子(granulocyte colonystimulatingfactor,G CSF)基因表达的影响,采用大肠杆菌内毒素即脂多糖(lipopolysaccharide ,LPS)处理RAW2 6 4 7巨噬细胞,并通过热休克预处理诱导HSF1活化,采用Western印迹检测HSP70的表达观察HSF1的活化情况,RT PCR检测热休克反应(heatshockresponse ,HSR)对G CSFmRNA表达的影响;构建HSF1的pcDNA3 1真核表达质粒,采用脂质体转染法建立HSF1过表达RAW 2 6 4 7巨噬细胞株,用免疫细胞化学和Western印迹观察HSF1的表达,RT- PCR及Northern印迹进一步研究HSF1对G CSF基因表达的可能影响.发现LPS诱导巨噬细胞中G- CSFmRNA表达增多,并随时间的延长,表达量逐渐增加;与单纯内毒素处理组相比,热休克预处理后,LPS诱导的巨噬细胞G- CSFmRNA的表达明显被抑制;建立的稳定表达HSF1的RAW 2 6 4 7细胞株中有HSF1蛋白的核移位;HSF1过表达可明显抑制LPS诱导的RAW2 6 4 7巨噬细胞G -CSFmRNA的表达.上述结果表明热休克预处理能抑制LPS诱导的巨噬细胞G- CSFmRNA的表达;HSF1过表达可抑制内毒素诱导的巨噬细胞G CSFmRNA的表达.  相似文献   

17.
A point mutation in Toll-like receptor 4 (Tlr4) gene in C3H/HeJ mice underlies a defect in LPS-induced cytokine production by peritoneal macrophages (PMphi;). Whether the C-C and the C-X-C chemokines are induced differently by LPS between alveolar macrophages (AMphi;) and PMphi; in this mice remains unclear. Thus, we examined the expression and regulation of macrophage inflammatory protein-1alpha (MIP-1alpha) and macrophage inflammatory protein-2 (MIP-2) in C3H/HeJ macrophages. These results showed that the accumulation of MIP-1alpha and MIP-2 mRNA increased dose dependently in response to LPS. PMphi; responded to LPS to produce significantly higher levels of both chemokine mRNA and protein than AMphi;. In addition, both macrophages produced much more MIP-2 than MIP-1alpha by the same doses of LPS stimulation. Moreover, the chemokine production by C3H/HeN macrophages was significantly higher than that of the C3H/HeJ macrophages. IFN-gamma suppressed the LPS-induced MIP-1alpha release but enhanced the LPS-induced MIP-2 secretion in both macrophages. These results show that the chemokine production was induced and regulated differentially in AMphi; and PMphi;.  相似文献   

18.
The development of LPS tolerance has been suggested to be mediated by an inhibition of cytokine synthesis. Here we have studied serum IL-6 and TNF levels in mice after LPS administration. Repeated administration of LPS (35 micrograms daily for 4 days) to mice induced a refractoriness (tolerance) to subsequent administrations of LPS in terms of induction of circulating IL-6 and TNF. To investigate the mechanism by which LPS down-regulates its own induction of cytokine synthesis and the relationship between IL-6 and TNF production, we attempted to revert the inhibition of IL-6 and TNF production using agents like PMA or IFN-gamma, previously reported to activate macrophage production of cytokines. Pretreatment with PMA (4 micrograms, 10 min before LPS) partially restored IL-6 production in LPS-tolerant mice given 2 micrograms LPS. On the other hand, PMA did not restore TNF induction in LPS-tolerant mice, even when administered with high doses of LPS (up to 200 micrograms). A similar reversal of LPS resistance to IL-6, but not TNF, induction by PMA was observed in genetically LPS-resistant C3H/HeJ mice. IFN-gamma also restored, although to a lesser extent than PMA, IL-6 production. However, unlike PMA, IFN-gamma could also partially restore TNF production in LPS-tolerant mice, although only when LPS was administered at high doses. By contrast with PMA, IFN-gamma was clearly more active in restoring TNF synthesis than that of IL-6. Similar results were obtained in genetically LPS-unresponsive C3H/HeJ mice. These data suggest that different mechanisms are implicated in the inhibition of IL-6 and TNF synthesis in LPS-tolerant mice and that part of this inhibition can be overcome by PMA or IFN-gamma.  相似文献   

19.
Lipopolysaccharide (LPS) stimulates macrophages by activating NF-κB, which contributes to the release of tumor necrosis factor (TNF)-α and interleukin (IL)-6. 1,5-anhydro-d-fructose (1,5-AF), a monosaccharide formed from starch and glycogen, exhibits anti-oxidant activity and enhances insulin secretion. This study examined the effects of 1,5-AF on LPS-induced inflammatory reactions and elucidated its molecular mechanisms. Before LPS challenge, mice were pretreated with 1,5-AF (38.5 mg/kg). We found that 1,5-AF pretreatment attenuated cytokine release into the serum, including TNF-α, IL-6 and macrophage chemoattractant protein (MCP)-1. Furthermore, pretreatment with 1,5-AF (500 μg/ml) attenuated cytokine release, and 1,5-AF directly inhibited the nuclear translocalization of the NF-κB p65 subunit in LPS-stimulated murine macrophage-like RAW264.7 cells. This inhibition was responsible for decreased LPS-induced phosphorylation on Ser536 of the NF-κB p65 subunit, which is a posttranslational modification involved in the non-canonical pathway. Collectively, these findings indicate that the anti-inflammatory activity of 1,5-AF occurs via inactivation of NF-κB.  相似文献   

20.
Although G-CSF has been shown to increase neutrophil (polymorphonuclear leukocyte, PMN) recruitment into the lung during pulmonary infection, relatively little is known about the local chemokine profiles associated with this enhanced PMN delivery. We investigated the effects of G-CSF and PMN recruitment on the pulmonary chemokine response to intratracheal LPS. Rats pretreated twice daily for 2 days with an s.c. injection of G-CSF (50 microg/kg) were sacrificed at either 90 min or 4 h after intratracheal LPS (100 microg) challenge. Pulmonary recruitment of PMNs was not observed at 90 min post LPS challenge. Macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC) concentrations in bronchoalveolar lavage (BAL) fluid were similar in animals pretreated with or without G-CSF at this time. G-CSF pretreatment enhanced pulmonary recruitment of PMNs (5-fold) and greatly reduced MIP-2 and CINC levels in BAL fluid at 4 h after LPS challenge. In vitro, the presence of MIP-2 and CINC after LPS stimulation of alveolar macrophages was decreased by coculturing with circulating PMNs but not G-CSF. G-CSF had no direct effect on LPS-induced MIP-2 and CINC mRNA expression by alveolar macrophages. Pulmonary recruited PMNs showed a significant increase in cell-associated MIP-2 and CINC. Cell-associated MIP-2 and CINC of circulating PMNs were markedly increased after exposure of these cells to the BAL fluid of LPS-challenged lungs. These data suggest that recruited PMNs are important cells in modulating the local chemokine response. G-CSF augments PMN recruitment and, thereby, lowers local chemokine levels, which may be one mechanism resulting in the subsidence of the host proinflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号