首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The length and basal diameter of all lateral and terminal budsof vegetative annual shoots of 7-year-oldJuglans regia treeswere measured. All buds were dissected and numbers of cataphylls,embryonic leaves and leaf primordia were recorded. Each axillarybud was ranked according to the position of its associated leaffrom the apex to the base of its parent shoot. Bud size andcontent were analysed in relation to bud position and were comparedwith the size and number of leaves of shoots in equivalent positionswhich extended during the following growing season. Length andbasal diameter of axillary buds varied according to their positionon the parent shoot. Terminal buds contained more embryonicleaves than any axillary bud. The number of leaves was smallerfor apical and basal axillary buds than for buds in intermediatepositions on the parent shoot only. All new extended shootswere entirely preformed in the buds that gave rise to them.Lateral shoots were formed in the median part of the parentshoot. These lateral shoots derived from buds which were largerthan both apical and basal ones. Copyright 2001 Annals of BotanyCompany Juglans regia L., Persian walnut tree, branching pattern, preformation, bud content, shoot morphology  相似文献   

2.
The morphogenic pathway of adventitious bud and shoot regenerationat the ends of Troyer citrange epicotyl cuttings is determinedby polarity and explant orientation. In explants planted verticallywith the basal end inserted in the medium, bud formation atthe apical end occurs by direct organogenesis. Bud growth andsubsequent shoot formation is markedly increased by the additionof 6-benzyladenine (BA) to the medium. This growth regulatoralso increases the number of buds formed. When they come intocontact with the culture medium, both the apical end and thebasal end of the cuttings form a vigorous callus with many xyllaryelements, more numerous in the calli from the basal end. Inthese calli, buds differentiate by a process of indirect organogenesis.This indirect regeneration pathway requires the addition of6-benzyladenine to the medium, and the number of buds formedis higher at the apical end than at the basal end of the cuttings.This pathway of regeneration is reduced as the position of thecuttings during incubation deviates from the normal uprightvertical position. Thus, for the basal end of the cuttings,the number of buds and shoots formed is higher when the explantsare placed vertically than when they lie on the surface of themedium. For the apical end, this number is higher in explantsplaced horizontally than when inserted vertically in the mediumin an inverted position. Copyright 1999 Annals of Botany Company Troyer citrange, Citrus sinensis x Poncirus trifoliata, explant orientation, histology, hormone dependence, morphogenesis, organogenesis, polarity, xylogenesis.  相似文献   

3.
TOMPSETT  P. B. 《Annals of botany》1978,42(4):889-900
Vegetative shoots from the base of the crown, and from partsof the tree likely to form male or female buds, were collectedfrom 40–years–old trees of Picea sitchensis (Bong.)Carr. throughout the 1973–4 annual growth cycle. The morphologyand growth rates of the terminal buds on these shoots were assessed. Bud scale primordia were formed most quickly in the female position,at an intermediate rate in the male position and most slowlyin the basal vegetative position during April, May and June.In July and early August the apical meristems swelled to formdomes and continued to grow at the same relative rates in themale, female and basal vegetative positions. Reproductive budswere first morphologically distinct in late August and sporangiaappeared in October. Dormancy, defined by the pause in apicalvolume increase, extended from mid-October to mid–March.Young strobili grew much faster than basal vegetative shootsof the same age between mid–March and bud burst in lateApril. Throughout the growth cycle, external changes in budsize reflected changes in size of the apical meristem, youngstrobihis or young vegetative shoot inside the bud. It is proposed that the rate of growth of an apical meristemmay be causally related to the type of bud which subsequentlydevelops from it. Sitka spruce, Picea sitchensis, bud development, morphology, growth of apical dome, flowering  相似文献   

4.
The numbers of nodes on single flush terminal and axillary shootmodules were determined in a range of Persea species and cultivars.They were compared with node numbers in apical and axillarybuds to investigate whether preformation or neoformation ofnodes occurred. Mean number of nodes on terminal shoots was14 for vegetative shoot modules and 21 for reproductive shootmodules, and was similar across species, cultivars, rootstocks,locations and climates. In the cultivar 'Hass', numbers of nodeson axillary shoot modules were variable, and lower than thosefor primary shoot modules forming the dominant growth axis ofannual growth modules. There was a mean of 12 nodes for vegetativeproleptic shoot modules, 15 for reproductive proleptic shootmodules and six for sylleptic shoot modules, which were invariablyvegetative. All nodes were preformed within both apical andaxillary proleptic buds. This was not the case in syllepticbuds, which burst contemporaneously with extension of the parentaxis. The majority (63%) of reproductive buds formed indeterminatecompound inflorescences. They carried six basal bud scales,six axillary inflorescences and their subtending bracts, andup to nine true leaves.Copyright 1994, 1999 Academic Press Persea Clus., avocado, Persea americana Mill., bud morphology, shoot growth, preformation, prolepsis  相似文献   

5.
InRosa hybridaL. cv. Ruidriko ‘Vivaldi’®, theeffect of position on growth and development potentials of axillarybuds was investigated by single internode cuttings excised alongthe floral stem and its bearing shoot. The experiments werecarried out in both glasshouses and in a phytotron. The studyfirstly concerned the development of the primary shoot fromthe onset of bud growth until anthesis. The primary shoot wasthen bent horizontally to promote the growth of the two mostproximal secondary buds, the collateral buds, already differentiatedinside the primary bud. They gave rise to basal shoots. In thebasipetal direction, the axillary buds along the floral stemexhibited both an increase in the lag time before bud growthand a decrease in bud growth percentage, demonstrating the existenceof a physiological basipetal gradient of inhibition intrinsicto the buds or due to short range correlations. The same basipetalgradient of inhibition was observed along the floral stem andits bearing shoot, demonstrating that the age of the bud wasnot a major factor in determining the rate of bud growth. Afterbending the primary shoot, the percentage of collateral budgrowth was also affected by the cutting position. The more proximalthe cutting, the lower the sprouting ability of collateral buds.The growth potential of these buds appeared to be already determinedinside the main bud before cutting excision.Copyright 1998 Annalsof Botany Company Axillary bud; basal shoot; cutting; development; endodormancy; growth; paradormancy; position; primary shoot;Rosa hybridaL.; rose; secondary bud; topophysis.  相似文献   

6.
Intact and decapitated 6-node shoots of Hygrophila sp. weregrown aseptically immersed in liquid half-strength Knop's solutionwith microelements and 2% (w/v) sucrose (control medium), andin medium with 0.1 mg l–1 benzyladenine (BA). In intactshoots grown in control medium apical dominance suppressed outgrowthof the lateral buds; in decapitated shoots buds grew out atseveral of the most apical nodes, increasing in size acropetally.There was a lag in outgrowth of the bud at the most apical node,attributable to its initially smaller size. Lateral shoots grewout first at basal nodes of intact shoots in BA medium, decreasingin size acropetally; in decapitated shoots in BA medium lateralshoots of approximately equal size grew out at all nodes. Differentialeffects of decapitation and cytokinin treatment on lateral shootoutgrowth along the shoot could be interpreted by postulatinga basipetally decreasing gradient of endogenous auxin concentrationin the intact shoot. Application of 20 mg l–1 indoleaceticacid (IAA) in agar to decapitated shoots completely preventedbud outgrowth for at least 7 d in control medium, inhibitingit thereafter, and inhibited bud outgrowth in BA medium, thussupporting the hypothesis. Comparison of lateral shoot outgrowthin whole decapitated shoots and severed decapitated shoots (isolatednodes) lent no support to the alternative hypothesis that theremight be an acropetally decreasing concentration gradient ofa bud-promoting substance in the intact shoot, and demonstratedmuch greater lateral shoot growth in isolated nodes. The resultsemphasize important correlative relationships between the partsof a shoot with several nodes.  相似文献   

7.
Buds of shoots from the trunk, main branches, secondary branchesand short branches of 10–21 year-old Nothofagus pumiliotrees were dissected and their contents recorded. The numberof differentiated nodes in buds was compared with the numberof nodes of sibling shoots developed at equivalent positionsduring the following growing season. Axillary buds generallyhad four cataphylls, irrespective of bud position in the tree,whereas terminal buds had up to two cataphylls. There were morenodes in terminal buds, and the most distal axillary buds, oftrunk shoots than in more proximal buds of trunk shoots, andin all buds of shoots at all other positions. The highest numberof nodes in the embryonic shoot of a bud varied between 15 and20. All shoots had proximal lateral buds containing an embryonicshoot with seven nodes, four with cataphylls and three withgreen leaf primordia. The largest trunk, and main branch, shootswere made up of a preformed portion and a neoformed portion;all other shoots were entirely preformed. In N. pumilio, theacropetally-increasing size of the sibling shoots derived froma particular parent shoot resulted from differences in: (1)the number of differentiated organs in the buds; (2) the probabilityof differentiation of additional organs during sibling shootextension; (3) sibling shoot length; (4) sibling shoot diameter;and (5) the death of the apex and the most distal leaves ofeach sibling shoot. Copyright 2000 Annals of Botany Company Axis differentiation, branching, bud structure, leaf primordia, neoformation, Nothofagus pumilio, preformation, size gradient  相似文献   

8.
The effect of axillary bud age on the development and potentialfor growth of the bud into a shoot was studied in roses. Ageof the buds occupying a similar position on the plant variedfrom 'subtending leaf just unfolded' up to 1 year later. Withincreasing age of the axillary bud its dry mass, dry-matterpercentage and number of leaves, including leaf primordia, increased.The apical meristem of the axillary bud remained vegetativeas long as subjected to apical dominance, even for 1 year. The potential for growth of buds was studied either by pruningthe parent shoot above the bud, by grafting the bud or by culturingthe bud in vitro. When the correlative inhibition (i.e. dominationof the apical region over the axillary buds) was released, additionalleaves and eventually a flower formed. The number of additionalleaves decreased with increasing bud age and became more orless constant for axillary buds of shoots beyond the harvestablestage, while the total number of leaves preceding the flowerincreased. An increase in bud age was reflected in a greaternumber of scales, including transitional leaves, and in a greaternumber of non-elongated internodes of the subsequent shoot.Time until bud break slightly decreased with increasing budage; it was long, relatively, for 1 year old buds, when theysprouted attached to the parent shoot. Shoot length, mass andleaf area were not clearly affected by the age of the bud thatdeveloped into the shoot. With increasing bud age the numberof pith cells in the subsequent shoot increased, indicatinga greater potential diameter of the shoot. However, final diameterwas dependent on the assimilate supply after bud break. Axillarybuds obviously need a certain developmental stage to be ableto break. When released from correlative inhibition at an earlierstage, increased leaf initiation occurs before bud break.Copyright1994, 1999 Academic Press Age, axillary bud, cell number, cell size, pith, shoot growth, Rosa hybrida, rose  相似文献   

9.
The morphology of axillary shoots of pea plants (Pisum sativumL. cv. Alaska) was analysed as a function of the position ofthe bud on the plant axis and the stage of plant developmentwhen the buds began to grow. Buds from the three most basalnodes were stimulated to develop by decapitating the main shootwhen buds were still growing (4 d plants), shortly after budsbecame dormant (7 d plants) or after the initiation of floweringon the main shoot (post-flowering plants, about 21 d after sowing).Branch shoots were scored for node of floral initiation (NFI),shoot length, and node of multiple leaflets (NML), a measureof leaf complexity. Shoots that developed spontaneously fromupper nodes (nodes 5-9) on intact post-flowering plants werescored for NFI. NFI for basal buds on 4 and 7 d plants variedas a function of nodal position and ranged from 5 to 6·7nodes. NFI on these plants was not influenced by bud size orwhether a bud was growing or dormant when the plant was decapitated.NFI for shoots derived from basal buds on decapitated post-floweringplants and upper nodes on intact post-flowering plants was about4. Reduced NFI on post-flowering plants may be due to depletionof a cotyledon-derived floral inhibitor. Basal axillary shootson 4 d plants were about 20% longer than those on 7 d plantsand about five times longer than those on post-flowering plants.These differences may be due to depletion of gibberellic acidsfrom the cotyledons. NFI and NML for the main shoot and forbasal axillary shoots were similar under some experimental conditionsbut different under other conditions, so it is likely that eachdevelopmental transition is regulated independently.Copyright1995, 1999 Academic Press Apical dominance, bud development, garden pea, initiation of flowering, Pisum sativum L., shoot morphology  相似文献   

10.
Regulation of Branching in Decussate Species with Unequal Lateral Buds   总被引:1,自引:0,他引:1  
In the decussate plants Alternanthera philoxeroides and Hygrophilasp. the opposite axillary bud primordia are of unequal sizefrom the time of their inception; the larger or + buds lie alongone helix and the smaller or – buds along another (helicoidalsystem). In decapitated plants of Alternanthera both buds grewout, but unequally; if the node was vertically split growthof the two shoots was more equal, and if the + buds were excisedgrowth of the – shoots approximately equalled that ofcontrol + shoots. In decapitated shoots of Hygrophila grownin sterile culture only one bud, the + or larger one, grew outat each of the upper nodes. In excised cultured nodes, also,only the + bud grew out; but if the nodes were split longitudinallyboth buds grew out, initially rather unequally. These experimentssupport the view that the regulation of branching in these specieshas two components, apical dominance and the dominance of thelarger (+) bud over the smaller (–) bud at the same node.The restriction of growth potentiality imposed on the –bud is not permanent but can be modified. Further correlativeeffects on bud outgrowth include those of the subtending leavesand of buds at other nodes.  相似文献   

11.
The influence of the apical bud on the growth of the lateral buds on subterranean shoots was studied in Stachys sieboldiiMig. and Helianthus rigidus(Gass.) Desv. Removing and damaging the apical parts of subterranean shoots or their treatment with 2% chlorocholine chloride shoot enhanced shoot branching. The response to light of the apical bud was invariably negative: the stolons, which came out or were extracted from the soil, grew back into the ground (negative phototropism). The response to light of lateral buds was autonomous and depended on the conditions of their initiation. The lateral buds developed in darkness manifested negative phototropism when withdrawn from the soil and exposed to the light, whereas the buds developed in the light showed positive phototropism. The author concludes that the concept of apical dominance, thoroughly studied in aboveground shoots, is also valid for subterranean shoots. However, in contrast to the former, in the latter case, the apical bud does not control the growth orientation of the lateral buds.  相似文献   

12.
Cucumber explants including at least part of the cotyledon,a short section of hypocotyl, and the apical bud, are capableof producing multiple axillary buds from the seedling apex andadventitious shoots from the hypocotyl base in a medium whichcontains 2·0 mg dm–3 of kinetin. Removal of theapical bud triples the number of shoots produced from the apexof explants with two intact cotyledons but does not affect shootproduction from explants with some or all of their cotyledonsremoved. The area of intact cotyledon also influences morphogenesis,as explants with both cotyledons removed, failed to produceadventitious shoots from the hypocotyl base. Culture in continuousdarkness entirely prevents shoot development from the explantbase, but has little influence on shoot production from theapex. The influence of endogenous growth regulators and apicaldominance on the morphogenesis of shoots in cucumber seedlingsare discussed. Key words: Cucumber, cotyledons, apical dominance, morphogenesis, adventitious shoots, Cucumis sativus  相似文献   

13.
Cytokinin/Auxin Control of Apical Dominance in Ipomoea nil   总被引:3,自引:0,他引:3  
Although the concept of apical dominance control by the ratioof cytokinin to auxin is not new, recent experimentation withtransgenic plants has given this concept renewed attention.In the present study, it has been demonstrated that cytokinintreatments can partially reverse the inhibitory effect of auxinon lateral bud outgrowth in intact shoots of Ipomoea nil. Althoughless conclusive, this also appeared to occur in buds of isolatednodes. Auxin inhibited lateral bud outgrowth when applied eitherto the top of the stump of the decapitated shoot or directlyto the bud itself. However, the fact that cytokinin promotiveeffects on bud outgrowth are known to occur when cytokinin isapplied directly to the bud suggests different transport tissuesand/or sites of action for the two hormones. Cytokinin antagonistswere shown in some experiments to have a synergistic effectwith benzyladenine on the promotion of bud outgrowth. If theratio of cytokinin to auxin does control apical dominance, thenthe next critical question is how do these hormones interactin this correlative process? The hypothesis that shoot-derivedauxin inhibits lateral bud outgrowth indirectly by depletingcytokinin content in the shoots via inhibition of its productionin the roots was not supported in the present study which demonstratedthat the repressibility of lateral bud outgrowth by auxin treatmentsat various positions on the shoot was not correlated with proximityto the roots but rather with proximity to the buds. Resultsalso suggested that auxin in subtending mature leaves as wellas that in the shoot apex and adjacent small leaves may contributeto the apical dominance of a shoot. (Received September 24, 1996; Accepted March 16, 1997)  相似文献   

14.
Carroll AL  Quiring DT 《Oecologia》2003,136(1):88-95
Herbivory by Zeiraphera canadensis Mut. & Free. (Lepidoptera: Tortricidae), an early season folivore of white spruce [ Picea glauca(Moench) Voss], has been associated with a shift in the timing of bud burst by its host during the subsequent year. We tested the hypothesis that a herbivory-induced shift in the phenology of bud development improves the window for colonisation of white spruce buds by Z. canadensis. Feeding on cortical tissue of elongating shoots caused the destruction of apical buds and an interruption of apical dominance in the year following herbivory. White spruce compensated for damage with the activation of dormant buds; mainly at proximal positions along shoots. As a result, half of all active buds on previously damaged branches were located immediately adjacent egg sites (i.e. previous year's bud scales), whereas <10% of active buds on intact shoots were situated there. More than 40% of newly emerged larvae colonised the basal buds of damaged shoots versus just 10% for intact shoots. Previous herbivory also influenced the initiation of bud burst. All buds flushed 2 days earlier on damaged shoots and date of bud burst was inversely correlated to bud density, indicating that short damaged shoots with large numbers of buds were stronger sinks for nutrients required for bud development. Egg hatch was best synchronized with early bursting buds on damaged branches. As a consequence, 89% of first-instar larvae successfully colonised buds on damaged branches while only 55% were successful on undamaged branches. Improved survival of larvae in the year following herbivory was a direct result of the evolved response by white spruce to the interruption of apical dominance. The pattern of herbivory by Z. canadensis may have evolved as a strategy to enhance the quality of white spruce for their offspring.  相似文献   

15.
This study aimed to underpin the development of a generic predictivemodel of the regulation of shoot branching by roots in nodallyrooting perennial prostrate-stemmed species using knowledgegained from physiological studies of Trifolium repens. Experiment1 demonstrated that the net stimulatory influence from the basalrooted region of the plant on growth of newly emerging axillarybuds on the primary stem decreased as their phytomeric distancefrom the basal root system increased. Experiment 2 found thatat any one time the distribution of net root stimulus (NRS)to the apical bud on the primary stem and all lateral brancheswas fairly uniform within a single plant. Thus, although NRSavailability was uniform throughout the shoot system at anypoint in time, it progressively decreased as shoot apical budsgrew away from the basal root system. Based on these findings,a preliminary predictive model of the physiological regulationof branching pattern was developed. This model can explain thedecline in growth rate of buds on a primary stem as it growsaway from its basal root system but not the rapid progressivedecline in secondary branch development on successive lateralbranches. Thus knowledge of NRS availability to emerging budsis not, by itself, a sufficient basis from which to constructa predictive model. In addition, it seems that the ability ofan emerging bud to become activated in response to its localNRS availability is, at least in part, directly influenced bythe activation level of its parent apical bud. The experimentaltesting of this hypothesis, required for continued developmentof the model, is proceeding. Key words: Axillary bud outgrowth, branch development, bud activation, intra-plant variation, nodal roots, prostrate clonal herbs, root signals, Trifolium repens Received 11 September 2007; Revised 25 November 2007 Accepted 18 January 2008  相似文献   

16.
The effect of assimilate supply on axillary bud developmentand subsequent shoot growth was investigated in roses. Differencesin assimilate supply were imposed by differential defoliation.Fresh and dry mass of axillary buds increased with increasedassimilate supply. The growth potential of buds was studiedeither by pruning the parent shoot above the bud, by graftingthe bud or by culturing the bud in vitro. Time until bud breakwas not clearly affected by assimilate supply during bud development,Increase in assimilate supply slightly increased the numberof leaves and leaf primordia in the bud; the number of leavespreceding the flower on the shoot grown from the axillary budsubstantially increased. No difference was found in the numberof leaves preceding the flower on shoots grown from buds attachedto the parent shoot and those from buds grafted on a cutting,indicating that at the moment of release from inhibition thebud meristem became determined to produce a specific numberof leaves and to develop into a flower. Assimilate supply duringaxillary bud development increased the number of pith cells,but the final size of the pith in the subsequent shoot was largelydetermined by cell enlargement, which was dependent on assimilatesupply during shoot growth. Shoot growth after release frominhibition was affected by assimilate supply during axillarybud development only when buds sprouted attached to the parentshoot, indicating that shoot growth is, to a major extent, dependenton the assimilate supply available while growth is taking place.Copyright1994, 1999 Academic Press Assimilate supply, axillary bud, cell number, cell size, defoliation, development, growth potential, meristem programming, pith, Rosa hybrida, rose, shoot growth  相似文献   

17.
Leaf and shoot distortions and retarded shoot growth in Vitis vinifera L. prevalent in Australian vineyards in early spring, were investigated in replicated field experiments over 3 yrs. Leaf distortion and retarded shoot growth were identified as damage due to feeding of extremely high populations of over-wintered deutogynes of Calepitrimerus vitis (Nalepa) (grape rust mite). This damage was hitherto known in Australia as Restricted Spring Growth (RSG), a syndrome comprising several growth abnormality symptoms, none with a clearly identified cause or a successful treatment. A successful treatment against C. vitis was used to selectively eliminate RSG, while C. vitis numbers were recorded using a validated trapping technique; intercepting deutogynes migrating from winter shelters in the wooden vine structure, to emerging green tissues. Severe leaf distortion was associated with >400 C. vitis deutogynes per spur, while >1000 per spur had the added effect of severely retarding shoot growth. A 43.0–47.2% shoot length reduction was recorded for Cabernet Sauvignon, 27.1–32.8% for Sauvignon Blanc, when 4–6 leaves were separated. Symptoms were most prominent up to 8–9 separated leaves, however 24.7–30.4% shoot length reduction was still evident at flowering, and 12.8% circa fruit set. C. vitis effect on vine fruitfulness, and yield parameters at fruit set, were also studied. Once successfully treated to prevent C. vitis damage, poor bud burst remained evident in some vineyards. Surveys of unburst buds from such vineyards revealed presence of Colomerus vitis (Pagenstecher) (grape bud mite). When Col. vitis numbers in unburst buds reached 100–500 per bud, apical meristems of primary, and commonly also secondary buds were dead, preventing bud burst. The remaining living scale tissue was distinctly scarred. Bud and associated shoot damage were documented. Retarded shoot growth and leaf distortion, previously attributed to RSG, are misdiagnosed C. vitis spring feeding damage. Clustered high infestations of Col. vitis can cause bud-axis necrosis, bud burst failure, shoots with short basal internodes, and short, thin, zigzagged shoots with absent fruit clusters; all previously considered RSG.This revised version was published online in May 2005 with a corrected cover date.  相似文献   

18.
The interaction of environmental and genetic variation in hazelnut (Corylus avellana) shoot development and the behaviour, survival, and colonisation of eriophyid bud mites (Phytoptus avellanae and Cecidophyopsis vermiformis) were studied. The distribution of galled buds on shoots indicated that mites colonised only those buds formed during the mite migration period. The point of entry is probably the growing shoot tip. Once within this structure, as the shoot develops the mites have access to a succession of newly-formed, bud primordia that are unprotected by bud scales. The relative accessibility of the apical meristem and bud primordia may affect host susceptibility.  相似文献   

19.
Most apical resting buds of Choisya tenata include inflorescence buds in the axils of their lower consecutive paired scales. These inflorescences develop as apical buds which burst in spring. The whole of the lateral inflorescence system on a shoot originating from an apical bud may be viewed as a single, proliferous inflorescence. After the spring flush there are usually two other flushes of the same shoot within the same season, each of which may be accompanied by the development of lateral inflorescences as in the spring flush. Each further flush produces an apical 'lammas shoot'. As an apical lammas shoot elongates, lateral lammas shoots may also develop from upper, previously resting, axillary buds on the underlying stem segment of the preceding flush. Lateral inflorescences on apical lammas shoots arise from axillary buds preformed within the briefly-dormant apical buds terminating the preceding flush. These inflorescences, as well as the spring ones, represent proleptic shoots. The production of resting apical buds between two intra-season flushes of a shoot may be fugacous, without the differentiation of perfect bud-scales, and with curtailmenl ol internode elongation. As no environmental influence seems to be responsible for intra-season rhythmicity in development, this is said to be endorhythmic. The interrelations of proleptic to sylleptic shoots are discussed.  相似文献   

20.
The outgrowth of lateral buds is known to be controlled by theupper shoot tissues, which include the apex, the young leavesand the upper stem. An analysis of the influence of these plantparts on axillary bud elongation in Ipomoea nil was carriedout by various treatments on these specific tissues. A restriction of elongation in the main shoot due to eitherdecapitation or shoot inversion resulted in the release of apicaldominance A non-linear type of compensating growth relationshipwas observed between the 13 cm apical growing region of thestem and the lateral buds. It was determined by decapitation,defoliation and AgNO3 treatments that both the 13 cm stem-growthregion and the young leaves (1–5 cm in length) had a muchgreater inhibitory influence on the outgrowth of specified lateralbuds than did the stem apex (consisting of the terminal 0.5cm of the shoot). The specified lateral buds which were analyzedfor outgrowth were located a number of nodes below the shootapex. The intervening nodes were debudded. Although the importanceof young leaves in the control of apical dominance has beenpreviously recognized, the most significant result from thepresent study with Ipomoea was the strong influence of the 13cm apical growth region of the stem on the out growth of thelateral buds. Apical dominance, Ipomoea nil L., Pharbitis nil, growth region, lateral bud outgrowth, decapitation, defoliation, shoot inversion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号