首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Ghrelin is an important endocrine peptide that links the gastrointestinal system and brain in the regulation of food intake and energy expenditure. In human, rat, and goldfish plasma levels of ghrelin and GH are elevated in fasted animals, suggesting that ghrelin is an orexigenic signal and a driving force behind the elevated plasma levels of GH during fasting. Ghrelin's orexigenic action is mediated by the ghrelin receptor (GHS-R1a and GHS-R1b) which is localized on neuropeptide Y (NPY) neurons in the brain. Studies were undertaken to investigate the effect of short-term fasting on plasma ghrelin and brain expression of GHS-R1a, GHS-R1b, and NPY in the tilapia. Fasting for 7 days had no effect on plasma ghrelin concentrations, whereas significant increases in plasma levels of GH were observed on day 3. Fasting significantly reduced plasma levels of IGF-I on days 3 and 7, and of glucose on days 3, 5, and 7. Brain expression of ghrelin and GHS-R1b were significantly elevated in fasted fish on day 3, but were significantly reduced on day 5. This reduction was likely due to a significant increase in the expression in the fed controls on day 5 compared to day 0. No change was detected in the expression of GHS-R1a or NPY in the brain. These results indicate that ghrelin is not acting as a hunger signal in short-term fasted tilapia and is not responsible for the elevated levels of plasma GH.  相似文献   

2.
The purpose of the present study was to identify the role of age, nutritional state and some metabolic hormones in control of avian hypothalamic and ovarian ghrelin/ghrelin receptor system. We examined the effect of food restriction, administration of ghrelin 1–18, ghrelin antagonistic analogue (D-Lys-3)-GHRP-6, obestatin and combinations of them on the expression of ghrelin and ghrelin receptor (GHS-R1a) in hypothalamus and ovary of old (23 months of age) and young (7 months of age) chickens. Expression of mRNAs for ghrelin and GHS-R1a in both hypothalamus and largest ovarian follicle was measured by RT-PCR. It was observed that food restriction could promote the expression of ghrelin and GHS-R1a in hypothalamus and ovary of the old chickens, but in the young chickens it reduced expression of ghrelin and did not affect expression of GHS-R1a in the ovary. Administration of ghrelin 1–18 did not affect hypothalamic or ovarian ghrelin mRNA, but significantly increased the expression of GHS-R1a in hypothalamus, but not in ovary. (D-Lys-3)-GHRP-6, significantly stimulated accumulation of ghrelin, but not GHS-R1a mRNA in hypothalamus or ghrelin or GHS-R1a in the ovary. Ghrelin 1–18 and (D-Lys-3)-GHRP-6, when given together, were able either to prevent or to induce effect of these hormones. Obestatin administration increased expression of ghrelin gene in the hypothalamus, but not expression of hypothalamic GHS-R1a, ovarian ghrelin and GHS-R1a. Furthermore, obestatin was able to modify effect of both ghrelin and fasting on hypothalamic and ovarian mRNA for ghrelin GHS-R1a. Our results (1) confirm the existence of ghrelin and its functional receptors GHS-R1a in the chicken hypothalamus and ovary (2) confirm the age-dependent control of ovarian ghrelin by feeding, (3) demonstrate, that nutritional status can influence the expression of both ghrelin and GHS-R1a in hypothalamus and in the ovary (3) demonstrates for the first time, that ghrelin can promote generation of its functional receptor in the hypothalamus, but not in the ovary, (4) show that ghrelin1–18 and (D-Lys-3)-GHRP-6 could not only be antagonists in the action on chicken hypothalamus and ovaries, but also independent regulators and even agonists, and (5) provide first evidence for action of obestatin on hypothalamic ghrelin and on the response of hypothalamic and ovarian ghrelin/GHS-R1a system to food restriction. These data indicate the involvement of both hypothalamic and ovarian ghrelin/GHS-R1 systems in mediating the effects of nutritional status, ghrelin and obestatin on reproductive processes.  相似文献   

3.
Ghrelin, an endogenous ligand of the growth hormone secretagogue receptor (GHS-R), is the only circulating agent to powerfully promote a positive energy balance. Such action is mediated predominantly by central nervous system pathways controlling food intake, energy expenditure, and nutrient partitioning. The ghrelin pathway may therefore offer therapeutic potential for the treatment of catabolic states. However, the potency of the endogenous hormone ghrelin is limited due to a short half-life and the fragility of its bioactivity ensuring acylation at serine 3. Therefore, we tested the metabolic effects of two recently generated GHS-R agonists, BIM-28125 and BIM-28131, compared with ghrelin. All agents were administered continuously for 1 mo in doses of 50 and 500 nmol x kg(-1) x day(-1) using implanted subcutaneous minipumps in rats. High-dose treatment with single agonists or ghrelin increased body weight gain by promoting fat mass, whereas BIM-28131 was the only one also increasing lean mass significantly. Food intake increased during treatment with BIM-28131 or ghrelin, whereas no effects on energy expenditure were detected. With the lower dose, only BIM-28131 had a significant effect on body weight. This also held true when the compound was administered by subcutaneous injection three times/day. No symptoms or signs of undesired effects were observed in any of the studies or treated groups. These results characterize BIM-28131 as a promising GHS-R agonist with an attractive action profile for the treatment of catabolic disease states such as cachexia.  相似文献   

4.
Our objective is to determine the neuromodulatory role of ghrelin in the brain. To identify neurons that express the ghrelin receptor [GH secretagogue receptor (GHS-R)], we generated GHS-R-IRES-tauGFP mice by gene targeting. Neurons expressing the GHS-R exhibit green fluorescence and are clearly evident in the hypothalamus, hippocampus, cortex, and midbrain. Using immunohistochemistry in combination with green fluorescent protein fluorescence, we identified neurons that coexpress the dopamine receptor subtype 1 (D1R) and GHS-R. The potential physiological relevance of coexpression of these two receptors and the direct effect of ghrelin on dopamine signaling was investigated in vitro. Activation of GHS-R by ghrelin amplifies dopamine/D1R-induced cAMP accumulation. Intriguingly, amplification involves a switch in G protein coupling of the GHS-R from Galpha(11/q) to Galpha(i/o) by a mechanism consistent with agonist-dependent formation of GHS-R/D1R heterodimers. Most importantly, these results indicate that ghrelin has the potential to amplify dopamine signaling selectively in neurons that coexpress D1R and GHS-R.  相似文献   

5.
Ghrelin, a novel peptide isolated from stomach tissue of rats and humans, has been identified as the endogenous ligand for the growth hormone secretagogue receptor (GHS-R). In addition to its secretion from the stomach, ghrelin is also expressed in the hypothalamic arcuate nucleus, intestine, kidney, placenta, and pancreas. GHS-R mRNA, on the other hand, is expressed in the hypothalamus, pituitary, heart, lung, liver, pancreas, stomach, intestine, and adipose tissue. Ghrelin is considered to have important roles in feeding regulation and energy metabolism as well as in the release of growth hormone (GH). Recent physiological experiments on the pancreas have shown that ghrelin regulates insulin secretion. However, sites of action of ghrelin in the pancreas are yet to be identified. In this study, to gain insight into the role of ghrelin in rat pancreatic islets, we used immunohistochemistry to determine the localization of ghrelin and GHS-R in islet cells. Double fluorescence immunohistochemistry revealed that weak GHS-R-like immunoreactivity was found in B cells containing insulin. GHS-R immunoreactivity overlapped that of glucagon-like immunoreactive cells. Moreover, both ghrelin and GHS-R-like immunoreactivities were detected mostly in the same cells in the periphery of the islets of Langerhans. These observations suggest that ghrelin is synthesized and secreted from A cells, and acts back on A cells in an autocrine and/or paracrine manner. In addition, ghrelin may act on B cells via GHS-R to regulate insulin secretion.  相似文献   

6.
7.
Despite its central role in signaling and the potential therapeutic applications of inverse agonists, the molecular mechanisms underlying G protein-coupled receptor (GPCR) constitutive activity remain largely to be explored. In this context, ghrelin receptor GHS-R1a is a peculiar receptor in the sense that it displays a strikingly high, physiologically relevant, constitutive activity. To identify the molecular mechanisms responsible for this high constitutive activity, we have reconstituted a purified GHS-R1a monomer in a lipid disc. Using this reconstituted system, we show that the isolated ghrelin receptor per se activates G(q) in the absence of agonist, as assessed through guanosine 5'-O-(thiotriphosphate) binding experiments. The measured constitutive activity is similar in its extent to that observed in heterologous systems and in vivo. This is the first direct evidence for the high constitutive activity of the ghrelin receptor being an intrinsic property of the protein rather than the result of influence of its cellular environment. Moreover, we show that the isolated receptor in lipid discs recruits arrestin-2 in an agonist-dependent manner, whereas it interacts with μ-AP2 in the absence of ligand or in the presence of ghrelin. Of importance, these differences are linked to ligand-specific GHS-R1a conformations, as assessed by intrinsic fluorescence measurements. The distinct ligand requirements for the interaction of purified GHS-R1a with arrestin and AP2 provide a new rationale to the differences in basal and agonist-induced internalization observed in cells.  相似文献   

8.
To determine mechanisms for age-related decrease of GHS-R1a expression in the chicken proventriculus, changes in mRNA expression of ghrelin and ghrelin-O-acetyltransferase (GOAT) as well as ghrelin concentrations in the proventriculus and plasma were examined in growing chickens. Changes in expression levels of ghrelin, GOAT and GHS-R1a mRNAs were also examined in different brain regions (pituitary, hypothalamus, thalamus, cerebellum, cerebral cortex, olfactory bulb, midbrain and medulla oblongata). Ghrelin concentrations in the proventriculus and plasma increased with aging and reached plateaus at 30–50 days after hatching. High level of ghrelin mRNA decreased at 3 days after hatching, and it became stable at half of the initial level. Expression levels of GHS-R1a and GOAT decreased 3 or 5 days after hatching and became stable at low levels. Significant negative correlations were found between plasma ghrelin and mRNA levels of GOAT and GHS-R1a. Expression levels of ghrelin mRNA were different in the brain regions, but a significant change was not seen with aging. GHS-R1a expression was detected in all brain regions, and age-dependent changes were observed in the pituitary and cerebellum. Different from the proventriculus, the expression of GOAT in the brain increased or did not change with aging. These results suggest that decreased GHS-R1a and GOAT mRNA expression in the proventriculus is due to endogenous ghrelin-induced down-regulation. Expression levels of ghrelin, GOAT and GHS-R1a in the brain were independently regulated from that in the proventriculus, and age-related and region-dependent regulation pattern suggests a local effect of ghrelin system in chicken brain.  相似文献   

9.
Ghrelin, released from the stomach, stimulates food intake through activation of the ghrelin receptor (GHS-R) located on neuropeptide Y (NPY)/agouti-related peptide (AgRP) neurons in the hypothalamus. A role for the energy sensor AMP-activated protein kinase (AMPK) and its downstream effector uncoupling protein 2 (UCP2) in the stimulatory effect of exogenous ghrelin on NPY/AgRP expression and food intake has been suggested. This study aimed to investigate whether a rise in endogenous ghrelin levels is able to influence hypothalamic AMPK activity, pACC, UCP2 and NPY/AgRP expression through activation of GHS-R. An increase in endogenous ghrelin levels was established by fasting (24h) or by induction of streptozotocin(STZ)-diabetes (15 days) in GHS-R(+/+) and GHS-R(-/-) mice. GHS-R(+/+) mice showed a significant increase in AgRP and NPY mRNA expression after fasting, which was not observed in GHS-R(-/-) mice. Fasting did not affect AMPK activity nor ACC phosphorylation in both genotypes and increased UCP2 mRNA expression. The hyperghrelinemia associated with STZ-induced diabetes was accompanied by an increased NPY and AgRP expression in GHS-R(+/+) but not in GHS-R(-/-) mice. AMPK activity and UCP2 expression in GHS-R(+/+) mice after induction of diabetes were decreased to a similar extent in both genotypes. Exogenous ghrelin administration tended to decrease hypothalamic AMPK activity. In conclusion, an increase in endogenous ghrelin levels triggered by fasting or STZ-induced diabetes stimulates the expression of AgRP and NPY via interaction with the GHS-R. The changes in AMPK activity, pACC and UCP2 occur independently from GHS-R suggesting that they do not play a major role in the orexigenic effect of endogenous ghrelin.  相似文献   

10.
In addition to regulating growth hormone release from the pituitary, ghrelin receptors also influence cell proliferation and apoptosis. By studying mitogen-activated protein kinase activity in human embryonic kidney 293 cells over-expressing ghrelin receptors, we aimed to identify the specific cell signalling pathways used by ghrelin receptors, and to determine if the truncated ghrelin receptor polypeptide had any influence on the functional activity of ghrelin receptors. We found that ghrelin activated extracellular signal-regulated kinases 1/2 with an EC50 value of 10 nM, and that this response was inhibited by the ghrelin receptor antagonists D-Lys3-GHRP-6 and [D-Arg1,D-Phe5,D-Trp(7,9),Leu11]-substance P. Ghrelin had little or no effect on the activity of c-Jun N-terminal kinase, p38 kinase or Akt. Ghrelin appeared to activate extracellular signal-regulated kinases 1/2 through a calcium-independent novel protein kinase C isoform which may utilize diacylglycerol derived from hydrolysis of phosphatidylcholine rather than from phosphatidylinositol. Ghrelin-stimulated extracellular signal-regulated kinases 1/2 activity was independent of transactivation of epidermal growth factor receptors, and even when ghrelin receptor internalization was blocked by concanavalin A or a beta-arrestin mutant, there was no decrease in phosphorylated extracellular signal-regulated kinases 1/2, suggesting this is a G protein-dependent process. The truncated ghrelin receptor polypeptide had no effect on ghrelin receptor signalling to extracellular signal-regulated kinases 1/2, but decreased the constitutive activation of phosphatidylinositol-specific phospholipase C by ghrelin receptors. In conclusion, our results suggest that any up-regulation of the truncated ghrelin receptor polypeptide might preferentially attenuate functional activity dependent on the constitutive activation of ghrelin receptors, while leaving ghrelin-dependent signalling unaffected.  相似文献   

11.
12.
The study of the interaction of ghrelin (1), the endogenous ligand for the GH secretagogues receptor (GHS-R1a), and des-acyl ghrelin (2) with the GHS-R1a by NMR using living cells is presented, using GHS-R1a stably transfected cell lines (CHO and HEK 293) and wild type cells. Therefore, the interaction of 1 and 2 with the GHS-R1a receptor has been performed using quasi-physiological conditions. Ghrelin (1), showed a higher number of residues affected by chemical shift perturbation (CSP) or chemical shift exchange (CSE) effects: Ser3, Phe4, Leu5, Val12, Gln13/Gln14, Lys16/Lys19, Glu17 and Lys24 were much more affected in 1 than in des-acyl ghrelin (2). The chemical shift index CSI values indicated the presence of a possible α-helical region between Glu8 and Lys20 for ghrelin (1). After analysing the NMR data, two possible structures have arisen, which present different proline rotamers: the EEZE and the EZEZ conformers, at positions Pro7, Pro21, Pro22 and Pro27, respectively, keeping a left-handed α-helix from Glu8 to Lys20. These experimental evidences might imply that the GHS-R1a receptor is acting as a prolyl-cis/trans isomerase.  相似文献   

13.
In the present study using rats, we demonstrated that central and peripheral administration of des-acyl ghrelin induced a decrease in the surface temperature of the back, and an increase in the surface temperature of the tail, although the effect of peripheral administration was less marked than that of central administration. Furthermore, these effects of centrally administered des-acyl ghrelin could not be prevented by pretreatment with [D-Lys3]-GHRP-6 GH secretagogue receptor 1a (GHS-R1a) antagonists. Moreover, these actions of des-acyl ghrelin on body temperature were inhibited by the parasympathetic nerve blocker methylscopolamine but not by the sympathetic nerve blocker timolol. Using immunohistochemistry, we confirmed that des-acyl ghrelin induced an increase of cFos expression in the median preoptic nucleus (MnPO). Additionally, we found that des-acyl ghrelin dilated the aorta and tail artery in vitro. These results indicate that centrally administered des-acyl ghrelin regulates body temperature via the parasympathetic nervous system by activating neurons in the MnPO through interactions with a specific receptor distinct from the GHS-R1a, and that peripherally administered des-acyl ghrelin acts on the central nervous system by passing through the blood–brain barrier, whereas it exerts a direct action on the peripheral vascular system.  相似文献   

14.
15.
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.  相似文献   

16.
Increasing evidence suggests a role for oxidative stress in age-related decrease in osteoblast number and function leading to the development of osteoporosis. This study was undertaken to investigate whether ghrelin, previously reported to stimulate osteoblast proliferation, counteracts tert-butyl hydroperoxide (t-BHP)-induced oxidative damage in MC3T3-E1 osteoblastic cells as well as to characterize the ghrelin receptor (GHS-R) involved in such activity. Pretreatment with ghrelin (10?7–10?11 M) significantly increased viability and reduced apoptosis of MC3T3-E1 cells cultured with t-BHP (250 μM) for three hours at the low concentration of 10?9 M as shown by MTT assay and Hoechst-33258 staining. Furthermore, ghrelin prevented t-BHP-induced osteoblastic dysfunction and changes in the cytoskeleton organization evidenced by the staining of the actin fibers with Phalloidin-FITC by reducing reactive oxygen species generation. The GHS-R type 1a agonist, EP1572 (10?7–10?11 M), had no effect against t-BHP-induced cytotoxicity and pretreatment with the selective GHS-R1a antagonist, d-Lys3-GHRP-6 (10?7 M), failed to remove ghrelin (10?9 M)-protective effects against oxidative injury, indicating that GHS-R1a is not involved in such ghrelin activity. Accordingly, unacylated ghrelin (DAG), not binding GHS-R1a, displays the same protective actions of ghrelin against t-BHP-induced cytotoxicity. Preliminary observations indicate that ghrelin increased the trimethylation of lys4 on histones H3, a known epigenetic mark activator, which may regulate the expression of some genes limiting oxidative damage. In conclusion, our data demonstrate that ghrelin and DAG promote survival of MC3T3-E1 cell exposed to t-BHP-induced oxidative damage. Such effect is independent of GHS-R1a and is likely mediated by a common ghrelin/DAG binding site.  相似文献   

17.
Ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), are expressed in the heart, and may function to promote cardiomyocyte survival, differentiation and contractility. Previously, we had generated a truncated analog of ghrelin conjugated to fluorescein isothiocyanate for the purposes of determining GHS-R expression in situ. We now report the generation and characterization of a far-red ghrelin analog, [Dpr3(octanoyl), Lys19(Cy5)]ghrelin (1–19), and show that it can be used to image changes in GHS-R in developing cardiomyocytes. We also generated the des-acyl analog, des-acyl [Lys19(Cy5)]ghrelin (1–19) and characterized its binding to mouse heart sections. Receptor binding affinity of Cy5-ghrelin as measured in HEK293 cells overexpressing GHS-R1a was within an order of magnitude of that of fluorescein-ghrelin and native human ghrelin, while the des-acyl Cy5-ghrelin did not bind GHS-R1a. Live cell imaging in HEK293/GHS-R1a cells showed cell surface labeling that was displaced by excess ghrelin. Interestingly, Cy5-ghrelin, but not the des-acyl analog, showed concentration-dependent binding in mouse heart tissue sections. We then used Cy5-ghrelin to track GHS-R expression in P19-derived cardiomyocytes. Live cell imaging at different time points after DMSO-induced differentiation showed that GHS-R expression preceded that of the differentiation marker aMHC and tracked with the contractility marker SERCA 2a. Our far-red analog of ghrelin adds to the tools we are developing to map GHS-R in developing and diseased cardiac tissues.  相似文献   

18.
Ghrelin stimulates gastric motility in vivo in the guinea-pig through activation of growth hormone secretagogue receptor (GHS-R). In this study, we identified GHS-R1a in the guinea-pig, and examined its distribution and cellular function and compared them with those in the rat. Effects of ghrelin in different regions of gastrointestinal tract were also examined. GHS-R1a was identified in guinea-pig brain cDNA. Amino acid identities of guinea-pig GHS-R1a were 93% to horses and 85% to dogs. Expression levels of GHS-R1a mRNA were high in the pituitary and hypothalamus, moderate in the thalamus, cerebral cortex, pons, medulla oblongata and olfactory bulb, and low in the cerebellum and peripheral tissues including gastrointestinal tract. Comparison of GHS-R1a expression patterns showed that those in the brain were similar but the expression level in the gastrointestinal tract was higher in rats than in guinea-pigs. Guinea-pig GHS-R1a expressed in HEK 293 cells responded to rat ghrelin and GHS-R agonists. Rat ghrelin was ineffective in inducing mechanical changes in the stomach and colon but caused a slight contraction in the small intestine. 1,1-Dimethyl-4-phenylpiperazinium and electrical field stimulation (EFS) caused cholinergic contraction in the intestine, and these contractions were not affected by ghrelin. Ghrelin did not change spontaneous and EFS-evoked [3H]-efflux from [3H]-choline-loaded ileal strips. In summary, guinea-pig GHS-R1a was identified and its functions in isolated gastrointestinal strips were characterized. The distribution of GHS-R1a in peripheral tissues was different from that in rats, suggesting that the functional role of ghrelin in the guinea-pig is different from that in other animal species.  相似文献   

19.
20.
Recent research suggests a role for ghrelin in the modulation of inflammatory disorders. However, the type of ghrelin receptor (GHS-R) involved in both the anti-inflammatory and anti-hyperalgesic actions of ghrelin remains to be characterized. In this study, we examined whether the inhibitory effect of ghrelin in the development of hyperalgesia and edema induced by intraplantar carrageenan administration depends on an interaction with GHS-R1a. Both central (1 nmol/rat, i.c.v.) and peripheral (40 nmol/kg, i.p.) administration of the selective GHS-R1a agonist EP1572 had no effect on carrageenan-induced hyperalgesia measured by Randall–Selitto test and paw edema. Furthermore, pre-treatment with the selective GHS-R1a antagonist, d-lys3-GHRP-6 (3 nmol/rat, i.c.v.) failed to prevent the anti-hyperalgesic and anti-inflammatory effects exerted by central ghrelin administration (1 nmol/rat), thus indicating that the type 1a GHS-R is not involved in these peptide activities. Accordingly, both central (1 and 2 nmol/rat, i.c.v.) and peripheral (40 and 80 nmol/kg, i.p.) administration of desacyl-ghrelin (DAG), which did not bind GHS-R1a, induced a significant reduction of the hyperalgesic and edematous activities of carrageenan. In conclusion, we have shown for the first time that DAG shares with ghrelin an inhibitory role in the development of hyperalgesia, as well as the paw edema induced by carrageenan and that a ghrelin receptor different from type 1a is involved in the anti-inflammatory activities of the peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号