首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salmonella enterica subspecies I serotypes are responsible for the vast majority of salmonellosis in mammals and birds, yet only a few factors specific to this group that allow them to persist in this niche have been identified. We show that STM0557, a S. enterica subspecies I-specific gene encoding an inner membrane protein, is critical for faecal shedding and intestinal persistence of S. enterica serotype Typhimurium ATCC14028 in Salmonella-resistant mice, but mutations in this gene do not diminish short-term intestinal colonization or invasion of cultured epithelial cells. STM0557 and two neighbouring genes, located on a pathogenicity island termed SPI-16, resemble genes of the gtrA,B, gtr(type) cluster in seroconverting bacteriophages. In general, the gtr genes encode proteins responsible for serotype conversion of the infected bacterium by addition glucose residues to repeating O-antigen subunits of lipopolysaccharide (LPS). In lysogenized Shigella, such modifications have been previously shown to be constitutively expressed and to facilitate invasion of host cells. We show that serotype Typhimurium gtr orthologues, STM0557-0559, are responsible for 'form variation' or glucosylation of the O12 antigen galactose (4 position) to generate the 12-2 variant. Form variation in Typhimurium is not constitutive, but occurred upon exposure and during intracellular growth of serotype Typhimurium in J774 macrophages. Our data suggest that the 12-2 antigen is a S. enterica subspecies I-specific LPS modification that enhances long-term intestinal colonization, and is in contrast to the role of O-antigen variation described for Shigella.  相似文献   

2.
Lipopolysaccharide (LPS), particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-antigen modification is mediated by glucosyltransferase (gtr) genes encoded by temperate serotype-converting bacteriophages. The gtrV and gtrX genes encode the GtrV and GtrX glucosyltransferases, respectively. These are integral membrane proteins, which catalyze the transfer of a glucosyl residue via an alpha1,3 linkage to rhamnose II and rhamnose I of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a and X, respectively. Essential regions in the topology of GtrV protein were identified by in vivo recombination and a PCR-mediated approach. A series of GtrX-GtrV and GtrV-GtrX chimeric proteins were constructed based on the fact that GtrV and GtrX share sequence similarity. Analysis of their respective serotype conversion abilities led to the identification of two important periplasmic loops: loops No 2 and No 10 located in the N- and C-termini, respectively. Within these two loops, three conserved motifs were identified; two in loop No 2 and one in loop No 10. These conserved motifs contain acidic residues which were shown to be critical for GtrV function.  相似文献   

3.
The O-antigen of lipopolysaccharide (LPS) is required for virulence in Yersinia enterocolitica serotype O:8. Here we evaluated the importance of controlling the O-antigen biosynthesis using an in vivo rabbit model of infection. Y. enterocolitica O:8 wild-type strain was compared to three mutants differing in the O-antigen phenotype: (i) the rough strain completely devoid of the O-antigen, (ii) the wzy strain that lacks the O-antigen polymerase (Wzy protein) and expresses LPS with only one repeat unit, and (iii) the wzz strain that lacks the O-antigen chain length determinant (Wzz protein) and expresses LPS without modal distribution of O-antigen chain lengths. The most attenuated strain was the wzz mutant. The wzz bacteria were cleared from the tissues by day 30, the blood parameters were least dramatic and histologically only immunomorphological findings were seen. The level of attenuation of the rough and the wzy strain bacteria was between the wild-type and the wzz strain. Wild-type bacteria were highly resistant to killing by polymorphonuclear leukocytes, the wzz strain bacteria were most sensitive and the rough and wzy strain bacteria were intermediate resistant. These results clearly demonstrated that the presence of O-antigen on the bacterial surface is not alone sufficient for full virulence, but also there is a requirement for its controlled chain length.  相似文献   

4.
Bacterial lipopolysaccharide (LPS) is an essential cell envelope component for gram-negative bacteria. As the most variable region of LPS, O antigens serve as important virulence determinants for many bacteria and represent a promising carbohydrate source for glycoconjugate vaccines. In the Wzy-dependent O-antigen biosynthetic pathway, the integral membrane protein Wzy was shown to be the sole enzyme responsible for polymerization of O-repeat unit. Its catalytic mechanism, however, remains elusive. Herein, Wzy was successfully overexpressed in Escherichia coli with an N-terminal His10-tag. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed that the Wzy protein exists in its native confirmation as a dimer. Subsequently, we chemo-enzymatically synthesized the substrates of Wzy, the lipid-PP-linked repeat units. Together with an optimized O-antigen visualization method, we monitored the production of reaction intermediates at varying times. We present here our result as the first biochemical evidence that Wzy functions in a distributive manner.  相似文献   

5.
Lipopolysaccharide (LPS), particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-antigen modification is mediated by glucosyltransferase (gtr) genes encoded by temperate serotype-converting bacteriophages. The gtrV and gtrX genes encode the GtrV and GtrX glucosyltransferases, respectively. These are integral membrane proteins, which catalyze the transfer of a glucosyl residue via an α1,3 linkage to rhamnose II and rhamnose I of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a and X, respectively. Essential regions in the topology of GtrV protein were identified by in vivo recombination and a PCR-mediated approach. A series of GtrX-GtrV and GtrV-GtrX chimeric proteins were constructed based on the fact that GtrV and GtrX share sequence similarity. Analysis of their respective serotype conversion abilities led to the identification of two important periplasmic loops: loops No 2 and No 10 located in the N- and C-termini, respectively. Within these two loops, three conserved motifs were identified; two in loop No 2 and one in loop No 10. These conserved motifs contain acidic residues which were shown to be critical for GtrV function.  相似文献   

6.
Acylation of the N-terminal Cys residue is an essential, ubiquitous, and uniquely bacterial posttranslational modification that allows anchoring of proteins to the lipid membrane. In gram-negative bacteria, acylation proceeds through three sequential steps requiring lipoprotein diacylglyceryltransferase, lipoprotein signal peptidase, and finally lipoprotein N-acyltransferase. The apparent lack of genes coding for recognizable homologs of lipoprotein N-acyltransferase in gram-positive bacteria and Mollicutes suggests that the final step of the protein acylation process may be absent in these organisms. In this work, we monitored the acylation state of eight major lipoproteins of the mollicute Acholeplasma laidlawii using a combination of standard two-dimensional gel electrophoresis protein separation, blotting to nitrocellulose membranes, and MALDI-MS identification of modified N-terminal tryptic peptides. We show that for each A. laidlawii lipoprotein studied a third fatty acid in an amide linkage on the N-terminal Cys residue is present, whereas diacylated species were not detected. The result thus proves that A. laidlawii encodes a lipoprotein N-acyltransferase activity. We hypothesize that N-acyltransferases encoded by genes non-homologous to N-acyltransferases of gram-negative bacteria are also present in other mollicutes and gram-positive bacteria.  相似文献   

7.
The O-antigen of lipopolysaccharide (LPS) is a virulence factor in enterobacterial infections, and the advantage of its genetic loss in the lethal pathogen Yersinia pestis has remained unresolved. Y. pestis and Salmonella enterica express beta-barrel surface proteases of the omptin family that activate human plasminogen. Plasminogen activation is central in pathogenesis of plague but has not, however, been found to be important in diarrhoeal disease. We observed that the presence of O-antigen repeats on wild-type or recombinant S. enterica, Yersinia pseudotuberculosis or Escherichia coli prevents plasminogen activation by PgtE of S. enterica and Pla of Y. pestis; the O-antigen did not affect incorporation of the omptins into the bacterial outer membrane. Purified His6-Pla was successfully reconstituted with rough LPS but remained inactive after reconstitution with smooth LPS. Expression of smooth LPS prevented Pla-mediated adhesion of recombinant E. coli to basement membrane as well as invasion into human endothelial cells. Similarly, the presence of an O-antigen prevented PgtE-mediated bacterial adhesion to basement membrane. Substitution of Arg-138 and Arg-171 of the motif for protein binding to lipid A 4'-phosphate abolished proteolytic activity but not membrane translocation of PgtE, indicating dependence of omptin activity on a specific interaction with lipid A. The results suggest that Pla and PgtE require LPS for activity and that the O-antigen sterically prevents recognition of large-molecular-weight substrates. Loss of O-antigen facilitates Pla functions and invasiveness of Y. pestis; on the other hand, smooth LPS renders plasminogen activator cryptic in S. enterica.  相似文献   

8.
Signature-tagged mutagenesis (STM) is a widely used technique for identification of virulence genes in bacterial pathogens. While this approach often generates a large number of mutants with a potential reduction in virulence a major task is subsequently to determine the mechanism by which the mutations influence virulence. Presently, we have characterised a Salmonella enterica serovar Dublin STM mutant that, in addition to having reduced virulence, was also impaired when growing under various stress conditions. The mutation mapped to the manC (rfbM) gene of the O-antigen gene cluster involved in O-antigen synthesis. The O-antigen is a component of the lipopolysaccharide (LPS) forming a unique constituent of the outer membrane of Gram-negative bacteria. While mutations in the O-antigen genes usually eliminate the entire O-antigen side chain we found that the transposon mutant produced intact O-antigen, however, the mutation reduced the amount of LPS.  相似文献   

9.
Tan L  Darby C 《Journal of bacteriology》2005,187(18):6599-6600
Lipopolysaccharide (LPS) is the major outer membrane component of gram-negative bacteria. The minimal LPS structure for viability of Escherichia coli and Salmonella enterica serovar Typhimurium is lipid A glycosylated with 3-deoxy-D-manno-octulosonic acid (Kdo) residues. Here we show that another member of the Enterobacteriaceae, Yersinia pestis, can survive without Kdo in its LPS.  相似文献   

10.
We studied the population of LPS molecules on Salmonella montevideo that bind C3 during alternative pathway activation in serum. LPS molecules of Salmonella are composed of lipid A:core oligosaccharide (one copy per molecule), substituted by an O-polysaccharide (O-PS) side chain, which is a linear polymer of 0 to greater than 60 O-antigen repeat units containing mannose. A mutant of S. montevideo called SL5222 that inserts galactose only into core oligosaccharide and mannose only into O-antigen subunits was grown with [3H]mannose and [14C]galactose, so that LPS molecules bearing large numbers of O-antigen subunits have high 3H to 14C ratios, whereas molecules with few O-antigen subunits have lower 3H to 14C ratios. Double-labeled SL5222 was incubated in C8-deficient (C8D) serum or C8D serum with 2 mM Mg++Cl2 and 10 mM ethylene glycoltetraacetic acid (MgEGTA C8D). LPS molecules with covalently attached C3 were identified by binding to anti-C3. LPS molecules that bound C3 under both incubation conditions had O chains seven to eight times longer than the average LPS molecule. SL5222 was then grown in suboptimal concentrations of mannose in order to decrease the number of LPS molecules with long O-PS side chains. C3 attached to progressively shorter chain molecules of LPS as the mannose input was lowered, but still chose the longest available molecules. This finding and recently published observations indicate that C3 can bind to LPS molecules with short O-PS side chains. We postulate that preferential attachment of C3 to long-chain LPS in SL5222 results because long-chain LPS molecules sterically hinder shorter chain LPS molecules from macromolecules. This study provides direct proof that the O-PS of LPS sterically hinders access of large molecules to the outer membrane and indicates that the LPS coat of these bacteria functions as a barrier against large protein molecules.  相似文献   

11.
Bacterial endotoxins or lipopolysaccharides (LPS), cell wall components of gram-negative bacteria, are involved in septic shock. LPS consists of a lipid A tail attached to core and O-antigen polysaccharides, but little is known about the supramolecular structure of LPS in blood. We have developed an approach to locate donor and acceptor probes in sulfobetaine palmitate detergent micelles using steady-state and time-resolved fluorescence resonance energy transfer. C18-fluorescein and several LPS species of varying molecular weight labeled with fluorescein isothiocyanate (FITC-LPS) were the donor probes. Acceptor probes were 1,1-dilinoleyl-3,3,3',3'-tetramethyl indocarbocyanine perchlorate (Fast C18-Dil, Ro approximately 68 A), and octadecyl B rhodamine chloride (C18-Rhd, Ro approximately 58 A). With either acceptor, the transfer was of similar high efficiency when FITC-LPS Salmonella minnesota Re 595 (2,500 mol wt, lacking both core and O-antigen) or C18-fluorescein were the fluorescent donor probes. Thus, the donor FITC-LPS with short polysaccharide chain S. minnesota Re 595 and the control donor C18-fluorescein appear to be close to the micelle surface. The transfer efficiency decreased as the molecular weight of the LPS increased. Separation distances between the longest FITC-LPS, S. minnesota (20,000 mol wt, with a long O-antigen), and the micelle were estimated to be 1.5 Ro or more (approximately 100 A), consistent with an extended conformation for the longer O-antigen polysaccharide chain in the detergent.  相似文献   

12.
O-抗原是由多糖重复单元组成的多聚糖,表达于细菌的外膜,具有多样性,是划分沙门菌血清型的重要依据。O-抗原多糖由多基因协同作用而合成,这些基因在沙门菌基因组上成簇存在,形成O-抗原基因簇。O-抗原多糖也是重要的毒力因子,在沙门菌入侵宿主、体内存活、定殖等致病过程中均发挥着重要的作用。此外,O-抗原还是沙门菌主要的保护性抗原,能激发宿主产生高水平抗体并发挥免疫保护作用,成为疫苗研究的靶点。本文综述O-抗原多糖的基因结构和合成、生物学功能及其在疫苗研制中的应用与前景。  相似文献   

13.
14.
Pseudomonas aeruginosa is one of the major causative agents of mortality and morbidity in hospitalized patients due to a multiplicity of virulence factors associated with both chronic and acute infections. Acute P. aeruginosa infection is primarily mediated by planktonic bacteria expressing the type III secretion system (TTSS), a surface-attached needle-like complex that injects cytotoxins directly into eukaryotic cells, causing cellular damage. Lipopolysaccharide (LPS) is the principal surface-associated virulence factor of P. aeruginosa. This molecule is known to undergo structural modification (primarily alterations in the A- and B-band O antigen) in response to changes in the mode of life (e.g., from biofilm to planktonic). Given that LPS exhibits structural plasticity, we hypothesized that the presence of LPS lacking O antigen would facilitate eukaryotic intoxication and that a correlation between the LPS O-antigen serotype and TTSS-mediated cytotoxicity would exist. Therefore, strain PAO1 (A+ B+ O-antigen serotype) and isogenic mutants with specific O-antigen defects (A+ B-, A- B+, and A- B-) were examined for TTSS expression and cytotoxicity. A strong association existed in vitro between the absence of the large, structured B-band O antigen and increased cytotoxicity of these strains. In vivo, all three LPS mutant strains demonstrated significantly increased lung injury compared to PAO1. Clinical strains lacking the B-band O antigen also demonstrated increased TTSS secretion. These results suggest the existence of a cooperative association between LPS O-antigen structure and the TTSS in both laboratory and clinical isolates of P. aeruginosa.  相似文献   

15.
Lipopolysaccharide, particularly the O-antigen component, is one of many virulence determinants necessary for Shigella flexneri pathogenesis. O-Antigen modification is mediated by glucosyltransferase genes (gtr) encoded by temperate serotype-converting bacteriophages. The gtrV gene encodes the GtrV glucosyltransferase, an integral membrane protein that catalyzes the transfer of a glucosyl residue via an alpha1,3 linkage to rhamnose II of the O-antigen unit. This mediates conversion of S. flexneri serotype Y to serotype 5a. Analysis of the GtrV amino acid sequence using computer prediction programs indicated that GtrV had 9-11 transmembrane segments. The computer prediction models were tested by genetically fusing C-terminal deletions of GtrV to a dual reporter system composed of alkaline phosphatase and beta-galactosidase. Sandwiched GtrV-PhoA/LacZ fusions were also constructed at predetermined positions. The enzyme activities of cells with the GtrV-PhoA/LacZ fusions and the particular location of the fusions in the gtrV indicated that GtrV has nine transmembrane segments and one large N-terminal periplasmic loop with the N and C termini located on the cytoplasmic and periplasmic sides of the membrane, respectively. The existence of a unique reentrant loop was discovered after transmembrane segment IV, a feature not documented in other bacterial glycosyltransferases. Its potential role in mediating serotype conversion in S. flexneri is discussed.  相似文献   

16.
The O antigen of Pseudomonas aeruginosa B-band lipopolysaccharide is synthesized by assembling O-antigen-repeat units at the cytoplasmic face of the inner membrane by nonprocessive glycosyltransferases, followed by polymerization on the periplasmic face. The completed chains are covalently attached to lipid A core by the O-antigen ligase, WaaL. In P. aeruginosa the process of ligating these O-antigen molecules to lipid A core is not clearly defined, and an O-antigen ligase has not been identified until this study. Using the sequence of waaL from Salmonella enterica as a template in a BLAST search, a putative waaL gene was identified in the P. aeruginosa genome. The candidate gene was amplified and cloned, and a chromosomal knockout of PAO1 waaL was generated. Lipopolysaccharide (LPS) from this mutant is devoid of B-band O-polysaccharides and semirough (SR-LPS, or core-plus-one O-antigen). The mutant PAO1waaL is also deficient in the production of A-band polysaccharide, a homopolymer of D-rhamnose. Complementation of the mutant with pPAJL4 containing waaL restored the production of both A-band and B-band O antigens as well as SR-LPS, indicating that the knockout was nonpolar and waaL is required for the attachment of O-antigen repeat units to the core. Mutation of waaL in PAO1 and PA14, respectively, could be complemented with waaL from either strain to restore wild-type LPS production. The waaL mutation also drastically affected the swimming and twitching motilities of the bacteria. These results demonstrate that waaL in P. aeruginosa encodes a functional O-antigen ligase that is important for cell wall integrity and motility of the bacteria.  相似文献   

17.
Vibrio fischeri exists in a symbiotic relationship with the Hawaiian bobtail squid, Euprymna scolopes, where the squid provides a home for the bacteria, and the bacteria in turn provide camouflage that helps protect the squid from night-time predators. Like other gram-negative organisms, V. fischeri expresses lipopolysaccharide (LPS) on its cell surface. The structure of the O-antigen and the core components of the LPS and their possible role in colonization of the squid have not previously been determined. In these studies, an O-antigen ligase mutant, waaL, was utilized to determine the structures of these LPS components and their roles in colonization of the squid. WaaL ligates the O-antigen to the core of the LPS; thus, LPS from waaL mutants lacks O-antigen. Our results show that the V. fischeri waaL mutant has a motility defect, is significantly delayed in colonization, and is unable to compete with the wild-type strain in co-colonization assays. Comparative analyses of the LPS from the wild-type and waaL strains showed that the V. fischeri LPS has a single O-antigen repeat composed of yersiniose, 8-epi-legionaminic acid, and N-acetylfucosamine. In addition, the LPS from the waaL strain showed that the core structure consists of L-glycero-D-manno-heptose, D-glycero-D-manno-heptose, glucose, 3-deoxy-D-manno-octulosonic acid, N-acetylgalactosamine, 8-epi-legionaminic acid, phosphate, and phosphoethanolamine. These studies indicate that the unusual V. fischeri O-antigen sugars play a role in the early phases of bacterial colonization of the squid.  相似文献   

18.
A family of mutants of Salmonella typhimurium with altered lipopolysaccharide (LPS) core chain lengths were assessed for sensitivity to freeze-thaw and other stresses. Deep rough strains with decreased chain length in the LPS core were more susceptible to novobiocin, polymyxin B, bacitracin, and sodium lauryl sulfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl sulfate in resting suspension, and to slow and rapid freeze-thaw in water and saline, and these strains exhibited more outer membrane damage than the wild type or less rough strains. Variations in the LPS chain length did not dramatically affect the sensitivity of the strains to tetracycline, neomycin, or NaCl in growth conditions or the degree of freeze-thaw-induced cytoplasmic membrane damage. The deeper rough isogenic strains incorporated larger quantities of less-stable LPS and less protein into the outer membrane than did the wild type or less rough mutants, indicating that the mutations affected outer membrane synthesis or organization or both. Nikaido's model of the role of LPS and protein in determining the resistance of gram-negative bacteria to low-molecular-weight hydrophobic antibiotics is discussed in relation to the stress of freeze-thaw.  相似文献   

19.
A family of mutants of Salmonella typhimurium with altered lipopolysaccharide (LPS) core chain lengths were assessed for sensitivity to freeze-thaw and other stresses. Deep rough strains with decreased chain length in the LPS core were more susceptible to novobiocin, polymyxin B, bacitracin, and sodium lauryl sulfate during growth, to ethylenediaminetetraacetic acid and sodium lauryl sulfate in resting suspension, and to slow and rapid freeze-thaw in water and saline, and these strains exhibited more outer membrane damage than the wild type or less rough strains. Variations in the LPS chain length did not dramatically affect the sensitivity of the strains to tetracycline, neomycin, or NaCl in growth conditions or the degree of freeze-thaw-induced cytoplasmic membrane damage. The deeper rough isogenic strains incorporated larger quantities of less-stable LPS and less protein into the outer membrane than did the wild type or less rough mutants, indicating that the mutations affected outer membrane synthesis or organization or both. Nikaido's model of the role of LPS and protein in determining the resistance of gram-negative bacteria to low-molecular-weight hydrophobic antibiotics is discussed in relation to the stress of freeze-thaw.  相似文献   

20.
Bordetella pertussis lipopolysaccharide (LPS) is biologically active, being both toxic and immunogenic. Using transposon mutagenesis we have identified a genetic locus required for the biosynthesis of LPS in B. pertussis, which has been cloned and sequenced. We have also identified equivalent loci in Bordetella bronchiseptica and Bordetella parapertussis and cloned part of it from B. parapertussis. The amino acid sequences derived from most of the genes present in the sequenced B. pertussis locus are similar to proteins required for the biosynthesis of LPS and other complex polysaccharides from a variety of bacteria. The genes are in a unique arrangement in the locus. Several of the genes identified are similar to genes previously shown to play specific roles in LPS O-antigen biosynthesis. In particular, the amino acid sequence derived from one of the genes is similar to the enzyme encoded by rfbP from Salmonella enterica, which catalyses the transfer of galactose to the undecaprenol phosphate antigen carrier lipid as the first step in building oligosaccharide O-antigen units, which are subsequently assembled to form polymerized O-antigen structures. Defined mutation of this gene in the B. pertussis chromosome results in the inability to express band A LPS, possibly suggesting that the trisaccharide comprising band A is a single O-antigen-like structure and that B. pertussis LPS is similar to semi-rough LPS seen in some mutants of enteric bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号