首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection. [BMB Reports 2014; 47(4): 184-191]  相似文献   

2.
Respiratory syncytial virus (RSV) causes severe respiratory disease in both the very young and the elderly. Nearly all individuals become infected in early childhood, and reinfections with the virus are common throughout life. Despite its clinical impact, there remains no licensed RSV vaccine. RSV infection in the respiratory tract induces an inflammatory response by the host to facilitate efficient clearance of the virus. However, the host immune response also contributes to the respiratory disease observed following an RSV infection. RSV has evolved several mechanisms to evade the host immune response and promote virus replication through interactions between RSV proteins and immune components. In contrast, some RSV proteins also play critical roles in activating, rather than suppressing, host immunity. In this review, we discuss the interactions between individual RSV proteins and host factors that modulate the immune response and the implications of these interactions for the course of an RSV infection.  相似文献   

3.
Little is known about the mechanisms of antibody-mediated neutralization of respiratory syncytial virus (RSV) which causes recurrent infections in human despite the virtually universal presence of neutralizing serum antibodies. Human serum neutralization titers showed strong correlation with post-cell-attachment neutralizing titers for both RSV-convalescent sera and control sera but showed less strong correlation with cell-attachment blocking titers. Neutralization was effective for the first 60 min of infection, indicating that immune serum-mediated neutralization of RSV infection largely involves inhibition of early events following cell attachment.  相似文献   

4.
Respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract disease in infants and the elderly, but no safe and effective RSV vaccine is yet available. For reasons that are not well understood, RSV is only weakly immunogenic, and reinfection occurs throughout life. This has complicated the search for an effective live attenuated viral vaccine, and past trials with inactivated virus preparations have led to enhanced immunopathology following natural infection. We have tested the hypothesis that weak stimulation of innate immunity by RSV correlates with ineffective adaptive responses by asking whether expression of the fusion glycoprotein of RSV by Newcastle disease virus (NDV) would stimulate a more robust immune response to RSV than primary RSV infection. NDV is a potent inducer of both alpha/beta interferon (IFN-alpha/beta) production and dendritic cell maturation, while RSV is not. When a recombinant NDV expressing the RSV fusion glycoprotein was administered to BALB/c mice, they were protected from RSV challenge, and this protection correlated with a robust anti-F CD8+ T-cell response. The effectiveness of this vaccine construct reflects the differential abilities of NDV and RSV to promote dendritic cell maturation and is retained even in the absence of a functional IFN-alpha/beta receptor.  相似文献   

5.
Cytotoxic T-cell response to respiratory syncytial virus in mice.   总被引:15,自引:6,他引:9       下载免费PDF全文
The role of the humoral and cellular arms of the immune response in protection against respiratory syncytial virus (RSV) infection and in the pathogenesis of the severe forms of this disease is poorly understood. The recent demonstration that some inbred mouse strains can be infected with RSV has opened the way to a detailed investigation of RSV immunity. We report here the finding of major histocompatibility complex-restricted, RSV-specific memory cytotoxic T cells in the spleens of BALB/c and C57BL mice after intranasal infection; these T cells recognize the Long, A2, and 8/60 (human) strains of RSV. Both K and D locus major histocompatibility complex alleles can restrict the cytotoxic response; however, in the two haplotypes tested, Dd is a low-responder allele and Kb is a nonresponder allele for RSV. UV-inactivated RSV (when given intraperitoneally) can prime mice for development of cytotoxic T cell memory, restimulate cytotoxic T cell cultures in vitro, and form a target for the cytotoxic cells.  相似文献   

6.
7.
Glycosaminoglycans (GAGs) on the surface of cultured cells are important in the first step of efficient respiratory syncytial virus (RSV) infection. We evaluated the importance of sulfation, the major biosynthetic modification of GAGs, using an improved recombinant green fluorescent protein-expressing RSV (rgRSV) to assay infection. Pretreatment of HEp-2 cells with 50 mM sodium chlorate, a selective inhibitor of sulfation, for 48 h prior to inoculation reduced the efficiency of rgRSV infection to 40%. Infection of a CHO mutant cell line deficient in N-sulfation was three times less efficient than infection of the parental CHO cell line, indicating that N-sulfation is important. In contrast, infection of a cell line deficient in 2-O-sulfation was as efficient as infection of the parental cell line, indicating that 2-O-sulfation is not required for RSV infection. Incubating RSV with the purified soluble heparin, the prototype GAG, before inoculation had previously been shown to neutralize its infectivity. Here we tested chemically modified heparin chains that lack their N-, C6-O-, or C2-O-sulfate groups. Only heparin chains lacking the N-sulfate group lost the ability to neutralize infection, confirming that N-sulfation, but not C6-O- or C2-O-sulfation, is important for RSV infection. Analysis of heparin fragments identified the 10-saccharide chain as the minimum size that can neutralize RSV infectivity. Taken together, these results show that, while sulfate modification is important for the ability of GAGs to mediate RSV infection, only certain sulfate groups are required. This specificity indicates that the role of cell surface GAGs in RSV infection is not based on a simple charge interaction between the virus and sulfate groups but instead involves a specific GAG structural configuration that includes N-sulfate and a minimum of 10 saccharide subunits. These elements, in addition to iduronic acid demonstrated previously (L. K. Hallak, P. L. Collins, W. Knudson, and M. E. Peeples, Virology 271:264-275, 2000), partially define cell surface molecules important for RSV infection of cultured cells.  相似文献   

8.
《Research in virology》1990,141(3):343-353
IgG1 and IgG3 subclass-specific antibody reactivity (ABR) in serum samples obtained from infants and children in relation to acute lower respiratory disease caused by respiratory syncytial virus (RSV) infection was investigated by Western blot. IgG1 ABR was directed against the nucleocapsid polypeptides VPN and VPP as well as against the glycoproteins GP48 (F1) and GP90. IgG3 ABR was directed only against VPN and VPP. In infants, a low IgG1 reactivity against glycoproteins was observed. When serum samples obtained in the early convalescent phase were tested, ABR against GP48 and GP90 as well as against VPP differed with respect to RSV subtypes A and B. IgG1 ABR increased in the late convalescent phase, while IgG3 ABR decreased during this phase when serum samples from primary infections were tested.  相似文献   

9.
Respiratory syncytial virus (RSV) infects nearly all children under age 2, and reinfection occurs throughout life, seriously impacting adults with chronic pulmonary diseases. Recent data demonstrate that the anionic pulmonary surfactant lipid phosphatidylglycerol (PG) exerts a potent antiviral effect against RSV in vitro and in vivo. Phosphatidylinositol (PI) is also an anionic pulmonary surfactant phospholipid, and we tested its antiviral activity. PI liposomes completely suppress interleukin-8 production from BEAS2B epithelial cells challenged with RSV. The presence of PI during viral challenge in vitro reduces infection by a factor of >103. PI binds RSV with high affinity, preventing virus attachment to epithelial cells. Intranasal inoculation with PI along with RSV in mice reduces the viral burden 30-fold, eliminates the influx of inflammatory cells, and reduces tissue histopathology. Pharmacological doses of PI persist for >6 h in mouse lung. Pretreatment of mice with PI at 2 h prior to viral infection effectively suppresses inflammation and reduces the viral burden by 85%. These data demonstrate that PI has potent antiviral properties, a long residence time in the extracellular bronchoalveolar compartment, and a significant prophylaxis window. The findings demonstrate PG and PI have complementary roles as intrinsic, innate immune antiviral mediators in the lung.  相似文献   

10.
Although interleukin-4 (IL-4) expression has been implicated in vaccine-enhanced respiratory syncytial virus (RSV) disease, its role in mediating the immune response to primary RSV infection remains unclear. To assess the effect of IL-4 production on typical RSV infection, transgenic mice which either overexpress or fail to express IL-4 were challenged intranasally with RSV and their responses were compared to those of the parent strains. IL-4-deficient mice eliminated virus from the lung as quickly as did C57BL/6 controls. In contrast, mice which constitutively overexpress IL-4 showed delayed virus clearance compared with mice of the FVB/N control strain, although peak viral titers did not differ. IL-4 overexpression increased the magnitude of the subsequent antibody response. Lung lymphocytes harvested from IL-4-overexpressing mice post-RSV challenge showed diminished RSV-specific cytolytic activity compared with controls. Both IL-4-deficient and IL-4-overexpressing strains resisted rechallenge. These data imply that constitutive IL-4 expression delays or suppresses the development of a virus-specific cytotoxic lymphocyte population important in clearing primary RSV infection.  相似文献   

11.
The mammalian Toll-like receptor 4, TLR4, is an important component in the innate immune response to gram-negative bacterial infection. The role of TLR4 in antiviral immunity has been largely unexplored. In this study, the in vivo immune responses to respiratory syncytial virus (RSV) and influenza virus infection were examined in TLR4-deficient (C57BL/10ScNCr) and TLR4-expressing (C57BL/10Sn) mice. TLR4-deficient mice challenged with RSV, but not influenza virus, exhibited impaired natural killer (NK) cell and CD14(+) cell pulmonary trafficking, deficient NK cell function, impaired interleukin-12 expression, and impaired virus clearance compared to mice expressing TLR4. These findings suggest that Toll signaling pathways have an important role in innate immunity to RSV.  相似文献   

12.
The role of T-cell subsets in respiratory syncytial virus (RSV) infection was investigated by using monoclonal antibodies (MAbs) to selectively deplete gnotobiotic calves of CD4+, CD8+, or WC1+ gamma delta T-cell receptor+ lymphocytes. Injection of these MAbs produced specific reductions of the target cell populations in the circulation and tissues. Ten days after RSV infection, immunoglobulin M (IgM), IgG1, and IgA antibodies were detected in sera and lung washings from control calves. Depletion of CD8+ T cells had no effect on either the serum or local antibody responses to RSV, whereas depletion of CD4+ T cells suppressed the antibody responses in two of three calves. The IgM and IgA responses were significantly increased in the lung washings of calves from which WC1+ T cells were depleted. Depletion of CD4+ or WC1+ T cells caused no significant delay in virus clearance, although an increase in the extent of pneumonic consolidation was observed in anti-CD4-treated calves. Nasopharyngeal excretion of RSV was prolonged in calves depleted of CD8+ T cells, and virus was isolated in high titers from lung washings of these animals 10 days after infection, whereas virus had been cleared from lung washings of all other animals. The delayed virus clearance was associated with an increase in the severity of pneumonic consolidation in three of four of the calves from which CD8+ T cells were depleted. This study shows that CD8+ T cells play a dominant role in the recovery of calves from RSV infection.  相似文献   

13.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract disease in young children. Premature infants, immunocompromised individuals and the elderly exhibit the highest risk for the development of severe RSV-induced disease. Murine studies demonstrate that CD8 T cells mediate RSV clearance from the lungs. Murine studies also indicate that the host immune response contributes to RSV-induced morbidity as T-cell depletion prevents the development of disease despite sustained viral replication. Dendritic cells (DCs) play a central role in the induction of the RSV-specific adaptive immune response. Following RSV infection, lung-resident DCs acquire viral antigens, migrate to the lung-draining lymph nodes and initiate the T-cell response. This article focuses on data generated from both in vitro DC infection studies and RSV mouse models that together have advanced our understanding of how RSV infection modulates DC function and the subsequent impact on the adaptive immune response.  相似文献   

14.
This article reviews aspects of respiratory syncytial virus (RSV) infection in airway epithelial cells (AECs), including cytopathogenesis, entry, replication and the induction of immune response to the virus, including a new role for thymic stromal lymphopoietin in RSV immunopathology.  相似文献   

15.
16.
The relationship of suppressor cell numbers and function to virus-specific IgE response was determined in 72 infants with respiratory syncytial virus (RSV) infection. Monoclonal antibodies to membrane antigens were used to enumerate OKT4 and OKT8 antigen-positive cells, and suppressor cell function as quantitated by the degree of suppression of lymphocyte mitogenesis induced by incubation of lymphocyte cultures with histamine. Patients with bronchiolitis had fewer OKT8-positive cells during convalescence than patients with other forms of illness due to RSV (p less than 0.05). An inverse correlation of OKT8-positive cell numbers and peak IgE titers was observed (p less than 0.01). Histamine-induced suppression was also reduced in patients with bronchiolitis (p less than 0.05). In patients with repeated infection, improved histamine-induced suppression was associated with reduced virus-specific IgE titers and the absence of wheezing. Defects in immunoregulation may underlie previously recognized immunologic and pharmacologic abnormalities in patients with bronchiolitis.  相似文献   

17.
The role of IFN in respiratory syncytial virus pathogenesis   总被引:14,自引:0,他引:14  
Formalin-inactivated respiratory syncytial virus (RSV) vaccine preparations have been shown to cause enhanced disease in naive hosts following natural infection. In this study we demonstrate a similar pattern of enhanced disease severity following primary RSV infection of IFN-nonresponsive STAT1(-/-) mice. STAT1(-/-) mice showed markedly increased illness compared with wild-type BALB/c animals following RSV inoculation despite similar lung virus titers and rates of virus clearance. Histologically, STAT1(-/-) animals had eosinophilic and neutrophilic pulmonary infiltrates not present in wild-type or IFN-gamma(-/-)-infected mice. In cytokine analyses of infected lung tissue, IFN-gamma was induced in both STAT1(-/-) and wild-type mice, with preferential IL-4, IL-5, and IL-13 induction only in the STAT1(-/-) animals. Eotaxin was detected in the lungs of both wild-type and STAT1(-/-) mice following infection, with a 1.7-fold increase over wild-type in the STAT1(-/-) mice. Using a peptide epitope newly identified in the RSV fusion protein, we were able to demonstrate that wild-type memory CD4(+) T cells stimulated by this peptide produce primarily IFN-gamma, while STAT1(-/-)CD4(+) cells produce primarily IL-13. These findings suggest that STAT1 activation by both type I (alphabeta) and type II (gamma) IFNs plays an important role in establishing a protective, Th1 Ag-specific immune response to RSV infection.  相似文献   

18.
Respiratory syncytial virus (RSV) is the most common cause of severe lower respiratory tract infection in infants and the elderly. There is currently no effective antiviral treatment for the infection, but advances in our understanding of RSV uptake, especially the role of surfactant proteins, the attachment protein G and the fusion protein F, as well as the post-binding events, have revealed potential targets for new therapies and vaccine development. RSV infection triggers an intense inflammatory response, mediated initially by the infected airway epithelial cells and antigen-presenting cells. Humoral and cell-mediated immune responses are important in controlling the extent of infection and promoting viral clearance. The initial innate immune response may play a critical role by influencing the subsequent adaptive response generated. This review summarizes our current understanding of RSV binding and uptake in mammalian cells and how these initial interactions influence the subsequent innate immune response generated.  相似文献   

19.
20.
In several reports, the respiratory syncytial virus (RSV) was identified as an oncolytic virus in cancer cells (e.g., lung and prostate cancer). However, the effects of RSV in hepatocellular carcinoma (HCC) cells have not yet been investigated. Here, we observed the inhibitory effects of RSV infection in HCC cell-lines. Cell growth was significantly decreased by RSV infection in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. After RSV infection, plaque formation and syncytial formation were observed in affected Hep3B and Huh-7 cells. RSV protein-expression was also detected in Hep3B and Huh-7 cells; however, only Huh-7 cells showed apoptosis after RSV infection. Furthermore, inhibition of cell migration by RSV infection was observed in BNL-HCC, Hep3B, Huh-7 and SNU-739 cells. Therefore, further investigation is required to clarify the molecular mechanism of RSV-mediated inhibition of HCC cell growth, and to develop potential RSV oncolytic viro-therapeutics. [BMB Reports 2015; 48(10): 565-570]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号