首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two mutants of the BW5147 mouse lymphoma cell line have been selected for their resistance to the toxic effects of pea lectin. These cell lines, termed PLR1.3 and PHAR1.8 PLR7.2, have a decreased number of high affinity pea lectin-binding sites (Trowbridge, I.S., Hyman, R., Ferson, T., and Mazauskas, C. (1978) Eur. J. Immunol. 8, 716-723). Intact cell labeling experiments using [2-3H]mannose indicated that PLR1.3 cells have a block in the conversion of GDP-[3H]mannose to GDP-[3H]fucose whereas PHAR1.8 PLR7.2 cells appear to be blocked in the transfer of fucose from GDP-[3H]fucose to glycoprotein acceptors. In vitro experiments with extracts of PLR1.3 cells confirmed the failure to convert GDP-mannose to GDP-fucose and indicated that the defect is in GDP-mannose 4,6-dehydratase (EC 4.2.1.47), the first enzyme in the conversion of GDP-mannose to GDP-fucose. The block in the PLR1.3 cells could be bypassed by growing the cells in the presence of fucose, demonstrating that an alternate pathway for the production of GDP-fucose presumably via fucose 1-phosphate is functional in this line. PLR1.3 cells grown in 10 mM fucose showed normal high affinity pea lectin binding. PHRA1.8 PLR7.2 cells synthesize GDP-fucose and have normal or increased levels of GDP-fucose:glycoprotein fucosyltransferase when assayed in vitro. The fucosyltransferases of this clone can utilize its own glycoproteins as fucose acceptors in in vitro assays. These findings indicate that this cell line fails to carry out the fucosyltransferase reaction in vivo despite the fact that it possesses the appropriate nucleotide sugar, glycoprotein acceptors, and fucosyltransferase. The finding of decreased glycoprotein fucose in two independent isolates of pea lectin-resistant cell lines and the restoration of high affinity pea lectin binding to PLR1.3 cells following fucose feeding strongly implicates fucose as a major determinant of pea lectin binding.  相似文献   

2.
We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffinity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4 degrees C by radioimmunoassay; the dissociation coefficient (Kd) was 2.39 x 10(-8) M-1 with 5.97 x 10(4) lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 x 10(5)/cell) rather than a significantly reduced dissociation constant (4.93 x 10(-8) M-1). At 4 degrees C, there was no measurable Gal-specific binding of the adherence protein to the Lec1 and 1dlD.Lec1 CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 micrograms/ml) to CHO cells was equivalent at 4 degrees C and 37 degrees C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 micrograms/ml). Gal-specific binding of the lectin at 4 degrees C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Chen W  Unligil UM  Rini JM  Stanley P 《Biochemistry》2001,40(30):8765-8772
A key enzyme in regulating the maturation of N-linked glycans is UDP-N-acetylglucosamine:alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I (GlcNAc-TI, EC 2.4.1.101). Lec1 CHO cells lack GlcNAc-TI activity and synthesize only the oligomannosyl class of N-glycans. By contrast, Lec1A CHO mutants have weak GlcNAc-TI activity due to the reduced affinity of GlcNAc-TI for both the UDP-GlcNAc and Man(5)GlcNAc(2)Asn substrates. Lec1A CHO mutants synthesize hybrid and complex N-glycans, albeit in reduced amounts compared to parental CHO cells. In this paper, we identify two point mutations that gave rise to the Lec1A phenotype in three independent Lec1A CHO mutants. The G634A mutation in Lec1A.2C converts an aspartic acid to an asparagine at amino acid 212, disrupting a conserved DXD motif (E(211)DD(213) in all GlcNAc-TIs) that makes critical interactions with bound UDP-GlcNAc and Mn(2+) ion in rabbit GlcNAc-TI. The C907T mutation in Lec1A.3E and Lec1A.5J converts an arginine conserved in all GlcNAc-TIs to a tryptophan at amino acid 303, altering interactions that are important in stabilizing a critical structural element in rabbit GlcNAc-TI. Correction of each mutation by site-directed mutagenesis restored their GlcNAc-TI activity and lectin binding properties to parental levels. The effect of the two amino acid changes on GlcNAc-TI catalysis is discussed in relation to the crystal structure of rabbit GlcNAc-TI complexed with manganese and UDP-GlcNAc.  相似文献   

4.
N-acetylglucosaminyltransferase I (GlcNAc-TI) catalyzes the first reaction in the conversion of ASN-linked cell surface oligosaccharides from a mannose-terminating structure to more complex carbohydrate structures. The mutant Chinese hamster ovary (CHO) cell line, Lec1, is deficient in this enzyme and, therefore, shows increased sensitivity to the lectin, Concanavalin A, which binds to the mannose-terminating oligosaccharides that accumulate on Lec1 cell surface glycoproteins. Spontaneous revertants of the Lec1 phenotype have never been observed. We report here the isolation of stable revertants of Lec1 cells to the parental CHO cell lectin-resistance phenotype after DNA-mediated transformation with human DNA. Both primary and secondary transformants express varying levels of GlcNAc-TI enzyme activity which was stable even when the cells were cultured in nonselective conditions. Human alu repeat DNA sequences are present in the primary transformants, but these sequences could not be detected in the secondary transformants.  相似文献   

5.
TDP-D-glucose 4,6-dehydratase, which converts TDP-D-glucose to TDP-D-4-keto-6-deoxyglucose, was purified to near-homogeneity from the daunorubicin and baumycin-producing organism Streptomyces sp. C5 (968-fold purification with a 41% recovery), and from the daunorubicin producer Streptomyces peucetius ATCC 29050 (1000-fold purification with a 37% recovery). The TDP-D-glucose 4,6-dehydratases from Streptomyces sp. C5 and S. peucetius were determined by SDS-PAGE and HPLC gel filtration to be homodimers with subunit relative molecular masses of 39,000 and 36,000, respectively. For the enzymes from both organisms, negligible activity was observed in the absence of added NAD+, or when ADP-glucose, ADP-mannose, GDP-mannose, UDP-glucose or UDP-galactose was substituted for TDP-D-glucose as substrate. For the enzyme from Streptomyces sp. C5, the K'm values for NAD+ and TDP-D-glucose were 19.2 microM and 31.3 microM, respectively. The V'max for TDP-D-glucose was 309 nmol min-1 (mg protein)-1. For the S. peucetius enzyme, the K'm values for NAD+ and TDP-D-glucose were 20.1 microM and 34.7 microM, respectively. V'max values were 180 nmol min-1 (mg protein)-1 for NAD+ and 201 nmol min-1 (mg protein)-1 for TDP-D-glucose. TDP was a good inhibitor of TDP-D-glucose 4,6-dehydratase from both organisms. The N-terminal amino acid sequence of the TDP-D-glucose 4,6-dehydratase from S. peucetius and from the erythromycin producer, Saccharopolyspora erythraea, were similar, whereas the enzyme from Streptomyces sp. C5 contained a different N-terminal amino acid sequence from either of the other two enzymes.  相似文献   

6.
Aggrus, also called T1alpha and podoplanin, is a novel platelet aggregation-inducing factor that is expressed in various carcinoma cells. Aggrus/T1alpha/podoplanin is known to be expressed in lung type I alveolar cells or lymphatic endothelial cells. However, its physiological role has not been clarified. To assess the attribution of glycosylation to Aggrus platelet aggregation activity, recombinant molecules were stably expressed in a series of Chinese hamster ovary (CHO) cell mutants, N-glycan-deficient Lec1, CMP-sialic acid transporter-deficient Lec2, and UDP-galactose transporter-deficient Lec8. A new anti-human Aggrus monoclonal antibody, YM-1, was established to detect the expression of human Aggrus on these CHO cell mutants. Aggrus on Lec1 cells induced platelet aggregation, but those on Lec2 and Lec8 cells did not. Further, the glycans on Aggrus were analyzed by lectin blotting. Aggrus expressed in CHO and Lec1 cells showed Wheat-germ agglutinin, Jacalin, and Vicia villosa lectin bindings. Lectin blotting results indicated that sialylated core 1 structures, sialic acid plus Galbeta1,3GalNAc-Ser/Thr, were critical for the platelet aggregation activity. This oligosaccharide structure is known as tumor-associated antigen, which is potentially related to the metastasis process of cancer cells.  相似文献   

7.
To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice.  相似文献   

8.
ABSTRACT. We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffnity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4°C by radioimmunoassay; the dissociation coefficient (Kd was 2.39 × 10?8 M?1 with 5.97 × 104 lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 × 105/cell) rather than a significantly reduced dissociation constant (4.93 × 10?8 M?1). At 4°C, there was no measurable Gal-specific binding of the adherence protein to the Lec and IdlD.Lecl CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 μg/ml) to CHO cells was equivalent at 4°C and 37°C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 μg/ml). Gal-specific binding of the lectin at 4°C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells. In summary, these findings indicate that the purified E. histolytica adherence lectin demonstrates saturable Gal-specific binding to 1–6 branched-N-linked and not O-linked galactose terminal cell surface carbohydrates; however, apparently only a small percentage of purified amebic lectin molecules actually possess galactose binding activity.  相似文献   

9.
Fucosylation of glycans on glycoproteins and -lipids requires the enzymatic activity of relevant fucosyltransferases and GDP-L-fucose as the donor. Due to the biological importance of fucosylated glycans, a readily accessible source of GDP-L-fucose would be required. Here we describe the construction of a stable recombinant S.cerevisiae strain expressing the E.coli genes gmd and wcaG encoding the two enzymes, GDP-mannose-4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase/4-reductase (GMER(FX)) respectively, needed to convert GDP-mannose to GDP-fucose via the de novo pathway. Taking advantage of the rich inherent cytosolic GDP-mannose pool in S.cerevisiae cells we could easily produce 0.2 mg/l of GDP-L-fucose with this recombinant yeast strain without addition of any external GDP-mannose. The GDP-L-fucose product could be used as the fucose donor for alpha1,3fucosyltransferase to synthesize sialyl Lewis x (sLex), a glycan crucial for the selectin-dependent leukocyte traffic.  相似文献   

10.
11.
Lec23 Chinese hamster ovary (CHO) cells have been shown to possess a unique lectin resistance phenotype and genotype compared with previously isolated CHO glycosylation mutants (Stanley, P., Sallustio, S., Krag, S. S., and Dunn, B. (1990) Somatic Cell Mol. Genet. 16, 211-223). In this paper, a biochemical basis for the lec23 mutation is identified. The carbohydrates associated with the G glycoprotein of vesicular stomatitis virus (VSV) grown in Lec23 cells (Lec23/VSV) were found to possess predominantly oligomannosyl carbohydrates that bound strongly to concanavalin A-Sepharose, eluted 3 sugar eq beyond a Man9GlcNAc marker oligosaccharide on ion suppression high pressure liquid chromatography, and were susceptible to digestion with jack bean alpha-mannosidase. Monosaccharide analyses revealed that the oligomannosyl carbohydrates contained glucose, indicating a defect in alpha-glucosidase activity. This was confirmed by further structural characterization of the Lec23/VSV oligomannosyl carbohydrates using purified rat mammary gland alpha-glucosidase I, jack bean alpha-mannosidase, and 1H NMR spectroscopy at 500 MHz. [3H]Glucose-labeled Glc3Man9GlcNAc was prepared from CHO/VSV labeled with [3H]galactose in the presence of the processing inhibitors castanospermine and deoxymannojirimycin. Subsequently, [3H]Glc2Man9GlcNAc was prepared by purified alpha-glucosidase I digestion of [3H]Glc3Man9GlcNAc. When these oligosaccharides were used as alpha-glucosidase substrates it was revealed that Lec23 cells are specifically defective in alpha-glucosidase I, a deficiency not previously identified among mammalian cell glycosylation mutants.  相似文献   

12.
The carbohydrate portion of the G glycoprotein of vesicular stomatitis virus (VSV) grown in CHO cells (CHO/VSV) has been fractionated on BioGelP6, concanavalin A-Sepharose, and pea lectin-agarose. The results suggest that, in addition to sialic acid and fucose heterogeneity, the asparagine-linked complex carbohydrate moieties of CHO/VSV also display branching heterogeneity. Although the majority of the glycopeptides bind to concanavalin A-Sepharose in a manner typical of certain biantennary carbohydrate structures, a significant proportion do not bind to the lectin. The latter behavior is typical of tri- or tetraantennary (branched) carbohydrate structures. The CHO/VSV glycopeptides which do not bind to concanavalin A-Sepharose separate into bound and unbound fractions on pea lectin-agarose suggesting that they include at least two different types of (branched) carbohydrate structures. Glycopeptides from the G glycoprotein of VSV grown in two, independently derived CHO glycosylation mutants which belong to complementation group 4 (Lec4 mutants) were examined in the same manner. In contrast to glycopeptides from CHO/VSV, glycopeptides from Lec4/VSV which passed through concanavalin A-Sepharose did not contain a component which subsequently bound to pea lectin-agarose. A glycopeptide fraction with these lectin-binding properties was also missing from cell surface glycopeptides derived from Lec4 cells. The combined results are consistent with the hypothesis that Lec4 CHO glycosylation mutants lack a glycosyltransferase activity responsible for the addition of a (branch) N-acetylglucosamine residue linked β1,6 to mannose.  相似文献   

13.
14.
In animal cells, the enzyme alpha(1,3)-mannoside-beta(1,2)-N-acetylglucosaminyltransferase I (GlcNAc-TI, EC.2.4.1.101) catalyzes the addition of N-acetylglucosamine to the ASN-linked Man GlcNAc oligosaccharide. The Chinese hamster ovary (CHO) mutant cell line Lec1 is deficient in this enzyme activity and, therefore, accumulates mannose-terminating cell surface ASN-linked oligosaccharides. Consequently, Lec1 cells are sensitive to the cytotoxic effects of the mannose-binding lectin Concanavalin A (Con A). Lec1 cells were co-transformed with human DNA from A431 cells and eukaryotic expression plasmids containing the bacterial neo gene by calcium phosphate/DNA-mediated transformation. Co-transformants were selected for resistance to Con A and G-418. DNA from a primary co-transformant was purified and used to transform Lec1 cells, resulting in secondary co-transformants. Both primary and secondary co-transformants exhibited in vitro GlcNAc-TI-specific enzyme activity. DNA gel blot analysis indicated that secondary co-transformants contained both human and neo sequences.  相似文献   

15.
Lec1 CHO cell glycosylation mutants are defective in N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and therefore cannot convert the oligomannosyl intermediate (Man5GlcNAc2Asn) into complex carbohydrates. Lec1A CHO cell mutants have been shown to belong to the same genetic complementation group but exhibit different phenotypic properties. Evidence is presented that lec1A represents a new mutation at the lec1 locus resulting in partial loss of GlcNAc-TI activity. Structural studies of the carbohydrates associated with vesicular stomatitis virus grown in Lec1A cells (Lec1A/VSV) revealed the presence of biantennary and branched complex carbohydrates as well as the processing intermediate Man5GlcNAc2Asn. By contrast, the glycopeptides from virus grown in CHO cells (CHO/VSV) possessed only fully processed complex carbohydrates, whereas those from Lec1/VSV were almost solely of the Man5GlcNAc2Asn intermediate type. Therefore, the Lec1A glycosylation phenotype appears to result from the partial processing of N-linked carbohydrates because of reduced GlcNAc-TI action on membrane glycoproteins. Genetic experiments provided evidence that lec1A is a single mutation affecting GlcNAc-TI activity. Lec1A mutants could be isolated at frequencies of 10(-5) to 10(-6) from unmutagenized CHO cell populations by single-step selection, a rate inconsistent with two mutations. In addition, segregants selected from Lec1A X parental cell hybrid populations expressed only Lec1A or related lectin-resistant phenotypes and did not include any with a Lec1 phenotype. The Lec1A mutant should be of interest for studies on the mechanisms that control carbohydrate processing in animal cells and the effects of reduced GlcNAc-TI activity on the glycosylation, translocation, and compartmentalization of cellular glycoproteins.  相似文献   

16.
We recently developed a novel system for lectin microarray based on the evanescent-field fluorescence-detection principle, by which even weak lectin-oligosaccharide interactions are detectable without a washing procedure. For its practical application, cell glycan analysis was performed for Chinese hamster ovary (CHO) cells and their glycan profile was compared with those of their glycosylation-defective Lec mutants. Each of the cell surface extracts gave a significantly different profile from that of the parental CHO cells in a manner reflecting denoted biosynthetic features. Hence, the developed lectin microarray system is considered to be fully applicable for differential glycan profiling of crude samples.  相似文献   

17.
Two CHO glycosylation mutants that were previously shown to lack N-linked carbohydrates with GlcNAc beta 1,6Man alpha 1,6 branches, and to belong to the same genetic complementation group, are shown here to differ in the activity of N-acetylglucosaminyltransferase V (GlcNAc-TV) (UDP-GlcNA: alpha 1,6mannose beta-N-acetylglucosaminyltransferase V). One mutant, Lec4, has no detectable GlcNAc-TV activity whereas the other, now termed Lec4A, has activity equivalent to that of parental CHO in detergent cell extracts. However, Lec4A GlcNAc-TV can be distinguished from CHO GlcNAc-TV on the basis of its increased sensitivity to heat inactivation and its altered subcellular compartmentalization. Sucrose density gradient fractionation shows that the major portion of GlcNAc-TV from Lec4A cells cofractionates with membranes of the ER instead of Golgi membranes where GlcNAc-TV is localized in parental CHO cells. Other experiments show that Lec4A GlcNAc-TV is not concentrated in lysosomes, or in a post-Golgi compartment, or at the cell surface. The altered localization in Lec4A cells is specific for GlcNAc-TV because two other Lec4A Golgi transferases cofractionate at the density of Golgi membranes. The combined data suggest that both lec4 and lec4A mutations affect the structural gene for GlcNAc-TV, causing either the loss of GlcNAc-TV activity (lec4) or its miscompartmentalization (lec4A). The identification of the Lec4A defect indicates that appropriate screening of different glycosylation-defective mutants should enable the isolation of other mammalian cell trafficking mutants.  相似文献   

18.
The human LARGE gene encodes a protein with two putative glycosyltransferase domains and is required for the generation of functional alpha-dystroglycan (alpha-DG). Monoclonal antibodies IIH6 and VIA4-1 recognize the functional glycan epitopes of alpha-DG that are necessary for binding to laminin and other ligands. Overexpression of full-length mouse Large generated functionally glycosylated alpha-DG in Pro(-5) Chinese hamster ovary (CHO) cells, and the amount was increased by co-expression of protein:O-mannosyl N-acetylglucosaminyltransferase 1. However, functional alpha-DG represented only a small fraction of the alpha-DG synthesized by CHO cells or expressed from an alpha-DG construct. To identify features of the glycan epitopes induced by Large, the production of functionally glycosylated alpha-DG was investigated in several CHO glycosylation mutants. Mutants with defective transfer of sialic acid (Lec2), galactose (Lec8), or fucose (Lec13) to glycoconjugates, and the Lec15 mutant that cannot synthesize O-mannose glycans, all produced functionally glycosylated alpha-DG upon overexpression of Large. Laminin binding and the alpha-DG glycan epitopes were enhanced in Lec2 and Lec8 cells. In Lec15 cells, functional alpha-DG was increased by co-expression of core 2 N-acetylglucosaminyltransferase 1 with Large. Treatment with N-glycanase markedly reduced functionally glycosylated alpha-DG in Lec2 and Lec8 cells. The combined data provide evidence that Large does not transfer to Gal, Fuc, or sialic acid on alpha-DG nor induce the transfer of these sugars to alpha-DG. In addition, the data suggest that human LARGE may restore functional alpha-DG to muscle cells from patients with defective synthesis of O-mannose glycans via the modification of N-glycans and/or mucin O-glycans on alpha-DG.  相似文献   

19.
Nakayama K  Maeda Y  Jigami Y 《Glycobiology》2003,13(10):673-680
We cloned the GDP-4-keto-6-deoxymannose-3,5-epimerase-4-reductase gene from Arabidopsis thaliana (AtFX/GER1). The yeast Saccharomyces cerevisiae was transfected with the AtFX/GER1 gene coexpressed with GDP-mannose-4,6-dehydratase gene of A. thaliana (MUR1). In vitro GDP-fucose synthesis activity was observed in the cytoplasmic fraction of cells coexpressing the AtFX/GER1 gene and MUR1 gene. However, the cytoplasmic fraction of cells expressing MUR1 alone did not show the GDP-mannose-4,6-dehydratase activity. This result suggests that the AtFX/GER1 protein may contribute to maintenance of the MUR1 protein as the active form. Immunoprecipitation experiments showed that both proteins interact with each other, indicating that this interaction is required to maintain MUR1 protein as the active or stable form. Finally, in vivo GDP-fucose synthesis activity was analyzed by measuring the amount of GDP-fucose produced in the cytoplasm of yeast cells. The amount of GDP-fucose in cells coexpressing MUR1 and AtFX/GER1 genes was 3.5 times higher than the amount of GDP-mannose in the same cells, indicating that this coexpression system is suitable for production of the valuable sugar nucleotide GDP-fucose in yeast.  相似文献   

20.
Mortierella alpina is a filamentous fungus commonly found in soil, which is able to produce large amount of polyunsaturated fatty acids. l-Fucose is an important sugar found in a diverse range of organisms, playing a variety of biological roles. In this study, we characterized the de novo biosynthetic pathway of GDP-l-fucose (the nucleotide-activated form of l-fucose) in M. alpina. Genes encoding GDP-d-mannose 4,6-dehydratase (GMD) and GDP-keto-6-deoxymannose 3,5-epimerase/4-reductase (GMER) were expressed heterologously in Escherichia coli. The recombinant enzymes were produced as His-tagged fusion proteins. Conversion of GDP-mannose to GDP-4-keto-6-deoxy mannose by GMD and GDP-4-keto-6-deoxy mannose to GDP-l-fucose by GMER were analyzed by capillary electrophoresis, electro-spray ionization-mass spectrometry, and nuclear magnetic resonance spectroscopy. The km values of GMD for GDP-mannose and GMER for GDP-4-keto-6-deoxy mannose were determined to be 0.77 mM and 1.047 mM, respectively. Both NADH and NADPH may be used by GMER as the coenzyme. The optimum temperature and pH were determined to be 37 °C and pH 9.0 (GMD) or pH 7.0 (GMER). Divalent cations are not required for GMD and GMER activity, and the activities of both enzymes may be enhanced by DTT. To our knowledge this is the first report on the characterization of GDP-l-fucose biosynthetic pathway in fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号