首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have previously described [K. M. Sullivan and D. M. J. Lilley (1986) Cell 47, 817-827] a set of sequences, called C-type inducing sequences, which cause cruciform extrusion by adjacent inverted repeats to occur by an abnormal kinetic pathway involving a large denatured region of DNA. In this paper we apply statistical thermodynamic DNA helix melting theory to these sequences. We find a marked correlation between the ability of sequences to confer C-type cruciform character experimentally and their calculated propensity to undergo cooperative melting, and no exceptions have been found. The correlations are both qualitative and quantitative. Thus the ColE1 flanking sequences behave as single melting units, while the DNA of the S-type plasmid pIRbke8 exhibits no propensity to melt in the region of the bke cruciform. The results of the calculations are also fully consistent with the following experimental observations: 1. the ability of the isolated colL and colR fragments of the ColE1 flanking sequences, as well as the short sequence col30, to confer C-type character; 2. C-type induction by an A + T rich Drosophila sequence; 3. low-temperature cruciform extrusion by an (AT)34 sequence; 4. the effect of changing sequences at a site 90 base pairs (bp) removed from the inverted repeat; 5. the effects of systematic deletion of the colL sequence; and 6. the effects of insertion of various sequences in between the colL sequence and the xke inverted repeat. These studies show that telestability effects on thermal denaturation as predicted from equilibrium helix melting theory of linear DNA molecules may explain all the features that are revealed by studying the extrusion of cruciforms in circular DNA molecules subjected to superhelical stress.  相似文献   

2.
3.
The influence of inverted repeat sequences on the melting transitions of linear DNAs has been examined. Derivative melting curves (DMC) of a 514 base pair (bp) DNA, seven subfragments of this DNA, and four other DNAs have been compared to predictions of DNA melting theory. The 514-bp DNA contains three inverted repeat sequences that can form cruciform structures in supercoiled DNA. We refer to these sequences as c-inverted repeats. Previous work showed that the DMC of this DNA, unlike a number of other DNAs, is not accurately predicted by DNA melting theory. Since the theoretical model does not include hairpin-like structures, it was suggested that hairpin or cruciform formation in these inverted repeats may be responsible for this discrepancy. Our results support this hypothesis. Predicted DMCs are in good agreement with DNAs with no inverted repeats, or inverted repeats not evident in supercoiled DNA. Differences between the theoretical and experimental Tm's are less than or equal to 0.3 degrees C. DNA molecules that contain one or more of the three c-inverted repeats are not as accurately predicted. Experimental Tm values are lower than predicted values by 0.7-3.8 degrees C. It is concluded that some inverted repeat sequences can form hairpin-like structures during the melting of linear DNAs. These structures appear to lower overall DNA stability.  相似文献   

4.
Gruenwedel DW  Hsu CH 《Biopolymers》1969,7(4):557-570
When DNA's of differing GC:AT base ratios, e.g. synthetic poly dAT, T4 DNA,calf thymus DNA, E. coli DNA, and M. lysodeikticus DNA, are heat-denatured at neutral pH in increasing concentrations of N(a)(2)SO(4) or C(s)(2)SO(4) as supporting electrolytes,the variation of melting temperature with average base composition, dT(m)/dX(G)(C), changes from 45°C (in 0.002M Na) to ll°C (in 4.5M Na) and from 42°C (in 0.002M Cs) to 3°C(in 4.5M Cs). The decrease of dT(m)/dX(G)(C) is a monotonic function of decreasing water activity in the salt solutions. We interpret this decreased composition dependence of the thermal stability of the various DNA's as being due to a destabilization of the GC base pairs relative to the AT base pairs by the concentrated salt media. A simple quantitative treatment shows that k = 8GC/SAT decreases from a value of 4.14 (in 0.01MN(a)) to 1.86 (in 3M Na) and from 4.18 (in 0.01M Cs) to 1.42 (in 3M Cs). SAT is the equilibrium constant for the formation of a hydrogen-bonded AT base pair from a pair of unbonded bases at the junction between a helical region and a denatured region and SGC is the like constant for the formation of a GC base pair. These results corroborate our previous findings of a strongly reduced composition dependence of the negative logarithm of the methylmercuric hydroxide concentration necessary to produce 50% denaturation when the helix-coil transition of DNA is studied in concentrated Cs(s)SO(4)(ultracentrifugation) instead of in dilute N(a)(2)SO(4) (ultraviolet spectrophotometry).  相似文献   

5.
We have studied the deletion of inverted repeats cloned into the EcoRI site within the CAT gene of plasmid pBR325. A cloned inverted repeat constitutes a palindrome that includes both EcoRI sites flanking the insert. In addition, the two EcoRI sites represent direct repeats flanking a region of palindromic symmetry. A current model for deletion between direct repeats involves the formation of DNA secondary structure which may stabilize the misalignment between the direct repeats during DNA replication. Our results are consistent with this model. We have analyzed deletion frequencies for several series of inverted repeats, ranging from 42 to 106 bp, that were designed to form cruciforms at low temperatures and at low superhelical densities. We demonstrate that length, thermal stability of base pairing in the hairpin stem, and ease of cruciform formation affect the frequency of deletion. In general, longer palindromes are less stable than shorter ones. The deletion frequency may be dependent on the thermal stability of base pairing involving approximately 16-20 bp from the base of the hairpin stem. The formation of cruciforms in vivo leads to a significant increase in the deletion frequency. A kinetic model is presented to describe the relationship between the physical-chemical properties of DNA structure and the deletion of inverted repeats in living cells.  相似文献   

6.
The base catalysed imino proton exchange in DNA oligonucleotides of different sequences and lengths was studied by 1H-NMR saturation recovery experiments. The self-complementary sequences studied were GCGCGAATTCGCGC (I), CGCGAATTCGCG (II), GCGAATTCGC (III), and CGCGATCGCG (IV). The evaluation of base pair lifetimes was made after correction for the measured 'absence of added catalyst' effect which was found to be characterized by recovery times of 400-500 ms for the AT base pairs and 250-300 ms for the GC base pairs at 15 degrees C. End effects with rapid exchange is noticeable up to 3 base pairs from either end of the duplexes. The inner hexamer cores GAATTC of sequences I-II show similar base pair lifetime patterns, around 30 ms for the innermost AT, 5-10 ms for the outer AT and 20-50 ms for the GC base pairs at 15 degrees C. The shorter sequences III and particularly IV show much shorter lifetimes in their central AT base pairs (11 ms and 1 ms, respectively).  相似文献   

7.
There are two alternative pathways by which inverted repeat sequences in supercoiled DNA molecules may extrude cruciform structures, called C-type and S-type. S-type cruciforms, which form the great majority, are characterised by absolute requirement for cations to promote extrusion, which then proceeds at higher temperatures and with lower activation parameters than for C-type cruciforms. The mechanism proposed for S-type extrusion involves an initial opening of basepairs limited to the centre of the inverted repeat, formation of intra-strand basepairing and a four-way junction, and finally branch migration to the fully extruded cruciform. The model predicts that central sequence changes will be more kinetically significant than those removed from the centre. We have studied the kinetics of cruciform extrusion by a series of inverted repeats related to that of pIRbke8 by either one or two mutations in the symmetric unit. We find that mutations in the central 8 to 10 nucleotides may profoundly affect extrusion rates--the fastest being 2000-fold faster than the slowest, whereas mutations further from the centre affect rates to a much smaller extent, typically up to ten-fold. These data support the proposed mechanism for extrusion via central opening.  相似文献   

8.
9.
A novel interarm interaction of DNA cruciform forming at inverted repeat sequence was characterized using an S1 nuclease digestion, permanganate oxidation, and microscopic imaging. An inverted repeat consisting of 17 bp complementary sequences was isolated from the bluegill sunfish Lepomis macrochirus (Perciformes) and subcloned into the pUC19 plasmid, after which the supercoiled recombinant plasmid was subjected to enzymatic and chemical modification. In high salt conditions (200 mM NaCl, or 100-200 mM KCl), S1 nuclease cut supercoiled DNA at the center of palindromic symmetry, suggesting the formation of DNA cruciform. On the other hand, S1 nuclease in the presence of 150 mM NaCl or less cleaved mainly the 3'-half of the repeat, thereby forming an unusual structure in which the 3'-half of the inverted repeat, but not the 5'-half, was retained as an unpaired strand. Permanganate oxidation profiles also supported the presence of single-stranded part in the 3'-half of the inverted repeat in addition to the center of the symmetry. Both electron microscopy and atomic force microscopy have detected a thick protrusion on the supercoiled DNA harboring the inverted repeat. We hypothesize that the cruciform hairpins at conditions favoring triplex formation adopt a parallel side-by-side orientation of the arms allowing the interaction between them supposedly stabilized by hydrogen bonding of base triads.  相似文献   

10.
During cruciform extrusion, a DNA inverted repeat unwinds and forms a four-way junction in which two of the branches consist of hairpin structures obtained by self-pairing of the inverted repeats. Here, we use single-molecule DNA nanomanipulation to monitor in real-time cruciform extrusion and rewinding. This allows us to determine the size of the cruciform to nearly base pair accuracy and its kinetics with second-scale time resolution. We present data obtained with two different inverted repeats, one perfect and one imperfect, and extend single-molecule force spectroscopy to measure the torque dependence of cruciform extrusion and rewinding kinetics. Using mutational analysis and a simple two-state model, we find that in the transition state intermediate only the B-DNA located between the inverted repeats (and corresponding to the unpaired apical loop) is unwound, implying that initial stabilization of the four-way (or Holliday) junction is rate-limiting. We thus find that cruciform extrusion is kinetically regulated by features of the hairpin loop, while rewinding is kinetically regulated by features of the stem. These results provide mechanistic insight into cruciform extrusion and help understand the structural features that determine the relative stability of the cruciform and B-form states.  相似文献   

11.
Some properties of the palindromic sequences in the sea urchin Strongylocentrotus intermedius nuclear DNA have been studied. It was shown that the amount of "foldback HAP bound DNA" and the S1 nuclease resistant DNA depends on renaturation temperature and Na+ concentration in solution. The authentic fraction of inverted repeats comprises 10-15% of the total DNA. The complexity of the palindromic fraction is approximately 8,2 X 10(7) nucleotide pairs and the average number of inverted repeats approximates 5 X 10(5) per haploid genome. The renaturation kinetics of inverted repeats with excess of total homologous DNA indicates that these sequences are enriched with unique DNA. The possible function of palindromic sequences is discussed.  相似文献   

12.
Parallel-stranded (ps) DNAs with mixed AT/GC content comprising G.C pairs in a varying sequence context have been investigated. Oligonucleotides were devised consisting of two 10-nt strands complementary either in a parallel or in an antiparallel orientation and joined via nonnucleotide linkers so as to form 10-bp ps or aps hairpins. A predominance of intramolecular hairpins over intermolecular duplexes was achieved by choice of experimental conditions and verified by fluorescence determinations yielding estimations of rotational relaxation times and fractional base pairing. A multistate mode of ps hairpin melting was revealed by temperature gradient gel electrophoresis (TGGE). The thermal stability of the ps hairpins with mixed AT/GC content depends strongly on the specific sequence in a manner peculiar to the ps double helix. The thermodynamic effects of incorporating trans G.C base pairs into an AT sequence are context-dependent: an isolated G. C base pair destabilizes the duplex whereas a block of > or =2 consecutive G.C base pairs exerts a stabilizing effect. A multistate heterogeneous zipper model for the thermal denaturation of the hairpins was derived and used in a global minimization procedure to compute the thermodynamic parameters of the ps hairpins from experimental melting data. In 0.1 M LiCl at 3 degrees C, the formation of a trans G.C pair in a GG/CC sequence context is approximately 3 kJ mol(-)(1) more favorable than the formation of a trans A.T pair in an AT/TA sequence context. However, GC/AT contacts contribute a substantial unfavorable free energy difference of approximately 2 kJ mol(-)(1). As a consequence, the base composition and fractional distribution of isolated and clustered G.C base pairs determine the overall stability of ps-DNA with mixed AT/GC sequences. Thus, the stability of ps-DNA comprising successive > or =2 G.C base pairs is greater than that of ps-DNA with an alternating AT sequence, whereas increasing the number of AT/GC contacts by isolating G.C base pairs exerts a destabilizing effect on the ps duplex. Molecular modeling of the various helices by force field techniques provides insight into the structural basis for these distinctions.  相似文献   

13.
Cruciform-resolvase interactions in supercoiled DNA   总被引:42,自引:0,他引:42  
D M Lilley  B Kemper 《Cell》1984,36(2):413-422
T4 endonuclease VII, which cleaves Holliday-like junctions in DNA, specifically cleaves short inverted repeats in supercoiled plasmids. These sequences are subject to site-specific cleavage by single-strand-specific nucleases, and cruciform formation has been suggested as an explanation for this observation. This proposal is greatly strengthened by the present data, since a formal analogy between cruciform structures and Holliday junctions exists. Resolution of a variety of unrelated cruciform sequences demonstrates that the cleavage process results in a linear molecule with hairpin ends and single ligatable nicks at positions corresponding to the stem-base of the cruciform. In two examples mapped in detail, the cleavages are exclusively introduced at two or three nucleotides from the end of the symmetric sequence at the 5' side on each strand. These studies demonstrate the potential of endonuclease VII as a probe of cruciform structure and the utility of short cruciform structures as Holliday junction models.  相似文献   

14.
The DNA of CAENORHABDITIS ELEGANS   总被引:71,自引:8,他引:63       下载免费PDF全文
Chemical analysis and a study of renaturation kinetics show that the nematode, Caenorhabditis elegans, has a haploid DNA content of 8 x 10(7) base pairs (20 times the genome of E. coli). Eighty-three percent of the DNA sequences are unique. The mean base composition is 36% GC; a small component, containing the rRNA cistrons, has a base composition of 51% GC. The haploid genome contains about 300 genes for 4S RNA, 110 for 5S RNA, and 55 for (18 + 28)S RNA.  相似文献   

15.
Limanskiĭ AP 《Biofizika》2000,45(6):1039-1043
Atomic force microscopy was used to visualize the cruciform structure in supercoiled plasmid pUC8 DNA immobilized on aminomodified mica. The cruciform hairpin was 14 base pairs in size, as determined from atomic force microscopy images of pUC8 DNA in air. Molecular modeling confirmed that the cruciform structure is formed by hairpins with self-complementary homopyrimidine-homopurine sequences (dT)8(dA)6 and a loop 4 nucleotides long.  相似文献   

16.
DNA sequences capable of adopting non-canonical secondary structures have been associated with gross-chromosomal rearrangements in humans and model organisms. Previously, we have shown that long inverted repeats that form hairpin and cruciform structures and triplex-forming GAA/TTC repeats induce the formation of double-strand breaks which trigger genome instability in yeast. In this study, we demonstrate that breakage at both inverted repeats and GAA/TTC repeats is augmented by defects in DNA replication. Increased fragility is associated with increased mutation levels in the reporter genes located as far as 8 kb from both sides of the repeats. The increase in mutations was dependent on the presence of inverted or GAA/TTC repeats and activity of the translesion polymerase Polζ. Mutagenesis induced by inverted repeats also required Sae2 which opens hairpin-capped breaks and initiates end resection. The amount of breakage at the repeats is an important determinant of mutations as a perfect palindromic sequence with inherently increased fragility was also found to elevate mutation rates even in replication-proficient strains. We hypothesize that the underlying mechanism for mutagenesis induced by fragile motifs involves the formation of long single-stranded regions in the broken chromosome, invasion of the undamaged sister chromatid for repair, and faulty DNA synthesis employing Polζ. These data demonstrate that repeat-mediated breaks pose a dual threat to eukaryotic genome integrity by inducing chromosomal aberrations as well as mutations in flanking genes.  相似文献   

17.
The inverted repeated sequences of the chromatin-eliminating nematode Ascaris lumbricoides var. suum have been examined by electron microscopy and by hydroxyapatite chromatography, both in the germ-line and in the somatic DNA. 38% of the inverted repeats of the germ-line DNA analysed in the electron microscope have a single-stranded loop, in comparison to about 50% of looped structures in the somatic DNA. The loops are on average 2.3 X 10(3) base pairs (bp) long. The rest of the foldback DNA consists of simple hairpins. The average length of looped and unlooped inverted repeats is of the order of 300-400 bp in the germ-line and in the somatic DNA. The content of S1-resistant foldback duplexes isolated by hydroxyapatite chromatography amounts to 1.3% in spermatids, with an average length of 350 bp, and to 1.1% in intestinal or larval cell nuclei, with a length of about 320 bp. We estimate by two different methods that there exist approximately 12500 inverted repeats per haploid germ-line genome and approximately 8000 in the haploid somatic genome. A statistical analysis of the data indicates that the great majority of the foldback sequences are randomly distributed in the Ascaris genome, with a spacing of about (40-80) X 10(3) bp, both in the germ-line and in the somatic DNA.  相似文献   

18.
In order to examine sequence-dependent structural effects in DNA, the ability of alternating purine-pyrimidine fragments to undergo a B-Z transition when cloned in a supercoiled plasmid was determined solely as a function of sequence, with base and nearest-neighbor composition held constant. Sequences of 22 GC and 2 AT base pairs were synthesized such that the AT base pairs varied between contiguous placement and separation by eight GC base pairs. Results show, surprisingly, that the ease of the B-Z transition varies with the position of the two AT base pairs, occurring at lower superhelical densities when AT base pairs are contiguous, and at higher torsional strain when the AT base pairs are moved further apart.  相似文献   

19.
The extrusion kinetics of two cruciforms derived from unrelated DNA sequences differ markedly. Kinetic barriers exist for both reactions, necessitating elevated temperatures before extrusion proceeds at measureable speeds, but the dependence upon temperature and ionic strength is quite different for the two sequences. One, the ColE1 inverted repeat, exhibits a remarkably great temperature dependence of reaction rate and is suppressed by moderate amounts of NaCl or MgCl2. In contrast, the other, a synthetic inverted repeat present in pIRbke8, shows more modest temperature dependence and has a requirement for the presence of salt, with optimal concentrations being 50 mM NaCl or 100 microM MgCl2. Under optimal conditions, cruciform extrusion rates are fast (t1/2 less than 60m) at 37 degrees C for both sequences at native superhelix densities. In 50 mM NaCl the pIRbke8 inverted repeat is characterised by an Arrhenius activation energy of 42.4 +/- 3.2 kcal mole -1. The differences in kinetic properties between the two sequences indicate that DNA base sequence is itself an important factor in determining cruciform kinetics, and possibly even in the selection of the mechanistic pathway.  相似文献   

20.
In the absence of flanking AT-rich segments, cruciform transition energies of DNA palindromic sequences of random base composition are high and mainly dependent upon the base-stacking and -pairing parameters of the palindromic segment. When AT-rich sequences adjoin palindromes, the transition energy of cruciform extrusion is significantly lowered. An inverse relationship exists between the length of the AT-rich stretch and the cruciform transition energy. Long stretches lower the transition energies more than short stretches. At physiological salt and temperature conditions, equilibrium between cruciform extrusion and absorption for the inverted repeat sequences IRS-B and IRS-C of pBR322 derived plasmids is reached in less than five minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号