首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effects on the PDA of modifying intracellular and extracellular concentrations of Ca2+ and Mn2+. The effect of decreased Ca2+ concentration or addition of EGTA is mainly an increase in the PDA amplitude and length. Raising Ca2+ concentration using ruthenium red or high external Ca2+ has the opposite effect. The effect of Mn2+ is much more striking: In the presence of 50-100 mM Mn2+ the PDA is initially greatly depressed but can rise slowly for up to 20 or 30 s (in the dark) until it approaches its original amplitude and time course. Bridge measurements showed that the depression of the PDA corresponds to a depressed conductance and so is not due to an increase in K+ conductance. The Mn2+ effect is potentiated by decreased Ca2+ Appropriate stimulation suppresses the rising PDA as promptly as it does a normal PDA, suggesting that if lateral diffusion is the source of the slow rise, the PDA and PDA-depressing processes must be spatially linked. The action of the anti-PDA is apparently prolonged by both Ca2+ and Mn2+.  相似文献   

2.
Summary We have previously reported hyperpolarizing membrane potential changes in a monkey kidney cell line (JTC-12) which has characteristics resembling proximal tubular cells. These hyperpolarizations could be observed spontaneously or evoked by mechanically touching adjacent cells. In this report, we have shown further evidence that these hyperpolarizations are elicited by an increase in membrane conductance to K+ which is caused by an increase in cytosolic Ca2+ concentration. In addition, we have found another type of hyperpolarization which is evoked by applying flow of extracellular fluid to the cell. Intracellular injection of Ca2+ and Sr2+ evoked hyperpolarizations, while intracellular injection of Mn2+ and Ba2+ did not. Intracellular injection of EGTA suppressed both spontaneous and mechanically evoked hyperpolarizations. In Ca2+-free medium, both spontaneous and flow-evoked hyperpolarizations were not observed, while mechanical stimuli consistently evoked hyperpolarization. In Na+-free medium, the incidence of cells showing the spontaneous or flow-evoked hyperpolarization increased, and the amplitude and the duration of the mechanically evoked hyperpolarization became greater. Quinidine inhibited all types of hyperpolarization. These data suggest that hyperpolarizations in JTC-12 cells are due to an increase in Ca2+-activated K+ conductance.  相似文献   

3.
《Cell calcium》1996,20(3):303-314
In Fura-2 loaded-single guinea pig adrenal chromaffin cells, muscarine, nicotine and KCl all caused an early peak rise in intracellular Ca concentration ([Ca2+]i) followed by a sustained rise. In Ca2+-free solution, muscarine, but neither nicotine nor KCl, caused a transient increase in [Ca2+]i, which was partially reduced by preceding application of caffeine or by treatment with ryanodine plus caffeine. In voltage-clamped cells at a holding potential of −60 mV, the muscarine-induced [Ca2+]i, rise, especially its sustained phase, decreased in magnitude. intracellular application of inositol 1,4,5-trisphosphate caused a transient increase in [Ca2+]i and inhibited the following [Ca2+]i response to muscarine without affecting responses to nicotine and a depolarizing pulse. Muscarine evoked membrane depolarization following brief hyperpolarization in most cells tested. There was a significant positive correlation between the amplitude of the depolarization and the magnitude of the sustained rise in [Ca2+]i. Muscarine-induced sustained [Ca2+]i rise was much greater in the current-clamp mode than that in the voltage-clamp mode. The sustained phase of [Ca2+]i rise and Mn2+ influx in response to muscarine were suppressed by a voltage-dependent Ca2+ channel blocker, methoxyverapamil. These results suggest that stimulation of muscarinic receptors causes not only extracellular Ca2+ entry, but also Ca2+ mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Voltage-dependent Ca2+ channels may function as one of the Ca2+ entry pathways activated by muscarinic receptor in guinea pig adrenal chromaffin cells.  相似文献   

4.
A cDNA encoding a mouse B2 bradykinin (BK) receptor was stably transfected in Chinese hamster ovary (CHO) cells. In two resulting transformants, mouse B2 BK receptor was found to induce a twofold elevation in the inositol-1,4,5-trisphosphate level. In a pertussis toxin-insensitive manner, BK also produced a biphasic increase in the intracellular Ca2+ concentration ([Ca2+]i). The initial elevation in [Ca2+]i was abolished by thapsigargin pretreatment in Ca2+-free medium. The second phase was dependent on external Ca2+. The BK/inositol trisphosphate- and thapsigargin-sensitive Ca2+ stores required extracellular Ca2+ for refilling. Ca2+ influx induced by BK and thapsigargin was confirmed by Mn2+ entry through Ca2+ influx pathways producing Mn2+ quenching. Genistein, a tyrosine kinase inhibitor, partially decreased the BK-induced [Ca2+]i increase during the sustained phase and the rate of Mn2+ entry. BK had essentially no effect on the intracellular cyclic AMP level. The results suggest that the mouse B2 BK receptor couples to phospholipase C in CHO cells and that its activation results in biphasic [Ca2+]i increases, by mobilization of intracellular Ca2+ and store-depletion-mediated Ca2+ influx, the latter of which is tyrosine phosphorylation-dependent.  相似文献   

5.
Brief intracellular Ca2+ transients initiate signaling routines that direct cellular activities. Consequently, activation of Ca2+-permeable neurotransmitter-gated channels can both depolarize and initiate remodeling of the postsynaptic cell. In particular, the Ca2+ transient produced by NMDA receptors is essential to normal synaptic physiology, drives the development and plasticity of excitatory central synapses, and also mediates glutamate excitotoxicity. The amplitude and time course of the Ca2+ signal depends on the receptor’s conductance and gating kinetics; these properties are themselves influenced both directly and indirectly by fluctuations in the extracellular Ca2+ concentration. Here, we used electrophysiology and kinetic modeling to delineate the direct effects of extracellular Ca2+ on recombinant GluN1/GluN2A receptor conductance and gating. We report that, in addition to decreasing unitary conductance, Ca2+ also decreased channel open probability primarily by lengthening closed-channel periods. Using one-channel current recordings, we derive a kinetic model for GluN1/GluN2A receptors in physiological Ca2+ concentrations that accurately describes macroscopic channel behaviors. This model represents a practical instrument to probe the mechanisms that control the Ca2+ transients produced by NMDA receptors during both normal and aberrant synaptic signaling.  相似文献   

6.
Using the voltage-clamp technique, we investigated transmembrane ion currents in isolated smooth muscle cells of the guinea pigtaenia coli. In our study, we identified and studied a charibdotoxin-sensitive component of Ca2+-dependent K+ current carried through the channels of high conductance (in most publications called “big conductance,”I BK(Ca)). This component was completely blocked by 100 nM charibdotoxin and by tetraethylammonium in concentrations as low as 1 mM.I BK(Ca) demonstrated fast kinetics of inactivation, which nearly coincided with that of Ca2+ current. In addition to the dependence on Ca2+ concentration, this current also showed voltage-dependent properties: with a rise in the level of depolarization its amplitude increased. In many cells, depolarizing shifts in the membrane potential evoke spontaneous outward currents. Such currents probably represent the secondary effect of cyclic Ca2+ release from the caffeine-sensitive intracellular stores that result in short-term activation of charibdotoxin-sensitive Ca2+-dependent K+ channels.  相似文献   

7.
Summary Effects of divalent cations on oscillations of membrane potentials (i.e., spontaneous repetitive hyperpolarizing responses) and on hyperpolarizing responses induced by electrical stimuli as well as on resting potentials were studied in large nondividing L cells. Deprivation of Ca2+ from the external medium inhibited these hyperpolarizing responses accompanying slight depolarization of the resting potential. Sr2+ or Mn2+ applied to the external medium in place of Ca2+ was able to substitute for Ca2+ in the generation of hyperpolarizing responses, while Mg2+, Ba2+ or La3+ suppressed hyperpolarizing responses. The addition of A23187 to the bathing medium or intracellular injection of Ca2+, Sr2+, Mn2+ or La3+ induced membrane hyperpolarization. When the external Ca2+, Sr2+ or Mn2+ concentration was increased, the resting potential also hyperpolarized, in a saturating manner. The amplitude of maximum hyperpolarization produced by high external Ca2+ was of the same order of magnitude as those of hyperpolarizing responses and was dependent on the external K+ concentration. In the light of these experimental observations, it was deduced that the K+ conductance increase associated with the hyperpolarizing excitation is the result of an increase in the intracellular concentration of free Ca2+ mainly derived from the external solution.  相似文献   

8.
T. Hayama  M. Tazawa 《Protoplasma》1980,102(1-2):1-9
Summary The effects of Ca2+ and other cations on chloroplast rotation in isolated cytoplasmic droplets ofChara were investigated by iontophoretically injecting them. Chloroplast rotation stopped immediately after Ca2+ injection and recovered with time, suggesting the existence of a Ca2+-sequestering system in the cytoplasm. The Ca2+ concentration necessary for the stoppage was estimated to be >10–4M. Sr2+ had the same effect as Ca2+. Mn2+ and Cd2+ induced a gradual decrease in the rotation rate with low reversibility. K+ and Mg2+ had no effects. Ba2+ had effects sometimes similar to Ca2+ or Sr2+ and sometimes similar to Mn2+ or Cd2+.Reversible inhibition by Ca2+, together with its specificity, strongly supports the hypothesis that a transient increase in the Ca2+ concentration in the cytoplasm upon membrane excitation directly stops the cytoplasmic streaming inCharaceae internodes (Hayama et al. 1979).  相似文献   

9.
A mathematical modeling of tight junction (TJ) dynamics was elaborated in a previous study (Kassab, F., Marques, R.P., Lacaz-Vieira, F. 2002. Modeling tight junction dynamics and oscillations. J. Gen. Physiol. 120:237–247) to better understand the dynamics of TJ opening and closing, as well as oscillations of TJ permeability that are observed in response to changes of extracellular Ca2+ levels. In this model, TJs were assumed to be specifically controlled by the Ca2+ concentration levels at the extracellular Ca2+ binding sites of zonula adhaerens. Despite the fact that the model predicts all aspects of TJ dynamics, we cannot rule out the likelihood that changes of intracellular Ca2+ concentration (Ca2+ cell), which might result from changes \ of extracellular Ca2+ concentration (Ca2+ extl), contribute to the observed results. In order to address this aspect of TJ regulation, fast Ca2+-switch experiments were performed in which changes of Ca2+ cell were induced using the Ca2+ ionophore A23187 or thapsigargin, a specific inhibitor of the sarco-endoplasmic reticulum Ca2+-ATPase. The results indicate that the ionophore or thapsigargin per se do not affect basal tissue electrical conductance (G), showing that the sealing of TJs is not affected by a rise in Ca2+ cell. When TJs were kept in a dynamic state, as partially open structures or in oscillation, conditions in which the junctions are very sensitive to disturbances that affect their regulation, a rise of Ca2+ cell never led to a decline of G, indicating that a rise of Ca2+ cell does not trigger per se TJ closure. On the contrary, always the first response to a rise of Ca2+ cell is an increase of G that, in most cases, is a transient response. Despite these observations we cannot assure that a rise of Ca2+ cell is without effect on the TJs, since an increase of Ca2+ cell not only causes a transient increase of G but, in addition, during oscillations a rise of Ca2+ cell induced by the Ca2+ ionophore transiently halted the oscillatory pattern of TJs. The main conclusion of this study is that TJ closure that is observed when basolateral Ca2+ concentration (Ca2+ bl) is increased after TJs were opened by Ca2+ bl removal cannot be ascribed to a rise of Ca2+ cell and might be a consequence of Ca2+ binding to extracellular Ca2+ sites.  相似文献   

10.
25-Hydroxycholesterol and 25-hydroxy vitamin D-3 increased the permeability of liposomes to Ca2+ measured by the arsenazo III encapsulation technique. This effect was sensitive to the lipid composition of the membrane, with changes that decreased the motional freedom of phospholipid acyl chains decreasing Ca2+ permeability. The greatest permeability was observed with the zwitter-ionic phospholipids, phosphatidylcholine and phosphatidylethanolamine, whereas the acidic phospholipids, phosphatidylinositol and phosphatidylserine, depressed Ca2+ permeability. The effect was not specific for Ca2+. Other divalent cations were translocated in the order Mn2+ > Mg2+  Ca2+ ? Sr2+  Ba2+. The permeability of liposomes to the monovalent cation, Na+, was also substantially increased. The effect did not appear to be due to ionophoretic properties of the sterols, and it is suggested that perturbation of the membranes by the polar 25-hydroxyl group may play a role in increasing membrane permeability.  相似文献   

11.
The effect of celecoxib on renal tubular cells is largely unexplored. In Madin Darby canine kidney (MDCK) cells, the effect of celecoxib on intracellular Ca2 + concentration ([Ca2 +]i) and proliferation was examined by using the Ca2 +-sensitive fluorescent dye fura-2 and the viability detecting fluorescent dye tetrazolium, respectively. Celecoxib (≥1 μ M) caused an increase of [Ca2 +]i in a concentration-dependent manner. Celecoxib-induced [Ca2 +]i increase was partly reduced by removal of extracellular Ca2 +. Celecoxib-induced Ca2 + influx was independently suggested by Mn2 + influx-induced fura-2 fluorescence quench. In Ca2 +-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2 +-ATPase, caused a monophasic [Ca2 +]i increase, after which celecoxib only induced a tiny [Ca2 +]iincrease; conversely, pretreatment with celecoxib completely inhibited thapsigargin-induced [Ca2 +]i increases. U73122, an inhibitor of phospholipase C, abolished ATP (but not celecoxib)-induced [Ca2 +]i increases. Overnight incubation with 1 or 10 μ M celecoxib decreased cell viability by 80% and 100%, respectively. These data indicate that celecoxib evokes a [Ca2 +]i increase in renal tubular cells by stimulating both extracellular Ca2 + influx and intracellular Ca2 + release and is highly toxic to renal tubular cells in vitro.  相似文献   

12.
The molecular mechanisms by which Ca2+ and metal ions interact with the binding sites that modulate the tight junctions (TJs) have not been fully described. Metal ions were used as probes of these sites in the frog urinary bladder. Basolateral Ca2+ withdrawal induces the opening of the TJs, a process that is abruptly terminated when Ca2+ is readmitted, and is followed by a complete recovery of the TJ seal. Mg2+ and Ba2+ were incapable of keeping the TJ sealed or of inducing TJ recovery. In addition, Mg2+ causes a reversible concentration-dependent inhibition of the Ca2+-induced TJ recovery. The effects of extracellular Ca2+ manipulation on the TJs apparently is not mediated by changes of cytosolic Ca2+ concentration. The transition elements, Mn2+ and Cd2+, act as Ca2+ agonists. In the absence of Ca2+, they prevent TJ opening and almost immediately halt the process of TJ opening caused by Ca2+ withdrawal. In addition, Mn2+ promotes an almost complete recovery of the TJ seal. Cd2+, in spite of stabilizing the TJs in the closed state and halting TJ opening, does not promote TJ recovery, an effect that apparently results from a superimposed toxic effect that is markedly attenuated by the presence of Ca2+. The interruption of TJ opening caused by Ca2+, Cd2+, or Mn2+, and the stability they confer to the closed TJs, might result from the interaction of these ions with E-cadherin. Addition of La3+ (2 μM) to the basolateral Ca2+-containing solution causes an increase of TJ permeability that fully reverses when La3+ is removed. This effect of La3+, observed in the presence of Ca2+ (1 mM), indicates a high La3+ affinity for the Ca2+-binding sites. This ability of La3+ to open TJs in the presence of Ca2+ is a relevant aspect that must be considered when using La3+ in the evaluation of TJ permeability of epithelial and endothelial membranes, particularly when used during in vivo perfusion or in the absence of fixatives.  相似文献   

13.
The action potential (AP) in Chara is associated with a transient elevation in the concentration of cytoplasmic-free Ca2+ ([Ca2+]cyt). The quenching properties of the fluorescent Ca2+ indicator dye fura-dextran, in combination with Mn2+, was used to investigate whether this [Ca2+]cyt transient is due to Ca2+ release from internal stores or to Ca2+ influx across the plasma membrane. Adding Mn2+ to the external medium or pre-injection of Mn2+ into the vacuole caused no perceivable quenching of the fura fluorescence, during an AP. This makes it unlikely that Ca2+ influx across the plasma membrane or the tonoplast contributes significantly to the [Ca2+]cyt transient in an excited cell. When cells were pre-incubated in external solutions containing Mn2+ from 25 to 30 mM APs evoked a transient quenching of fura fluorescence in Mn2+-free solutions. Under these conditions, the quenching must be attributed to an AP-associated release of Mn2+ from internal stores. Based on the finding that exposing cells to millimolar concentrations of Mn2+ caused a progressive quenching of the fura fluorescence in non-excited cells, it can be assumed that some Mn2+ enters the cells during pre-incubation and is loaded into internal stores. During excitation, this stored Mn2+ is released together with Ca2+.  相似文献   

14.
Probable participation of sperm protease in the acrosome reaction was investigated using several inhibitors and substrates. Among those examined, L-l-tosylamide-2-phenylethyl chloromethyl ketone (TPCK) and chymostatin, chymotrypsin inhibitors, p-nitrophenyl-p′-guanidinobenzoate (NPGB), a serine protease inhibitor, and N-benzoyl-L-tyrosine ethyl ester (BTEE), a chymotrypsin substrate, inhibited the egg jelly-induced acrosome reaction of Strongylocentrotus intermedius. TPCK and BTEE, however, did not inhibit the reaction caused by ionophores, A23187, or nigericin. To know the mechanism of inhibition by chymotrypsin inhibitors and substrates of the egg jelly-induced acrosome reaction, intraccllular Ca2+ concentration ([Ca2+]i) and pH (pHi) were measured with fura-2 and 2′,7′-bis (carboxy-ethyl)carboxyfluorescein (BCECF), respectively. Egg jelly caused increase of [Ca2+]i which was depressed by BTEE. Egg jelly also caused a transient rise of pHi, which was not depressed by BTEE. In the presence of verapamil, the acrosome reaction by egg jelly was significantly inhibited concomitant with depressed increase of [Ca2+]i. The rise of pHj was not depressed by verapamil. Thus, modes of action of BTEE and of verapamil are similar to each other. Bringing these findings together, the authors present a view that a chymotrypsin-like protease of sea urchin sperm activates verapamil-sensitive Ca2+ channels, which take part in the acrosome reaction.  相似文献   

15.
Manganese in the oxygen-evolving complex is a physiological electron donor to Photosystem II. PS II depleted of manganese may oxidize exogenous reductants including benzidine and Mn2+. Using flash photolysis with electron spin resonance detection, we examined the room-temperature reaction kinetics of these reductants with Yz +, the tyrosine radical formed in PS II membranes under illumination. Kinetics were measured with membranes that did or did not contain the 33 kDa extrinsic polypeptide of PS II, whose presence had no effect on the reaction kinetics with either reductant. The rate of Yz + reduction by benzidine was a linear function of benzidine concentration. The rate of Yz + reduction by Mn2+ at pH 6 increased linearly at low Mn2+ concentrations and reached a maximum at the Mn2+ concentrations equal to several times the reaction center concentration. The rate was inhibited by K+, Ca2+ and Mg2+. These data are described by a model in which negative charge on the membrane causes a local increase in the cation concentration. The rate of Yz + reduction at pH 7.5 was biphasic with a fast 400 s phase that suggests binding of Mn2+ near Yz + at a site that may be one of the native manganese binding sites.Abbreviations PS II Photosystem II - YD tyrosine residue in Photosystem II that gives rise to the stable Signal II EPR spectrum - Yz tyrosine residue in Photosystem II that mediates electron transfer between the reaction center chlorophyll and the site of water oxidation - ESR electron spin resonance - DPC diphenylcarbazide - DCIP dichlorophenolindophenol  相似文献   

16.
Wu J  Qu H  Jin C  Shang Z  Wu J  Xu G  Gao Y  Zhang S 《Plant cell reports》2011,30(7):1193-1200
Many signal-transduction processes in plant cells have been suggested to be triggered by signal-induced opening of calcium ion (Ca2+) channels in the plasma membrane. Cyclic nucleotides have been proposed to lead to an increase in cytosolic free Ca2+ in pollen. However, direct recordings of cyclic-nucleotide-induced Ca2+ currents in pollen have not yet been obtained. Here, we report that cyclic AMP (cAMP) activated a hyperpolarization-activated Ca2+ channel in the Pyrus pyrifolia pollen tube using the patch-clamp technique, which resulted in a significant increase in pollen tube protoplast cytosolic-Ca2+ concentration. Outside-out single channel configuration identified that cAMP directly increased the Ca2+ channel open-probability without affecting channel conductance. cAMP-induced currents were composed of both Ca2+ and K+. However, cGMP failed to mimic the cAMP effect. Higher cytosolic free-Ca2+ concentration significantly decreased the cAMP-induced currents. These results provide direct evidence for cAMP activation of hyperpolarization-activated Ca2+ channels in the plasma membrane of pollen tubes, which, in turn, modulate cellular responses in regulation of pollen tube growth.  相似文献   

17.
Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at –80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.  相似文献   

18.
In the present study we studied platelet-activating factor (PAF)-, and ATP-induced increases in intracellular Ca2+ concentration ([Ca2+]i) using RAW 264.7 macrophages filled with fura-2/AM and imaged with fluorescence video microscopy. We found that the prevalence of detectable [Ca2+]i responses to PAF application was significantly higher in the presence of dantrolene. Dantrolene itself significantly decreased basal [Ca2+]i of macrophages compared to control cases after a 20-min incubation period. In the dantrolene-treated cells even the peak [Ca2+]i in response to PAF (as an average of all cells) was below the baseline of control suggesting that decreased [Ca2+]i plays a permissive role in the Ca2+ rise induced by PAF in macrophages. In contrast to the effect of PAF, neither the amplitude of response to ATP nor the frequency of responding cells changed significantly during dantrolene treatment in our experiments. These cells were able to respond to a standard immune stimulus as well: lipopolysaccharide (LPS) was able to increase [Ca2+]i. Our data indicate that the effectiveness of PAF to increase [Ca2+]i in RAW 264.7 macrophages depends on the resting [Ca2+]i. It has also been shown in this study that PAF and ATP differently regulate Ca2+ homeostasis in macrophages during inflammatory response and therefore they possibly differently modulate cytokine production by macrophages.  相似文献   

19.
Using Fura-2AM microfluorimetry, the effect of oxidized glutathione (GSSG) and its pharmacological analogue glutoxim on the intracellular Ca2+ concentration in rat peritoneal macrophages was investigated. It was shown that GSSG or glutoxim increase the intracellular Ca2+ concentration by inducing Ca2+ mobilization from thapsigargin-sensitive Ca2+ stores and subsequent Ca2+ entry from external medium. Dithiothreitol, which reduces S-S-bonds in proteins, completely prevents or reverses the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim. This suggests that the increase of intracellular Ca2+ concentration induced by GSSG or glutoxim can be mediated by their interactions with functionally important SH-groups of proteins involved in Ca2+-signaling.Two structurally different tyrosine kinase inhibitors genistein and methyl-2,5-dihydroxycinnamate prevent or completely reverse the increase in the intracellular Ca2+ concentration induced by GSSG or glutoxim. On the contrary, tyrosine phosphatase inhibitor Na orthovanadate enhances the increase of intracellular Ca2+ concentration evoked by oxidizing agents. The data suggest that tyrosine kinases and tyrosine phosphatases are involved in the regulatory effect of GSSG and glutoxim on the intracellular Ca2+ concentration in macrophages.  相似文献   

20.
Rasola A  Bernardi P 《Cell calcium》2011,50(3):222-233
A variety of stimuli utilize an increase of cytosolic free Ca2+ concentration as a second messenger to transmit signals, through Ca2+ release from the endoplasmic reticulum or opening of plasma membrane Ca2+ channels. Mitochondria contribute to the tight spatiotemporal control of this process by accumulating Ca2+, thus shaping the return of cytosolic Ca2+ to resting levels. The rise of mitochondrial matrix free Ca2+ concentration stimulates oxidative metabolism; yet, in the presence of a variety of sensitizing factors of pathophysiological relevance, the matrix Ca2+ increase can also lead to opening of the permeability transition pore (PTP), a high conductance inner membrane channel. While transient openings may serve the purpose of providing a fast Ca2+ release mechanism, persistent PTP opening is followed by deregulated release of matrix Ca2+, termination of oxidative phosphorylation, matrix swelling with inner membrane unfolding and eventually outer membrane rupture with release of apoptogenic proteins and cell death. Thus, a rise in mitochondrial Ca2+ can convey both apoptotic and necrotic death signals by inducing opening of the PTP. Understanding the signalling networks that govern changes in mitochondrial free Ca2+ concentration, their interplay with Ca2+ signalling in other subcellular compartments, and regulation of PTP has important implications in the fine comprehension of the main biological routines of the cell and in disease pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号