首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文研究了5种烈性大豆根瘤菌噬菌体在大豆根瘤菌菌株间的普遍性转导。噬菌体psc和psx能在慢生大豆根瘤USDA110菌株间转导营养缺陷型标记和卡那霉素抗性标记。快生大豆根瘤菌MD3菌株间可通过噬菌体pfm转导营养缺陷标记和卡那霉素抗性标记。噬菌体pfc和pfx可在快生豇豆根瘤菌ANU240及其变种ANU265间转导抗性基因和定位于共生质粒(sym质粒)上的结瘤基因(common nod)。所有转导频率均在10-6~10-7之间。用紫外线处理噬菌体裂解液可以相应提高转导频率。  相似文献   

2.
用pSUP1011载体系统,Tn5诱变慢生大豆根瘤菌110、123,其KmR菌落出现频率为5x10-8一5x 10-7。Tn5的SmR。基因能在慢生大豆根瘤菌中表达。用卡那霉素加链霉素来筛选插入变株,可完全排除自然突变的干扰。从4450个KmR变株中检出营养缺陷型7株,其中His-(4)、Glu-(1)和Trp-(2),吸氢功能缺陷型10株,其中2株His-同时是吸氢缺陷(Hup-)和共生固氮缺陷(Nif-),其原养型回变体(回变频率为0.5×10-8)都同时恢复了吸氢与固氮功能,又失去了对卡那霉素的抗性。4株对氧特别敏感的Hup-缺陷型,在培养状态下无吸氢活性,但结瘤固氮时不放氢。  相似文献   

3.
超慢生型大豆根瘤菌的生理生化和共生特性的研究   总被引:2,自引:2,他引:2  
超慢生型大豆根瘤菌(ESG,extra—slow-gfowing soybean rhizobium)是不同于大豆另两类共生体——慢生型大豆根瘤菌(Bradyhizobium,japonicum)和快生型大豆根瘤菌(Sin-orhizobium fredii)的新类群。它们在生长速率和生理学特性等方面均表现出较大的差异。根瘤类菌体的扫描结果表明,ESG的类菌体形态为杆状,与另外两群相近,但发现有“Y”形类菌体。ESG利用碳源范围较窄,抗生素自然耐受性比慢生型低,在柠檬酸盐培养基上不生长;代时超长,已测定的7个菌株代时为23.3-41.9h。细胞成分N,c分析结果表明,ESG在三个类群中N含量最高,C含量最低。温室盆栽试验证明ESG中大部分菌株的固氮酶活性和植株含氮量与生产用菌株相当。ESG菌株可以在绿豆上结瘤并有固氮酶活性。  相似文献   

4.
通过三亲本杂交将携带豌豆根瘤菌吸氢基因的质粒pAL618转移到台湾毛豆根瘤菌292-C中,经抗性筛选、质粒检测和吸氢活性测定,得到能稳定遗传的结合株292-C2和292-C3。在自生条件下结合株均表现较高的吸氢活性,而受体株292-C不吸氢,在共生条件下结合株表现为高吸氢,而受体株表现为放氢。  相似文献   

5.
通过三亲本杂交将携带豌豆根瘤菌吸氢基因的质粒pAL618转移到台湾毛豆根瘤菌292-C中,经抗性筛选、质粒检测和吸氢活性测定,得到能稳定遗传的结合株292-C2和292-C3。在自生条件下结合株均表现较高的吸氢活性,而受体株292-C不吸氢,在共生条件下结合株表现为高吸氢,而受体株表现为放氢。  相似文献   

6.
7.
检测了四株大豆根瘤菌在不同的大豆品种上形成根瘤的放氢、吸氢、固氮活性及豆血红蛋白的含量;同时测定了植株干物质的积累。结果表明,所有固氮根瘤都放氢,自生条件下Hup~-根瘤菌形成的根瘤仍不具吸氢活性,相对固氮率在0.75左右。而Hup~(?)菌株根瘤的相对固氮率在0.91~1之间。寄主植物对Hup~(?)菌株的吸氢活性有影响。相关分析表明,根瘤的豆血红蛋白与吸氢活性呈负相关。干物质积累与固氮酶活性关系最密切,氢酶活性的影响是次要的。  相似文献   

8.
根瘤菌吸氢酶基因转移的研究   总被引:2,自引:0,他引:2  
通过三亲本杂交将含有花生根瘤菌吸氢基因的质粒pZ 55(Tcr)转入不吸氢的花生根瘤菌Ra 34等菌株 (Hup- ,Nif+,Apr)中 ,筛选到既具有吸氢又具有固氮能力的花生根瘤菌结合株Rz34 2。在自生和共生条件下 ,结合株均可表达高吸氢和高固氮活性。以结合株Rz34 2接种的花生植株叶片的干重比不接种的、接种受体株Ra34(Hup- )和接种对照菌株L8 3(Hup+,Nif+)的分别高 6.2 %、7.6%和 6.3% ;种子的含氮量分别高 8 9%、1.00 %和 6.0 % ;产量分别高 188%、1 0 5%和 1 0 7%。研究结果表明 ,以含吸氢基因的结合株接种花生能提高根瘤菌与花生的共生固氮效率 ,增加作物的产量。  相似文献   

9.
pH对土壤中土著快、慢生大豆根瘤菌结瘤的影响   总被引:17,自引:2,他引:17  
1 引  言土壤 pH对根瘤菌结瘤的影响一直是微生物学和微生物生态学研究的内容之一[4] .在对大豆根瘤菌的研究中 ,早期的研究主要集中于生长慢、产碱的大豆慢生根瘤菌 (Bradyrhizobiumjaponicum) [1,2 ] .1982年 ,Keyser等[3] 报道了一类生长快、产酸的大豆根瘤菌 ,并命名为费氏中华根瘤菌 (Sinorhzobium fredi i) .由于它们在生理特性方面存在着明显的差异 ,其结瘤能力以及环境的生物、物理和化学等因素对结瘤的影响一直受到广泛的重视 .本文研究了偏酸、偏碱的 pH对费氏中华根瘤菌…  相似文献   

10.
11.
自生条件下,测定准噶尔盆地南部的68株根瘤菌吸氢活力,获得一株Hup~+的冬箭筈豌豆根瘤菌C_(48)。经与紫云英根瘤菌株109及89比较,两者氢酶表达的最适pH相同;温度分别以20或30℃为宜;Ni~(2+)显著促进吸氢表达,但C_(48)还受Co~(2+ )、Mg~(2+)、Cu~(2+)的促进;紫云英根瘤菌的氨酶表达受碳水化合物抑制较冬箭筈豌豆根瘤菌明显。此外,自生条件下生长的Hup—菌株,经与宿主共生后,Hup~+的百分率大为增加。  相似文献   

12.
紫云英根瘤菌109菌株完整细胞的吸氧活性,在空气气相中衰减快,加氢或降低温度,衰减延缓。完整细胞的吸氢反应受体,包括甲基蓝、氧、铁氰化钾、TTC、甲基紫精、Cyt C_3、硝酸钾、DCPIP和反丁烯二酸盐的表现不相同。当氧为受体时,气相氧浓度为5%,吸氢值最大,甲基蓝为受体时,吸氢活性高。另外,氧为受体的吸氢受到碳水化合物抑制,并与基础吸氧速率相关。紫云英根瘤菌的氢氧化与碳水化合物氧化竞争电子传递途径。  相似文献   

13.
用热变性温度法和液相复性速率法分别测定了超慢生大豆根瘤菌(ESG,extra-slow-growing soybean rhizobia)DNA G+C mol%及与其它根瘤菌间的DNA同源性.结果表明,ESG的DNA G+C mol含量在59.2—63.5%之间,且不同地区不同血清型的ESG代表菌株DNA同源率在70%以上,说明它们是遗传型一致的类群.ESG与在大豆上结瘤的快生大豆根瘤菌(Rhizobium fredii USDA205)同源率为14.8%,与慢生大豆根瘤菌(Bradyrhizobiumjaponicum)三个DNA同源组的同源率分别为20.5%,30.0%,19.4%.测定结果还表明,ESG与其它根瘤菌遗传学的亲缘关系也很远.  相似文献   

14.
快生型大豆根瘤菌基因库的构建   总被引:1,自引:0,他引:1  
本文报道了用柯斯质粒(cosmid)pLAFRI 作为载体,通过 EcoRI 部分酶切快生型大豆根瘤菌的全部 DNA,获得“目的”DNA 片段,用大肠杆菌 ED8767作为受体菌株,我们构建了一株快生型大豆根瘤菌——B52菌株的基因库。插入的基因片段大小为20~30kb,所获得的抗性菌落数为3.9×10~4,其中外源基因插入频率为70%,重组子数超过“理论”值,达到了希望的建库要求。  相似文献   

15.
16.
17.
南岭黄檀根瘤固氮酶和吸氢酶活性研究   总被引:1,自引:0,他引:1  
《亚热带植物通讯》1995,24(2):22-25
  相似文献   

18.
本文研究了在种植大豆的老区,用3种Rhizobiumiaponicum进行单菌接种、混菌接种和混菌接种加施过磷酸钙等7个处理的田间对比试验,并选取22个分类性状,采用系统聚类分析方法,进行数学运算.结果表明,系统聚类分析的6种方法,均得到满意的结果.其中,以离差平方和法和最长距离法为佳,即用R.japonicum61A76、R.japomicum005和R.japoioumSm31分别接种与CK对比,单位面积产量均有所增加,但以3种R.japonicum各1/3混菌接种或混菌接种加施过磷酸钙增产更为显著,增产幅度13.03~15.14%.  相似文献   

19.
南岭黄檀根瘤固氮酶和吸氢酶活性研究   总被引:1,自引:0,他引:1  
测定不同环境条件下南岭黄檀根瘤固氮酶和吸氢酶活性。结果表明,南岭黄檀根瘤具有吸氢酶活性,外源H_2可提高固氮酶活性(25%),表明吸氢酶有助于提高固氮效率。低浓度的硝酸盐(20mg。1 ̄_(-1)不影响根瘤固氮酶和吸氢酶活性,但浓度达40mg·l ̄(-1)时有抑制作用,而铵盐在上述浓度下均表现抑制作用。离体根瘤固氮酶和吸氢酶活性表达的最适温度为25℃,过高或过低均有抑制作用。土壤含水量及光照强度均明显影响其固氮酶和吸氢酶活性。  相似文献   

20.
快生型大豆根瘤菌的渗透调节   总被引:1,自引:1,他引:1  
弗雷德中华根瘤菌(Sinorhizobium fredii)RT 19是快生型大豆根瘤菌。该菌株在不同浓度NaCl条件下,其细胞内的游离谷氯酸和钾离子含量随盐浓度的提高而急剧增加。在无盐和低浓度NICl条件下,测不出细胞内有游离苏氨酸,但在较高浓度盐存在时,其含量也随着盐浓度的提高而递增。RT19在对数生长后期,突然加入NaCl,使其培养液中的NaCl的最终浓度达到300mmol/L,定时取样测定细胞内氨基酸含量,发现5分钟后谷氨酸含量急剧上升,比不加盐的对照高出5倍,而且在3小时内保持不变.苏氨酸也出现类似情况。测定了RT 19及其转化子RTt1 9和gTt50的谷氨酸脱氢酶(GDH)、谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)在盐压下的活性,发现在300 mmol/L NaCl或300mm。I/L KC1存在时,GDH酶活性稍为下降或不变,而GS和GOGAT酶活性则显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号