首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aiming to provide a tentative framework for the study of the neural correlates of aesthetic preference, we review three recent neuroimaging studies carried out with the purpose of locating brain activity associated with decisions about the beauty of visual stimuli (Cela-Conde et al., 2004; Kawabata and Zeki, 2004; Vartanian and Goel, 2004). We find that the results of the three studies are not in line with previous neuropsychological data. Moreover, there are no coincidences among their results. However, when they are mapped on to Chatterjee's (2003) neuropsychological model of aesthetic preference it becomes clear that neuroimaging data are not contradictory, but complementary, and their interpretation is enriched. The results of these studies suggest that affective processes have an important role in aesthetic preference, and that they are integrated with cognitive processes to reach a decision regarding the beauty of visual stimuli. Future studies must aim to clarify whether certain methodological procedures are better suited to study any of the particular cognitive operations involved in aesthetic preference, and ascertain the extent to which the proposed framework is compatible with the aesthetic appreciation of musical stimuli.  相似文献   

2.
Positron emission tomography (PET) is a powerful clinical and research tool that, in the past two decades, has provided a great amount of novel data on the pathophysiology and functional consequences of human epilepsy. PET studies revealed cortical and subcortical brain dysfunction of a widespread brain circuitry, providing an unprecedented insight in the complex functional abnormalities of the epileptic brain. Correlation of metabolic and neuroreceptor PET abnormalities with electroclinical variables helped identify parts of this circuitry, some of which are directly related to primary epileptogenesis, while others, adjacent to or remote from the primary epileptic focus, may be secondary to longstanding epilepsy. PET studies have also provided detailed data on the functional anatomy of cognitive and behavioral abnormalities associated with epilepsy. PET, along with other neuroimaging modalities, can measure longitudinal changes in brain function attributed to chronic seizures as well as therapeutic interventions. This review demonstrates how development of more specific PET tracers and application of multimodality imaging by combining structural and functional neuroimaging with electrophysiological data can further improve our understanding of human partial epilepsy, and helps more effective application of PET in presurgical evaluation of patients with intractable seizures.  相似文献   

3.

Objective

Shortly after infection, HIV enters the brain and causes widespread inflammation and neuronal damage, which ultimately leads to neuropsychological impairments. Despite a large body of neuroscience and imaging studies, the pathophysiology of these HIV-associated neurocognitive disorders (HAND) remains unresolved. Previous neuroimaging studies have shown greater activation in HIV-infected patients during strenuous tasks in frontal and parietal cortices, and less activation in the primary sensory cortices during rest and sensory stimulation.

Methods

High-density magnetoencephalography (MEG) was utilized to evaluate the basic neurophysiology underlying attentive, visual processing in older HIV-infected adults and a matched non-infected control group. Unlike other neuroimaging methods, MEG is a direct measure of neural activity that is not tied to brain metabolism or hemodynamic responses. During MEG, participants fixated on a centrally-presented crosshair while intermittent visual stimulation appeared in their top-right visual-field quadrant. All MEG data was imaged in the time-frequency domain using beamforming.

Results

Uninfected controls had increased neuronal synchronization in the 6–12 Hz range within the right dorsolateral prefrontal cortex, right frontal eye-fields, and the posterior cingulate. Conversely, HIV-infected patients exhibited decreased synchrony in these same neural regions, and the magnitude of these decreases was correlated with neuropsychological performance in several cortical association regions.

Conclusions

MEG-based imaging holds potential as a noninvasive biomarker for HIV-related neuronal dysfunction, and may help identify patients who have or may develop HAND. Reduced synchronization of neural populations in the association cortices was strongly linked to cognitive dysfunction, and likely reflects the impact of HIV on neuronal and neuropsychological health.  相似文献   

4.
Memory is sometimes a troublemaker. Schacter has classified memory's transgressions into seven fundamental 'sins': transience, absent-mindedness, blocking, misattribution, suggestibility, bias and persistence. This paper focuses on one memory sin, misattribution, that is implicated in false or illusory recognition of episodes that never occurred. We present data from cognitive, neuropsychological and neuroimaging studies that illuminate aspects of misattribution and false recognition. We first discuss cognitive research examining possible mechanisms of misattribution associated with false recognition. We also consider ways in which false recognition can be reduced or avoided, focusing in particular on the role of distinctive information. We next turn to neuropsychological research concerning patients with amnesia and Alzheimer's disease that reveals conditions under which such patients are less susceptible to false recognition than are healthy controls, thus providing clues about the brain mechanisms that drive false recognition. We then consider neuroimaging studies concerned with the neural correlates of true and false recognition, examining when the two forms of recognition can and cannot be distinguished on the basis of brain activity. Finally, we argue that even though misattribution and other memory sins are annoying and even dangerous, they can also be viewed as by-products of adaptive features of memory.  相似文献   

5.
The development of neuroimaging methods such as PET, has provided a new impulse to the study of the neural basis of cognitive functions, and has extended the field of inquiry from the analysis of the consequences of brain lesions to the functional investigations of brain activity, either in patients with selective neuropsychological deficits or in normal subjects engaged in cognitive tasks. Specific patterns of hypometabolism in neurological patients are associated with different profiles of memory deficits. [18F]FDG PET studies have confirmed the association of episodic memory with the structures of Papez's circuit and have shown correlations between short-term and semantic memory and the language areas. The identification of anatomo-functional networks involved in specific components of memory function in normal subjects is the aim of several PET activation studies. The results are in agreement with ‘neural network’ models of the neural basis of memory, as complex functions subserved by multiple interconnected cortical and subcortical structures.  相似文献   

6.
Executive function (EF) is a multifaceted construct that has been defined as a set of higher-order cognitive processes that allow for flexibility, self-regulation, strategic planning, and goal-directed behaviors. EFs have been studied in numerous clinical disorders using a variety of neuropsychological tasks and, more recently, neuroimaging techniques. The underlying physiological substrates of EF were historically attributed to the frontal lobes; however, recent studies suggest more widespread involvement of additional brain regions. The purpose of the present study was to conduct a systematic review (using PRISMA 2009 guidelines) of neuroimaging studies employing functional magnetic resonance imaging and diffusion tensor imaging methods investigating the physiological substrates of EFs in attention-deficit/hyperactivity disorder compared to other clinical groups and non-clinical participants. Research articles were retrieved using PsycINFO, PsycARTICLES, MEDLINE, and ScienceDirect, beginning February 2015 through May 2016. A total of 42 studies met eligibility. Of those 42 studies, 22 studies included clinical participants and 20 studies included non-clinical participants. Results revealed increased activation of the frontal brain region in the majority of non-clinical studies and approximately 50% of the clinical studies, albeit with some inconsistencies across subregions, tasks, and age groups. Implications, methodological limitations, and suggestions for future research are discussed.  相似文献   

7.
OBJECTIVE: To examine the association between the average daily alcohol intake of older men in 1982 and cognitive performance and brain atrophy nine years later. SUBJECTS: Random sample of 209 Australian men living in the community who were veterans of the second world war. Their mean age in 1982 was 64.3 years. MAIN OUTCOME MEASURES: 18 standard neuropsychological tests measuring a range of intellectual functions. Cortical, sylvian, and vermian atrophy on computed tomography. RESULTS: Compared with Australian men of the same age in previous studies these men had sustained a high rate of alcohol consumption into old age. However, there was no significant correlation, linear or non-linear, between alcohol consumption in 1982 and results in any of the neuropsychological tests in 1991; neither was alcohol consumption associated with brain atrophy on computed tomography. CONCLUSION: No evidence was found that apparently persistent lifelong consumption of alcohol was related to the cognitive functioning of these men in old age.  相似文献   

8.
There is great uncertainty due to challenges of escalating population growth and climate change. Public perception that diverges from the scientific community may decrease the effectiveness of scientific inquiry and innovation as tools to solve these challenges. The objective of this study was to identify the factors associated with the divergence of public opinion from scientific consensus regarding the safety of genetically modified (GM) foods and human involvement in global warming (GW). Results indicate that the effects of knowledge on public opinion are complex and non-uniform across types of knowledge (i.e., perceived and actual) or issues. Political affiliation affects agreement with science; Democrats were more likely to agree that GM food is safe and human actions cause GW. Respondents who had relatively higher cognitive function or held illusionary correlations about GM food or GW were more likely to have an opinion that differed from the scientific community.  相似文献   

9.
Episodic memory is widely conceived as a fundamentally constructive, rather than reproductive, process that is prone to various kinds of errors and illusions. With a view towards examining the functions served by a constructive episodic memory system, we consider recent neuropsychological and neuroimaging studies indicating that some types of memory distortions reflect the operation of adaptive processes. An important function of a constructive episodic memory is to allow individuals to simulate or imagine future episodes, happenings and scenarios. Since the future is not an exact repetition of the past, simulation of future episodes requires a system that can draw on the past in a manner that flexibly extracts and recombines elements of previous experiences. Consistent with this constructive episodic simulation hypothesis, we consider cognitive, neuropsychological and neuroimaging evidence showing that there is considerable overlap in the psychological and neural processes involved in remembering the past and imagining the future.  相似文献   

10.
Obesity has been associated with a higher risk for impaired cognitive function, which most likely reflects associated medical complications (i.e., cerebrovascular pathology). However, there is also evidence that in healthy individuals excess weight may adversely affect cognition (executive function, attention, and memory). Here, we measured regional brain glucose metabolism (using positron emission tomography (PET) and 2-deoxy-2[(18)F]fluoro-D-glucose (FDG)) to assess the relationship between BMI and brain metabolism (marker of brain function) in 21 healthy controls (BMI range 19-37 kg/m(2)) studied during baseline (no stimulation) and during cognitive stimulation (numerical calculations). Statistical parametric mapping (SPM) revealed a significant negative correlation between BMI and metabolic activity in prefrontal cortex (Brodmann areas 8, 9, 10, 11, 44) and cingulate gyrus (Brodmann area 32) but not in other regions. Moreover, baseline metabolism in these prefrontal regions was positively associated with performance on tests of memory (California Verbal Learning Test) and executive function (Stroop Interference and Symbol Digit Modality tests). In contrast, the regional brain changes during cognitive stimulation were not associated with BMI nor with neuropsychological performance. The observed association between higher BMI and lower baseline prefrontal metabolism may underlie the impaired performance reported in healthy obese individuals on some cognitive tests of executive function. On the other hand, the lack of an association between BMI and brain metabolic activation during cognitive stimulation indicates that BMI does not influence brain glucose utilization during cognitive performance. These results further highlight the urgency to institute public health interventions to prevent obesity.  相似文献   

11.
Results of multidisciplinary studies, including neuromorphological, neurophysiological, neuropsychological, and psychphysiological studies, are reviewed. They allow the brain mechanisms of cognition formation and development during maturation to be identified. The role of regulatory (modulatory) brain systems in forming the cognitive function in the child is demonstrated. Data on considerable changes in the brain systems responsible for the development of cognitive functions in children between the ages of five to six and seven to eight years are presented. At this age, the morphological and functional maturations of the frontal cortical areas and their descending connections with other cerebral structures increase the efficiencies of arbitrary selective attention, learning the activity program, inhibition of spontaneous responses, and regulation and organization of activity, i.e., the functions that are important for successful schooling.  相似文献   

12.
The authors conducted an extensive search for published works concerning healthcare utilization and mortality among Gulf War veterans of the Coalition forces who served during the 1990-1991 Gulf War. Reports concerning the health experience of US, UK, Canadian, Saudi and Australian veterans were reviewed. This report summarizes 15 years of observations and research in four categories: Gulf War veteran healthcare registry studies, hospitalization studies, outpatient studies and mortality studies. A total of 149728 (19.8%) of 756373 US, UK, Canadian and Australian Gulf War veterans received health registry evaluations revealing a vast number of symptoms and clinical conditions but no suggestion that a new unique illness was associated with service during the Gulf War. Additionally, no Gulf War exposure was uniquely implicated as a cause for post-war morbidity. Numerous large, controlled studies of US Gulf War veterans' hospitalizations, often involving more than a million veterans, have been conducted. They revealed an increased post-war risk for mental health diagnoses, multi-symptom conditions and musculoskeletal disorders. Again, these data failed to demonstrate that Gulf War veterans suffered from a unique Gulf War-related illness. The sparsely available ambulatory care reports documented that respiratory and gastrointestinal complaints were quite common during deployment. Using perhaps the most reliable data, controlled mortality studies have revealed that Gulf War veterans were at increased risk of injuries, especially those due to vehicular accidents. In general, healthcare utilization data are now exhausted. These findings have now been incorporated into preventive measures in support of current military forces. With a few diagnostic exceptions such as amyotrophic lateral sclerosis, mental disorders and cancer, it now seems time to cease examining Gulf War veteran morbidity and to direct future research efforts to preventing illness among current and future military personnel.  相似文献   

13.
Neuropathological and clinical evidence indicates that the clinical expression of Alzheimer's disease (AD) occurs as neuropathology exceeds the brain reserve capacity. The brain or cognitive reserve (BCR) hypothesis states that high premorbid intelligence, education, and an active and stimulating lifestyle provide reserve capacity, which acts as a buffer against the cognitive deficits due to accumulating neuropathology. Neuroimaging studies that assessed the BCR hypothesis are critically reviewed with emphasis on study design and statistical analysis. Many studies were performed in the last two decades owing to the increasing availability of positron emission tomography (PET) and PET/computed tomography scanners and to the synthesis of new radiopharmaceuticals, including tracers for amyloid and tau proteins. Studies with different tracers provided complementary consistent results supporting the BCR hypothesis. Many studies were appropriately designed with a measure of reserve, a measure of brain anatomy/function/neuropathology, and a measure of cognitive functions that are necessary. Most of the early studies were performed with PET and [ 18F]fluorodeoxyglucose, and occasionally with [ 15O]water, reporting a significant association between higher occupation/education and lower glucose metabolism (blood flow) in associative temporo-parietal cortex in patients with AD and also in patients with MCI, after correcting for the degree in the cognitive impairment. On the contrary, performances on several neuropsychological tests increased with increasing education for participants with elevated [ 11C]PiB uptake. Studies with the tracers specific for tau protein showed that patients with AD with elevated tau deposits had higher cognitive performances compared with patients with similar levels of tau deposits. BCR in AD is also associated with a preserved cholinergic function. The BCR hypothesis has been validated with methodologically sound study designs and sophisticated neuroimaging techniques using different radiotracers and providing an explanation for neuropathological and clinical observations on patients with AD.  相似文献   

14.
Preventing cognitive impairment and dementia in the elderly is a major public health challenge for our century and all hypotheses should be explored. Selenium (Se) is one of the factors that may affect the risk of cognitive decline. Its importance in the health and aging process has been documented. Because of the potential of selenoproteins to protect against oxidative stress, Se raises significant expectations for the prevention of chronic diseases including cancer, cardiovascular disease, and type 2 diabetes conditions commonly associated with oxidative stress. Thus, the relationships between Se and cognitive impairment or dementia can be examined through vascular risk factors for dementia, with particular interest in diabetes and dyslipidemia. In addition, in cases of Se deficiency, the brain is the organ that remains Se replete the longest suggesting that Se plays an important role in brain functions. This article presents results obtained in the frame of a longitudinal study on Se and cognitive impairment. They are consistent with the hypothesis that low Se status is a risk factor for cognitive decline even after taking into account vascular risk factors. The concomitant evolution between plasma Se decrease over a 9-year period and cognitive decline suggested that optimal Se status is potentially important to maintain neuropsychological functions in aging people. However, as our understanding of Se biology is incomplete, epidemiological studies are needed to define the groups of population that could benefit from Se supplementation.  相似文献   

15.
Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component such as memory deficits, neurological, and musculoskeletal problems. There are ample data that demonstrate that exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and pesticides such as permethrin (PER), were key contributors to the etiology of GWI post deployment to the Persian GW. In the current study, we examined the consequences of acute (10 days) exposure to PB and PER in C57BL6 mice. Learning and memory tests were performed at 18 days and at 5 months post-exposure. We investigated the relationship between the cognitive phenotype and neuropathological changes at short and long-term time points post-exposure. No cognitive deficits were observed at the short-term time point, and only minor neuropathological changes were detected. However, cognitive deficits emerged at the later time point and were associated with increased astrogliosis and reduction of synaptophysin staining in the hippocampi and cerebral cortices of exposed mice, 5 months post exposure. In summary, our findings in this mouse model of GW agent exposure are consistent with some GWI symptom manifestations, including delayed onset of symptoms and CNS disturbances observed in GWI veterans.  相似文献   

16.
Animal studies have found that deficits in brain docosahexaenoic acid (DHA, 22:6n-3) accrual during perinatal development leads to transient and enduring abnormalities in brain development and function. Determining the relevance of this evidence to brain disorders in humans has been hampered by an inability to determine antimortem brain DHA levels and limitations associated with a postmortem approach. Accordingly, there is a need for alternate or complementary approaches to better understand the role of DHA in cortical function and pathology, and conventional magnetic resonance imaging (MRI) techniques may be ideally suited for this application. A major advantage of neuroimaging is that it permits prospective evaluation of the effects of manipulating DHA status on both clinical and neuroimaging variables. Emerging evidence from MRI studies suggest that greater DHA status is associated with cortical structural and functional integrity, and suggest that reduced DHA status and abnormalities in cortical function observed in psychiatric disorders may be interrelated phenomenon. Preliminary evidence from animal MRI studies support a critical role of DHA in normal brain development. Neuroimaging research in both human and animals therefore holds tremendous promise for developing a better understanding of the role of DHA status in cortical function, as well as for elucidating the impact of DHA deficiency on neuropathological processes implicated in the etiology and progression of neurodevelopmental and psychiatric disorders.  相似文献   

17.
Brain neuroimaging has been widely used to investigate the bran signature of chronic orofacial pain, including trigeminal neuropathic pain (TNP) and pain related to temporomandibular joint disorders (TMD). We here systematically reviewed the neuroimaging literature regarding the functional and structural changes in the brain of TNP and TMD pain patients, using a computerized search of journal articles via PubMed. Ten TNP studies and 14 TMD studies were reviewed. Study quality and risk of bias were assessed based on the criteria of patient selection, the history of medication, the use of standardized pain/psychological assessments, and the model and statistics of imaging analyses. Qualitative meta-analysis was performed by examining the brain regions which showed significant changes in either brain functions (including the blood-oxygen-level dependent signal, cerebral blood flow and the magnetic resonance spectroscopy signal) or brain structure (including gray matter and white matter anatomy). We hypothesized that the neuroimaging findings would display a common pattern as well as distinct patterns of brain signature in the disorders. This major hypothesis was supported by the following findings: (1) TNP and TMD patients showed consistent functional/structural changes in the thalamus and the primary somatosensory cortex, indicating the thalamocortical pathway as the major site of plasticity. (2) The TNP patients showed more alterations at the thalamocortical pathway, and the two disorders showed distinct patterns of thalamic and insular connectivity. Additionally, functional and structural changes were frequently reported in the prefrontal cortex and the basal ganglia, suggesting the role of cognitive modulation and reward processing in chronic orofacial pain. The findings highlight the potential for brain neuroimaging as an investigating tool for understanding chronic orofacial pain.  相似文献   

18.
van Dam PS 《Hormone research》2005,64(Z3):109-114
The clinical condition of growth hormone deficiency (GHD) as a consequence of pituitary or hypothalamic disease has been associated with reduced cognitive performance. In several studies, neuropsychological assessment has been performed in adults with GHD both before and after growth hormone (GH) replacement therapy. Interpretation of the available data is complicated by the variation in patient selection as well as the neuropsychological tests used in such studies. Most of the available studies indicate that GHD can lead to small, but clinically relevant changes in memory, processing speed and attention. Some of these changes may be reversed by GH replacement, although the number of reliable intervention studies is limited. In addition to the possible clinical relevance of neuropsychological improvement following GH replacement in patients with GHD, the observed findings may be of interest for studies in neurocognitive performance in other conditions associated with changes in the activity of the somatotrophic axis, and in the understanding of underlying pathophysiological mechanisms.  相似文献   

19.
Assessment of higher mental functions, objective detection of cognitive impairments, and investigation of pathophysiological mechanisms underlying these impairments in various neuropsychological diseases are of great importance for neuropsychophysiology. The endogenous event-related potential (ERP) approach is one of the instrumental neurophysiological methods that are currently used for assessing these complicated processes because recorded potentials reflect the intrinsic brain activity and changes in these potentials are caused by endogenous factors of the brain activity. The P300 cognitive evoked potential, induced by selective attention to a stimulus, has been the most widely used endogenous ERP. This potential may be helpful for studying mechanisms of mental disturbances, as it reflects neuronal processes connected with nonspecific activating reticulothalamic systems, as well as with limbic and neocortical mechanisms of selective attention and short-term memory.  相似文献   

20.
The rapid growth of the literature on neuroimaging in humans has led to major advances in our understanding of human brain function but has also made it increasingly difficult to aggregate and synthesize neuroimaging findings. Here we describe and validate an automated brain-mapping framework that uses text-mining, meta-analysis and machine-learning techniques to generate a large database of mappings between neural and cognitive states. We show that our approach can be used to automatically conduct large-scale, high-quality neuroimaging meta-analyses, address long-standing inferential problems in the neuroimaging literature and support accurate 'decoding' of broad cognitive states from brain activity in both entire studies and individual human subjects. Collectively, our results have validated a powerful and generative framework for synthesizing human neuroimaging data on an unprecedented scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号