首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lin R  Liu H  Hao J  Cheng K  Liu D 《Biotechnology letters》2005,27(22):1755-1759
Addition of 5 mm fumarate to cultures of Klebsiella pneumoniae enhanced the rate of glycerol consumption and the production of 1,3-propanediol (PDO). Compared to the control, the activity of glycerol dehydrogenase increased by 35, 33 and 46%, the activity of glycerol dehydratase increased by 160, 210 and 115%, and the activity of 1,3-propanediol oxidoreductase increased by 25, 39 and 85% when, respectively, 5, 15 and 25 mm fumarate were provided. At the same time, the ratio of NAD+ to NADH decreased by 20, 23 and 29%. Using a 5 l bioreactor with 5 mM fumarate addition, the specific rate of glycerol consumption and the productivity of PDO was 30 mmol/l h and 17 mmol/l h, respectively, both increased by 35% over the control. Revisions requested 15 July 2005; Revisions received 30 August 2005  相似文献   

2.
To clarify the diversity and function of isozymes of ascorbate peroxidase (APX) in plants, a method of producing large quantities of these proteins is needed. Here, we describe an Escherichia coli expression system for the rapid and economic expression of two rice APX genes, APXa and APXb (GeneBank accession Nos. D45423 and AB053297, respectively). The two genes were cloned into the pGEX-6p-3 vector to allow expression of APX as a glutathione-S-transferase (GST) fusion protein. The GST-APXa and GST-APXb fusion proteins were purified by affinity chromatography using a glutathione-Sepharose 4B column, with final yields of 40 and 73 mg g–1 dry cells, respectively. Specific activities were 15 and 20 mM ascorbate min–1 mg–1 protein, respectively. The Km values for ascorbate were 4 and 1 mM, respectively, and those for H2O2 were 0.3 and 0.7 mM, respectively indicating that the two rice isoenzymes have different properties.Revisions requested 27 September 2004; Revisions received 12 November 2004  相似文献   

3.
An alkaline cellulase from Bacillus sp. HSH-810 was purified 8.7-fold with a 30% yield and a specific activity of 71 U mg–1 protein. It was optimally active at pH 10 and 50 °C and was stable from pH 6 to 10 with more than 60% activity remaining after heating at 60 °C for 60 min. The molecular mass of cellulase was 80 kDa. It was inhibited by 50% by Fe3+ (1 mM) and Mn2+ (0.1 mM) but was relatively insensitive to Hg2+ and Pb2+ at 1 mM.Revisions requested: 8 October 2004/1 December 2004; Revisions received 29 November 2004/5 January 2005  相似文献   

4.
Two isoforms of laccase produced from the culture supernatant of Pycnoporus sanguineus were partially purified by phenyl-Sepharose chromatography. Molecular masses of the enzymes were 80 kDa (Lac I) and 68 kDa (Lac II). Optimum activity of Lac I was at pH 4.8 and 30 °C, and Lac II was at pH 4.2 and 50 °C over 5 min reaction. The Km values of enzymes toward syringaldazine were 10 μm (Lac I) and 8 μm (Lac II). Sodium azide inhibited Lac I (85%) and Lac II (75%) activities. Revisions requested 30 November 2005; Revisions received 26 January 2006  相似文献   

5.
A Bacillus sp. RE was resistant to chromium and reduced Cr(VI) without accumulating chromium inside the cell. When Cr(VI) was 10 and 40 μg ml−1, >95% of the total Cr(VI) was reduced in 24 and 72 h of growth, respectively, whereas at 80 μg Cr(VI) ml−1 only 50% of Cr(VI) was reduced. However growth was not affected; the cell mass was 0.7–0.8 mg ml−1 in all cases. The cell-free extract showed Cr(VI) reducing enzyme activity which was enhanced (>5 fold) by NADH and NADPH. Like whole cells the enzyme also reduced Cr(VI) with decreasing efficiency on increasing Cr(VI) concentration. The enzyme activity was optimal at pH 6.0 and 30 °C. The enzyme was stable up to 30 °C and from pH 5.5 to 8, but from pH 4 to 5 the enzyme was severely destabilized. Its Km and Vmax were 14 μm and 3.8 nmol min−1 mg−1 respectively. The enzyme activity was enhanced by Cu2+ and Ni2+ and inhibited by Hg2+. Received 21 September 2005; Revisions requested 5 October 2005; Revisions received 16 November 2005; Accepted 16 November 2005  相似文献   

6.
The effects of a number of different elicitors on asiaticoside production in whole plant cultures of Centella asiatica were studied, including yeast extract, CdCl2, CuCl2 and methyl jasmonate (MJ). Only MJ and yeast extract stimulated asiaticoside production—1.53 and 1.41-fold, respectively. Maximum asiaticoside production was achieved following treatment with 0.1 mM MJ (116.8 mg/l). The highest asiaticoside production (342.72 mg/l) was obtained after 36 days of elicitation in cultures treated with 0.1 mM MJ and 0.025 mg/l 1-phenyl-3-(1,2,3-thidiazol-5-yl)urea (TDZ). Interestingly, MJ not only stimulated the production of asiaticoside but also had an important role in the senescence of C. asiatica. Although asiaticoside content did not change when TDZ was added to medium containing an elicitor, TDZ did increase shoot growth of C. asiatica. We discuss the interactive roles of MJ and TDZ in secondary metabolic production and biomass in whole plants of C. asiatica  相似文献   

7.
Two strains of Drosophila melanogaster represent the extremes in resistance and sensitivity to the lethal effects of CdCl2. The strain containing the mutations vermilion and brown (v; bw) and the strain Austin had LC50's of 3.3 and 1.3mm CdCl2, respectively. The three major chromosomes from these two strains were assorted genetically into the six possible combinations. The measured LC50's for CdCl2 for these six genotypes fell into two groups according to the X chromosome; those containing the X chromosome from v; bw had LC50's 0.5–1.0mm greater than those in which the X chromosome was from Austin. Since the parent strains differed by 2mm, we suggest that the X chromosome is a major, but not the sole, site of genes to produce resistance to CdCl2. When 109Cd was in the diet the uptake by v; bw and Austin over 2 days was the same. After 4 days of uptake, the Austin strain excreted the 109Cd five times faster than v; bw but the six genotypes did not differ appreciably in excretion rate from one another and resembled the sensitive parent Austin more than the resistant one. Thus a second process is indicated that distinguishes resistance to CdCl2 that apparently is not associated with the X chromosome.This research was sponsored by the Office of Health and Environmental Research, U.S. Department of Energy, under Contract DE-AC05-84OR21400 with Martin Marietta Energy Systems, Inc.  相似文献   

8.
Cadmium stress in sugar cane callus cultures: Effect on antioxidant enzymes   总被引:5,自引:0,他引:5  
Catalase (CAT) and superoxide dismutase (SOD) are antioxidant enzymes which are important in the metabolism of reactive oxygen species (ROS), and can be induced by environmental stresses including cadmium (Cd), a heavy metal toxic to living organisms. Sugar cane (Saccharum officinarumL.) in vitro callus cultures were exposed to CdCl2 and the activities of CAT and SOD were analysed. Lower concentrations of CdCl2, such as 0.01 and 0.1 mM caused a significant increase in callus growth, whereas 0.5 and 1 mM CdCl2 strongly inhibited growth of the callus cultures, but only after 9 days of CdCl2 treatment. Red-brown patches were also observed in calluses exposed to 0.5 and 1 mM CdCl2. Calluses grown in 0.01 and 0.1 mM CdCl2 did not exhibit any changes in CAT activity even after 15 days of growth in the presence of CdCl2. However, for calluses grown in higher concentrations of CdCl2 (0.5 and 1 mM), a rapid increase in CAT activity was detected, which was 14-fold after 15 days. Furthermore, up to five CAT isoforms were observed in callus tissue. Total SOD activity did not exhibit any major variation. One Mn-SOD and two Cu/Zn-SOD isoenzymes were observed in callus cultures and none exhibited any variation in response to the CdCl2 treatments. The results suggested that in sugar cane callus cultures, CAT may be the main antioxidant enzyme metabolizing H2O2.  相似文献   

9.
The synthesis of optically active (R)-2-trimethylsilyl-2-hydroxyl-ethylcyanide by asymmetric trans-cyanation of acetyltrimethylsilane with acetone cyanohydrin in a biphasic system was achieved using (R)-oxynitrilase from loquat seed meal. Diisopropyl ether was the most suitable organic phase among the organic solvents examined. The optimal concentration of acetyltrimethylsilane, concentration of crude enzyme, volume ratio of the aqueous to the organic phase, temperature and the buffer pH value were 14 mM, 61.4 U ml-1, 13% (v/v), 30 °C and 4, respectively. The substrate conversion and the product enantiomeric excess were 95% and 98% under the optimized conditions. Acetyltrimethylsilane was a better substrate of the enzyme than its carbon counterpart. Revisions requested 24 August 2004; Revisions received 12 November 2004  相似文献   

10.
An endopolygalacturonase of Rhizopus sp. strain LKN, one of several isolates from tempe starter (ragi), was purified 235-fold by CM-Sephadex C-50, DEAE-Sephadex A-50 ion exchange chromatographies and Sephadex G-75 gel filtration. The purified enzyme was homogeneous by SDS-PAGE with a M r of 38.5 kDa. Its K m value for pectic acid was 2 mg/ml. It was stable at pH 4.5 to 11 and up to 50°C, with optimum activity at pH 4.5 to 4.75 and 55 to 60°C. Some ionic compounds enhanced the enzyme activity, whereas tannic acid at 0.5 mm caused about 90% inhibition.The authors are with the Department of Food Science and Technology, Faculty of Agriculture, Kyushu University, Hakozaki, Fukuoka 812, Japan.  相似文献   

11.
Sporomusa termitida reduced caffeate (1mM) in anaerobic, two-liquid phase, reaction systems containing either tetradecane or 1-butyl-3-methylimidazolium hexafluorophosphate {[bmim][PF6]} (20% v/v). The initial rate and final product yield were 20 and 7% lower, respectively, in [bmim][PF6]. Since caffeate partitioned only into the aqueous phase, the lower rate cannot be attributed to mass transfer barriers. Therefore, [bmim][PF6] inhibited the biocatalyst, perhaps unsurprisingly since it is very polar and hydrolyses to produce HF.Revisions requested 30 September 2004; Revisions received 2 December 2004  相似文献   

12.
Song QX  Wei DZ  Zhou WY  Xu WQ  Yang SL 《Biotechnology letters》2004,26(23):1777-1780
L-Ascorbyl oleate and L-ascorbyl linoleate were synthesized by an immobilized lipase from Candida antarctica with yields of 38% and 44%, respectively. L-Ascorbyl oleate was stable in sterile culture medium over 12 h at 37 °C but L-ascorbyl linoleate degraded by 17%. Ascorbyl oleate had a better protective effect on human umbilical cord vein endothelial cells treated with H2O2 than of L-ascorbic acid-2-phosphate-6-palmitate (Asc2P6P).Revisions requested 21 July 2004/26 August 2004; Revisions received 20 August 2004/27 September 2004  相似文献   

13.
Synechocystis aquatilis SI-2 was grown outdoors in a 12.5cm diam. tubular photobioreactor equipped with static mixers. The static mixers ensured that cells were efficiently circulated between the upper (illuminated) and lower (dark) sections of the tubes. The biomass productivity varied from 22 to 45g m–2d–1, with an average of 35g m–2d–1, etc which corresponded to average CO2 fixation rate of about 57 g CO2 m–2 d–1. The static mixers not only helped in improving the biomass productivities but also have a high potential to lower the photoinhibitory effect of light during the outdoor cultures of algae. Revisions requested 27 July 2004; Revisions received 12 November 2004  相似文献   

14.
The l-alanine dehydrogenase (ADH) of Anabaena cylindrica has been purified 700-fold. It has a molecular weight of approximately 270000, has 6 sub-units, each of molecular weight approximately 43000, and shows activity both in the aminating and deaminating directions. The enzyme is NADH/NAD+ specific and oxaloacetate can partially substitute for pyruvate. The K m app for NAD+ is 14 M and 60 M at low and high NAD+ concentrations, respectively. The K m app for l-alanine is 0.4 mM, that for pyruvate is 0.11 mM, and that for oxaloacetate is 3.0 mM. The K m app for NH 4 + varies from 8–133 mM depending on the pH, being lowest at high pH levels (pH 8.7 or above). Alanine, serine and glycine inhibit ADH activity in the aminating direction. The enzyme is active both in heterocysts and vegetative cells and activity is higher in nitrogen-starved cultures than in N2-fixing cultures. The data suggest that although alanine is formed by the aminating activity of ADH, entry of newly fixed ammonia into organic combination does not occur primarily via ADH in N2-fixing cultures of A. cylindrica. Ammonia assimilation via ADH may be important in cultures with an excess of available nitrogen. The deaminating activity of the enzyme may be important under conditions of nitrogen-deficiency.Abbreviations ADH alanine dehydrogenase - DEAE diethylamino ethyl cellulose - EDTA ethylenediamine tetraacetic acid - GDH glutamic dehydrogenase - GS glutamine synthetase - GOT aspartate-glutamate aminotransferase - NAD+ nicotinamide adenine dinucleotide - NADH reduced nicotinamide adenine dinucleotide - NADP+ nicotinamide adenine dinucleotide phosphate - NADPH reduced nicotinamide adenine dinucleotide phosphate - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl) aminomethane  相似文献   

15.
Homogenates of hypocotyls of light-grown mung-bean (Vigna radiata (L.) Wilczek) seedlings catalyzed the formation of 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) from the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and malonyl-coenzyme A. Apparent Km values for ACC and malonyl-CoA were found to be 0.17 mM and 0.25 mM, respectively. Free coenzyme A was an uncompetitive inhibitor with respect to malonyl-CoA (apparent Ki=0.3 mM). Only malonyl-CoA served as an effective acyl donor in the reaction. The d-enantiomers of unpolar amino acids inhibited the malonylation of ACC. Inhibition by d-phenylalanine was competitive with respect to ACC (apparent Ki=1.2 mM). d-Phenylalanine and d-alanine were malonylated by the preparation, and their malonylation was inhibited by ACC. When hypocotyl segments were administered ACC in the presence of certain unpolar d-amino acids, the malonylation of ACC was inhibited while the production of ethylene was enhanced. Thus, a close-relationship appears to exist between the malonylation of ACC and d-amino acids. The cis- as well as the trans-diastereoisomers of 2-methyl- or 2-ethyl-substituted ACC were potent inhibitors of the malonyltransferase. Treatment of hypocotyl segments with indole-3-acetic acid or CdCl2 greatly increased their content of ACC and MACC, as well as their release of ethylene, but had little, or no, effect on their extractable ACC-malonylating activity.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - MACC 1-(malonylamino)-cyclopropane-1-carboxylic acid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

16.
Among 35 Rhizobium isolates of Acacia nilotica, from different agro-climatic zones, two, ANG4 and ANG5, tolerated up to 850 mm NaCl and one, ANG3, was sensitive to NaCl above 250 mm. Nodulation and nitrogenase activity of the three isolates decreased with increasing concentration of salt up to 150 mm. Nodulation by ANG3 was 15% at 75 mm NaCl and nil at 100 mm. With ANG4 and ANG5, nodulation was only slightly decreased at 150 mm NaCl. Nitrogenase activity associated with plants inoculated with ANG3 was halved at 25 mm NaCl compared with salt-free controls, whereas isolates ANG4 and ANG5 retained 25% and 15% activity, respectively, even at 100 mm NaCl. Salt-tolerant Rhizobium isolates can therefore nodulate and fix N2 in saline soils.  相似文献   

17.
Osmotic stress restricts glycolytic flux, growth (rate and yield), d-lactate productivity, and d-lactate tolerance in Escherichia coli B strain SZ132 during batch fermentation in mineral salts medium with 10% (w/v) sugar. Addition of 1 mm betaine, a non-metabolized protective osmolyte, doubled cell yield, increased specific productivity of d-lactate and glycolytic flux by 50%, and tripled volumetric productivity (from 8.6 to 25.7 mmol l−1 h−1; 0.8 to 2.3 g l−1 h−1). Glycolytic flux and specific productivity in mineral salts medium with betaine exceeded that in Luria broth, substantially eliminating the need for complex nutrients during d-lactate production. In mineral salts medium supplemented with betaine, SZ132 produced approximately 1 mol d-lactate (90 g) per 100 g sugar (glucose or sucrose). Revisions requested 17 January 2006; Revisions received 7 February 2006  相似文献   

18.
Liu Y  Xu Z  Jing K  Jiang X  Lin J  Wang F  Cen P 《Biotechnology letters》2005,27(2):119-125
Two recombinant strains, E. coli M15 (pQE30-alr0307) and E. coli M15 (pQE30-gdh0310), which were constructed to express, respectively, an NADPH-dependent aldehyde reductase gene and a glucose dehydrogenase gene, were mixed in an appropriate ratio and used for the asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to ethyl (R)-4-chloro-3-hydroxybutanoate. The former strain acted as catalyst and the latter functioned in NADPH regeneration. The biotransformation was completed effectively without any addition of glucose dehydrogenase or NADP+/NADPH. An optical purity of 99% (ee) was obtained and the product yield reached 90.5% from 28.5 mM substrate. Revisions requested 27 July 2004/23 September 2004; Revisions received 21 September 2004/29 November 2004  相似文献   

19.
Polycyclic Aromatic Hydrocarbon (PAH) Degradation Coupled to Methanogenesis   总被引:3,自引:0,他引:3  
Baltimore Harbor (Baltimore, MD) sediments were utilized to initiate anaerobic enrichment cultures with polycyclic aromatic hydrocarbons (PAHs) in the absence of supplementary electron acceptors. Cultures amended with naphthalene and phenanthrene exhibited sustained, transferable degradation of the PAHs. Bromoethanesulfonic acid, a selective inhibitor of methanogenesis, inhibited the degradation of 200 μm naphthalene and phenanthrene; molecular characterization based on 16S rRNA sequences confirmed that methanogenic Archaea were eliminated, thus providing evidence that methanogenesis is involved in the degradation pathway. Revisions requested 16 November 2005; Revisions received 14 December 2005  相似文献   

20.
We show that rabbit skeletal RyR channels in lipid bilayers can be activated or inhibited by NO, in a manner that depends on donor concentration, membrane potential and the presence of channel agonists. 10 μm S-nitroso-N-acetyl-penicillamine (SNAP) increased RyR activity at −40 mV within 15 sec of addition to the cis chamber, with a 2-fold increase in frequency of channel opening (F o ). 10 μm SNAP did not alter activity at +40 mV and did not further activate RyRs previously activated by 2 mm cis ATP at +40 or −40 mV. In contrast to the increase in F o with 10 μm SNAP, 1 mm SNAP caused a 2-fold reduction in F o but a 1.5-fold increase in mean open time (T o ) at −40 mV in the absence of ATP. 1 mm SNAP or 0.5 mm sodium nitroprusside (SNP) induced ∼3-fold reductions in F o and T o at +40 or −40 mV when channels were activated by 2 mm cis ATP or in channels activated by 6.5 μm peptide A at −40 mV (peptide A corresponds to part of the II–III loop of the skeletal dihydropyridine receptor). Both SNAP-induced activation and SNAP/SNP-induced inhibition were reversed by 2 mm dithiothreitol. The results suggest that S-Nitrosylation or oxidation of at least three classes of protein thiols by NO each produced characteristic changes in RyR activity. We propose that, in vivo, initial release of NO activates RyRs, but stronger release increases [NO] and inhibits RyR activity and contraction. Received: 27 August 1999/Revised: 25 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号