首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gossypol is a component present in cottonseeds and has been demonstrated to be an effective contraceptive drug in preventing spermatogenesis in mammalian species. In the present, we reported that gossypol could induce apoptosis in human promyelocytic leukemia cells (HL-60), as characterized by DNA fragmentation, poly(ADP) ribose polymerase (PARP) cleavage. The efficacious induction of apoptosis was observed at 50 microM for 6 h. Further molecular analysis showed that gossypol induced the truncation of Bid protein, the loss of mitochondrial membrane potential (DeltaPsi m), cytochrome c release from mitochondria into cytosol, and activation of caspase-3, -8, and -9. However, gossypol did not increase the level of reactive oxygen species (ROS), and antioxidants including N-acetyl cysteine (NAC) and catalase could not block gossypol-induced apoptosis in the HL-60 cells. These data suggest that gossypol induces apoptosis in HL-60 cells through ROS-independent mitochondrial dysfunction pathway.  相似文献   

2.
Proteins of the BCL-2 family are important regulators of apoptosis. The BCL-2 family includes three main subgroups: the anti-apoptotic group, such as BCL-2, BCL-XL, BCL-W, and MCL-1; multi-domain pro-apoptotic BAX, BAK; and pro-apoptotic “BH3-only” BIK, PUMA, NOXA, BID, BAD, and SPIKE. SPIKE, a rare pro-apoptotic protein, is highly conserved throughout the evolution, including Caenorhabditis elegans, whose expression is downregulated in certain tumors, including kidney, lung, and breast.In the literature, SPIKE was proposed to interact with BAP31 and prevent BCL-XL from binding to BAP31. Here, we utilized the Position Weight Matrix method to identify SPIKE to be a BH3-only pro-apoptotic protein mainly localized in the cytosol of all cancer cell lines tested. Overexpression of SPIKE weakly induced apoptosis in comparison to the known BH3-only pro-apoptotic protein BIK. SPIKE promoted mitochondrial cytochrome c release, the activation of caspase 3, and the caspase cleavage of caspase’s downstream substrates BAP31 and p130CAS. Although the informatics analysis of SPIKE implicates this protein as a member of the BH3-only BCL-2 subfamily, its role in apoptosis remains to be elucidated.  相似文献   

3.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

4.
We synthesized a water soluble Fe(III)-salen complex and investigated its biochemical effects on DNA in vitro and on cultured human cells. We showed that Fe(III)-salen produces free radicals in the presence of reducing agent dithiothreitol (DTT) and induces DNA damage in vitro. Interestingly, upon treatment with Fe(III)-salen at concentration as low as 10microM, HEK293 human cells showed morphological changes, nuclear fragmentation, and nuclear condensation that are typical features of apoptotic cell death. The cytotoxicity measurement showed that IC(50) of Fe(III)-salen is 2.0microM for HEK293 cells. Furthermore, treatment with Fe(III)-salen resulted in translocation of cytochrome c from mitochondria to cytosol affecting mitochondrial membrane permeability. Our results demonstrated that Fe(III)-salen not only damages DNA in vitro, but also induces apoptosis in human cells via mitochondrial pathway.  相似文献   

5.
INTRODUCTION: One unusual characteristic of HCV is to establish chronic infection and the precise mechanisms remain unclear. MATERIALS AND METHODS: Huh-7 cells were transiently transfected with E2 and subjected to MTT assay, DNA fragmentation assay, and Western blotting to see the impact of E2 protein on apoptosis. RESULTS AND DISCUSSION: E2 may inhibit cell proliferation by inducing apoptosis and pro-caspases 3, 8, and 9 were cleaved and activated to result in the presence of active forms in a time-dependent fashion, which suggest that E2-induced apoptosis is caspase-dependent. Furthermore, the cytosolic level of cytochrome c was increased together with a gradually down-regulated Bcl-2 and up-regulated Bax protein expression. The continuing reduction of Bid protein and the gradual increase of tBid protein also indicated that a time-dependent increased turn-over of Bid protein into tBid. Taken together, our data suggested that HCV E2 may induce apoptosis through a mitochondrial damage-mediated caspase pathway.  相似文献   

6.
The present study is on the growth inhibitory effect of Withania somnifera methanolic leaf extract and its active component, withanolide on HL-60 promyelocytic leukemia cells. The decrease in survival rate of HL-60 cells was noted to be associated with a time dependent decrease in the Bcl-2/Bax ratio, leading to up regulation of Bax. Both the crude leaf extract and the active component activated the apoptotic cascade through the cytochrome c release from mitochondria. The activation of caspase 9, caspase 8 and caspase 3 revealed that caspase was a key mediator in the apoptotic pathway. DNA fragmentation analysis revealed typical ladders as early as 12h indicative of caspase 3 role in the apoptotic pathway. Flow cytometry data demonstrated an increase of sub-G1 peak upon treatment by 51% at 24h, suggesting the induction of apoptotic cell death in HL-60 cells.  相似文献   

7.
Lee EO  Kwon BM  Song GY  Chae CH  Kim HM  Shim IS  Ahn KS  Kim SH 《Life sciences》2004,74(18):2313-2326
Heyneanol A, a tetramer of resveratrol, is isolated from the roots of Vitis amurensis by cytotoxicity based fractionation. In this study, the mechanism of apoptosis by heyneanol A was evaluated in human leukemic U937 cells. Heyneanol A (IC(50) = 6.6 microM at 24 h) exhibited stronger cytotoxic effect than resveratrol (IC(50) = 100 microM at 24 h) by 15-fold on human leukemic U937 cells by XTT assay. Apoptotic bodies were observed in U937 cells treated with 6 microM of heyneanol A by TUNEL assay. Heyneanol A effectively increased the portion of sub-G(1) DNA content in a time- and concentration-dependent manner by flow cytometric analysis. Heyneanol A also induced cytochrome c release from mitochondria into the cytosol and subsequent caspase activation involving caspase 9 and 3 to cleave PARP. However, it did not affect the expressions of Bax and Bcl-2 by western blotting. It was confirmed that the activation of caspase 8, 9 and 3 and the cleavage of PARP by heyneanol A were completely blocked by adding Z-VAD-FMK, a caspase inhibitor. These findings suggest that heyneanol A has anti-tumor activity, which may be mediated by apoptosis caused by cytochrome c release and caspase activation in human leukemic U937 cells.  相似文献   

8.
Tumor necrosis factor-related apoptosis inducing ligand (TRAIL/APO-2L), a member of the tumor necrosis factor (TNF) gene family, is considered as one of the most promising cancer therapeutic agents due to its ability to selectively kill tumor cells. Although microenvironments of solid tumors (hypoxia, nutrient deprivation, and low pH) often affect the effectiveness of chemotherapy, few studies have been reported on the relationship between tumor microenvironments and TRAIL. In this study, we investigated whether low extracellular pH affects TRAIL-induced apoptotic death. When human prostate carcinoma DU145 cells were treated with 200 ng/ml His-tagged TRAIL for 4 h, the survival was approximately 10% at pH 6.3-6.6 and 61.3% at pH 7.4. Similar results were observed in human colorectal carcinoma CX-1 cell line. The TRAIL-mediated activation of caspase, cytochrome c release, and poly (ADP-ribose) polymerase (PARP) cleavage was promoted at low extracellular pH. Immunoprecipitation followed by western blot analysis shows that low extracellular pH enhances the association of truncated Bid with Bax during treatment with TRAIL. Western blot analysis also shows that the low extracellular pH-enhanced TRAIL cytotoxicity does not involve modulation of the levels of TRAIL receptors (DR4, DR5, and DcR2), FLIP, inhibitor of apoptosis (IAP), and Bcl-2. Overexpression of Bcl-2 effectively prevented low extracellular pH-augmented TRAIL cytotoxicity. Taken together, we propose that TRAIL-mediated cytotoxicity is greatly enhanced in low pH environments by promoting caspase activation.  相似文献   

9.
Aspirin induces apoptosis through mitochondrial cytochrome c release   总被引:15,自引:0,他引:15  
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

10.
Mitochondria provide cellular energy supply via respiration and are the major sites for the generation of reactive oxygen species (ROS). Mitochondria also play a fundamental role in apoptosis. Heme is a key factor in mitochondrial function. Defective heme synthesis or altered heme metabolism is associated with numerous diseases. Here we investigated the molecular mechanism by which heme promotes HeLa cell growth and survival. We found that heme deficiency-induced apoptosis involves the release of cytochrome c and the activation of caspase 3. However, heme deficiency-induced apoptosis appears to occur by a unique mechanism distinct from those known to mediate mitochondrial-dependent apoptosis. Specifically, our data show that heme deficiency causes apoptosis in a pathway that is independent of ROS generation and the collapse of mitochondrial membrane potential. These results provide insights into how defective heme synthesis or altered heme metabolism causes diseases and how heme may control cell growth and cell death.  相似文献   

11.
Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge. In the present study, we revealed that sarsasapogenin exhibited antitumor activity by inducing apoptosis in vitro as determined by Hoechst staining analysis and double staining of Annexin V-FITC/PI. In addition, cell cycle arrest in G2/M phase was observed in sarsasapogenin-treated HeLa cells. Moreover, the results revealed that perturbations in the mitochondrial membrane were associated with the deregulation of the Bax/Bcl-2 ratio which led to the upregulation of cytochrome c, followed by activation of caspases. Meanwhile, treatment of sarsasapogenin also activated Unfolded Protein Response (UPR) signaling pathways and these changes were accompanied by increased expression of CHOP. Salubrinal (Sal), a selective inhibitor of endoplasmic reticulum (ER) stress, partially abrogated the sarsasapogenin-related cell death. Furthermore, sarsasapogenin provoked the generation of reactive oxygen species, while the antioxidant N-acetyl cysteine (NAC) effectively blocked the activation of ER stress and apoptosis, suggesting that sarsasapogenin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways. Taken together, the results demonstrate that sarsasapogenin exerts its antitumor activity through both reactive oxygen species (ROS)-mediate mitochondrial dysfunction and ER stress cell death.  相似文献   

12.
Apoptosis plays an important role in red blood cell development, notably by regulating the fate of early erythroid progenitors. We show here that, by contrast, mature erythroblasts are resistant to apoptosis. Treatment of these cells with several apoptosis-inducing agents failed to trigger caspase activation and oligonucleosomal DNA fragmentation. Interestingly, we find that cytochrome c levels are dramatically reduced even though the cells contain mitochondria. Supplementation of cytosolic extracts from mature erythroblasts with cytochrome c, however, did not rescue caspase activation. This was not due to the presence of inhibitors of apoptosis, as these proteins were also missing in these cells. We also show that cytochrome c depletion is a normal event during erythroblast differentiation, which follows transient, developmentally induced caspase activation and correlates with the loss of response to cytokine withdrawal or drug-induced apoptosis. Our data therefore suggest that erythroblasts acquire resistance to apoptosis during maturation through the developmentally induced depletion of cytochrome c and other crucial regulators of the apoptotic machinery.  相似文献   

13.
Roman A. Eliseev 《BBA》2003,1604(1):1-5
The mechanism of cytochrome c release from mitochondria in apoptosis remains obscure, although it is known to be regulated by bcl-2 family proteins. Here we describe a set of novel apoptotic phenomena—stimulation of the mitochondrial potassium uptake preceding cytochrome c release and regulation of such potassium uptake by bcl-2 family proteins. As a result of increased potassium uptake, mitochondria undergo moderate swelling sufficient to release cytochrome c. Overexpression of bcl-2 protein prevented the mitochondrial potassium uptake as well as cytochrome c release in apoptosis. Bcl-2 was found to upregulate the mitochondrial potassium efflux mechanism—the K/H exchanger. Specific activation of the mitochondrial K-uniporter led to cytochrome c release, which was inhibited by bcl-2. tBid had an opposite effect—it stimulated mitochondrial potassium uptake resulting in cytochrome c release. The described counter-regulation of mitochondrial potassium transport by bcl-2 and Bid suggests a novel view of a mechanism of cytochrome c release from mitochondria in apoptosis.  相似文献   

14.
Stress or heat shock proteins (HSPs) are ubiquitous and highly conserved proteins whose expression is induced in response to a wide variety of physiological and environmental insults. They allow the cells to survive to otherwise lethal conditions. Various mechanisms have been proposed to account for the cytoprotective functions of HSPs. These proteins play an essential role in intracellular "house-keeping" by assisting the correct folding of nascent and stress-accumulated misfolded proteins and preventing their aggregation. Several HSPs have also demonstrated to directly interact with various components of the tightly regulated programmed cell death machinery, upstream, and downstream of the mitochondrial events. Finally, HSPs could play a role in the proteasome-mediated degradation of selected proteins under stress conditions. Altogether, these properties could make HSPs appropriate targets for modulating cell death pathways.  相似文献   

15.
During therapeutic hyperbaric oxygenation lymphocytes are exposed to high partial pressures of oxygen. This study aimed to analyze the mechanism of apoptosis induction by hyperbaric oxygen. For intervals of 0.5–4 h Jurkat-T-cells were exposed to ambient air or oxygen atmospheres at 1–3 absolute atmospheres. Apoptosis was analyzed by phosphatidylserine externalization, caspase-3 activation and DNA-fragmentation using flow cytometry. Apoptosis was already induced after 30 min of hyperbaric oxygenation (HBO, P < 0.05). The death receptor Fas was downregulated. Inhibition of caspase-9 but not caspase-8 blocked apoptosis induction by HBO. Hyperbaric oxygen caused a loss of mitochondrial membrane potential and caspase-9 induction. The mitochondrial pro-survival protein Bcl-2 was upregulated, and antagonizing Bcl-2 function potentiated apoptosis induction by HBO. In conclusion, a single exposure to hyperbaric oxygenation induces lymphocyte apoptosis by a mitochondrial and not a Fas-related mechanism. Regulation of Fas and Bcl-2 may be regarded as protective measures of the cell in response to hyperbaric oxygen.  相似文献   

16.
A number of viral gene products are capable of triggering apoptotic cell death through interfering with cellular signaling cascades, including the Akt kinase pathway. In this study, the pro-apoptotic role of the SARS-CoV Membrane (M) structural protein is described. We found that the SARS-CoV M protein induced apoptosis in both HEK293T cells and transgenic Drosophila. We further showed that M protein-induced apoptosis involved mitochondrial release of cytochrome c protein, and could be suppressed by caspase inhibitors. Over-expression of M caused a dominant rough-eye phenotype in adult Drosophila. By performing a forward genetic modifier screen, we identified phosphoinositide-dependent kinase-1 (PDK-1) as a dominant suppressor of M-induced apoptotic cell death. Both PDK-1 and Akt kinases play essential roles in the cell survival signaling pathway. Altogether, our data show that SARS-CoV M protein induces apoptosis through the modulation of the cellular Akt pro-survival pathway and mitochondrial cytochrome c release.  相似文献   

17.
Huang ST  Yang RC  Chen MY  Pang JH 《Life sciences》2004,75(3):339-351
Phyllanthus urinaria (P. urinaria), a widely used herb medicine, was tested for the anticancer effect on human myeloid leukemia cells in this study. The water extract of P. urinaria induced the apoptosis of HL-60 cells as demonstrated by morphological change, DNA fragmentation and increased caspase-3 activity. However, normal human peripheral mononuclear cells remained viable under the same treatment. The P. urinaria-induced apoptosis of HL-60 cells was associated with the increased Bax gene expression and decreased Bcl-2 gene expression. In addition, the gene expressions of Fas receptor and Fas ligand, but not p53, were also induced in HL-60 cells dose- and time-dependently. The inhibitor of ceramide synthase, fumonisin B1, completely suppressed the apoptosis induced by P. urinaria and this inhibitory effect of fumonisin B1 could be eliminated by the addition of ceramide. It indicated that the activity of ceramide synthase is critical for the P. urinaria-induced apoptosis in HL-60 cells. The P. urinaria-induced apoptosis in HL-60 cells is mediated through a ceramide-related pathway.  相似文献   

18.
A microbial secondary metabolite, arisostatins A (As-A), was originally discovered as a substance carrying the antibiotic activity against Gram-positive bacteria and shown to possess potent anti-tumor properties. The mechanism by which arisostatins A initiates apoptosis remains poorly understood. In the present report we investigated the effect of arisostatins A on activation of the apoptotic pathway in HN-4 cells. Arisostatins A was shown to be responsible for the inhibition of HN-4 cell growth by inducing apoptosis. Treatment with 4 microM arisostatins A for 24h produced morphological features of apoptosis and DNA fragmentation in HN-4 cells. Arisostatins A caused dose-dependent apoptosis and DNA fragmentation of HN-4 cells used as a model. Treatment with caspase inhibitor significantly reduced the arisostatins A-induced caspase 3 activation. In addition, arisostatins A-induced apoptosis was associated with the generation of reactive oxygen species (ROS), which was prevented by an antioxidant NAC (N-acetyl-cysteine). These data indicate that cytotoxic effect of arisostatins A on HN-4 cells is attributable to the induced apoptosis and that arisostatins A-induced apoptosis is mediated by caspase-3 activation pathway, loss of mitochondrial transmembrane potential (DeltaPsi(m)), and release of cytochrome c into cytosol.  相似文献   

19.
In this study we show that panaxadiol, a ginseng saponin with a dammarane skeleton, induces apoptotic cell death by depolarization of mitochondrial membrane potential in human hepatoma SK-HEP-1 cells. Sequential activation of caspases-9, -3, and -7, but not of caspase-8, occurs after mitochondrial membrane depolarization and cytochrome c release from the mitochondria of panaxadiol-treated cells. Moreover, Cdk2 kinase activity, but not Cdc2 kinase activity, is markedly upregulated in the early stages of apoptosis. Olomoucine or roscovitine, specific Cdks inhibitors, effectively prevent mitochondrial membrane depolarization as well as apoptotic cell death in panaxadiol-treated cells. Thus, panaxadiol-treatment induces cell death-dependent activation of Cdk2 kinase activity, which is functionally associated with depolarization of mitochondrial membrane potential and subsequent cytochrome c release.  相似文献   

20.
The nephrotoxicity of diclofenac, a non-steroidal anti-inflammatory drug that inhibits both isoforms of cyclooxygenase (COX) has been reported to be fatal to vultures but this was not so with meloxicam which is COX-2 selective. Our study showed that diclofenac was more toxic than meloxicam to both the proximal tubular LLC-PK1 cells and the distal tubular Madin-Darby canine kidney type II (MDCKII) cells, and that LLC-PK1 cells were more susceptible. Exposure of MDCKII cells to meloxicam caused activation of caspase-9/-3 and release of cytochrome c. These observations together with a positive annexin V-FITC staining implicate an intrinsic mitochondrial cell death pathway by apoptosis. Diclofenac-treated MDCKII cells on the other hand showed extensive propidium iodide staining, suggestive of cell death by necrosis. The mode of cell death in LLC-PK1 cells was however less well-defined with positive annexin V-FITC staining but minimal increase in caspase-3 activity alluding to a caspase-independent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号