首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Claudin-5 has recently attracted increasing attention by its potential as a novel treatment target in the early stage of heart failure. However, whether Claudin-5 produces beneficial effects on myocardial ischemia and reperfusion (IR) injury has not been elucidated yet. In this study, we identified reduced levels of Claudin-5 in the hearts of mice subjected to acute myocardial IR injury and murine HL-1 cardiomyocytes subjected to hypoxia and reoxygenation (HR). We then constructed cardiac-specific Cldn5-overexpressing mice using an adeno-associated virus (AAV9) vector and demonstrated that Cldn5 overexpression ameliorated cardiac dysfunction and myocardial damage in mice subjected to myocardial IR injury. Moreover, Cldn5 overexpression attenuated myocardial oxidative stress (DHE and protein levels of Nrf2, HO-1, and NQO1), inflammatory response (levels of MPO, F4/80, Ly6C, and circulating inflammatory cells), mitochondrial dysfunction (protein levels of PGC-1α, NRF1, and TFAM), endoplasmic reticulum stress (protein levels of GRP78, ATF6, and CHOP and p-PERK), energy metabolism disorder (p-AMPK and ACC), and apoptosis (TUNEL assay and protein levels of Bax and Bcl2) in mice subjected to myocardial IR. Next, we generated Cldn5 knockdown cells by lentiviral shRNA and observed that Cldn5 knockdown inhibited cell viability and affected the expression or activation of these IR-related signalings in HL-1 cardiomyocytes subjected to HR. Mechanistically, SIRT1 was proved to be involved in regulating the expression of Claudin-5 by co-immunoprecipitation analysis and Sirt1 knockdown experiments. Our data demonstrated that targeting Claudin-5 may represent a promising approach for preventing and treating acute myocardial IR injury.  相似文献   

2.
目的:研究雷米普利与BQ-123合用对大鼠在体心肌缺血/再灌注损伤的影响。方法:健康雄性Wistar大鼠随机分为5组,制备缺血30min再灌注120min模型,采用雷米普利、BQ-123单用及两药联合应用的方式处理实验动物。观察两药合用对大鼠在体心肌缺血/再灌注损伤的保护作用。观察动物心率、血压、心电图ST-段变化,记录缺血期室性心律失常;检测血浆CK及LDH活力;心肌HE染色和TIC染色,定性和定量检测心肌梗死情况。结果:与I/R组比较,各给药组ST-段均明显降低;缺血期室性心律失常(VA)出现时间明显推迟且持续时间明显缩短,联合给药组作用更为显著;心律失常发生率明显降低;血浆CK及LDH活力显著降低且联合给药组降低更为显著;梗死面积明显缩小,心肌损伤程度明显减轻,其中联合给药组变化更为显著。结论:雷米普利、BQ-123单用及联合应用均对大鼠在体心肌缺血/再灌注损伤有保护作用,且两药合用在推迟缺血期VA的出现时间,缩短其持续时间,减少CK及LDH漏出,缩小心肌梗死面积方面优于两药各自单用。  相似文献   

3.
Previous studies demonstrated the protective effects of estrogen administration in models of cardiovascular disease. However, there is a discrepancy between these data and those from the recent clinical trials with hormone replacement therapy in menopausal women. One possible explanation for the divergent results is the addition of progestin to the hormone regimen in the Women's Health Initiative and the Heart and Estrogen/Progestin Replacement Study trials. The aim of the present study was to examine the effects of a combination of 17beta-estradiol (E(2), 20 microg) and medroxyprogesterone acetate (MPA, 80 microg) on infarct size in New Zealand White rabbits. Infarct size as a percentage of the area at risk was significantly reduced by administration of E(2) 30 min before induction of myocardial ischemia compared with vehicle (19.5 +/- 3.1 vs. 55.7 +/- 2.6%, P < 0.001). However, E(2) + MPA failed to elicit a reduction in infarct size (52.5 +/- 4.6%), and MPA had no effect (50.8 +/- 2.6%). E(2) also reduced serum levels of cardiac troponin I, immune complex deposition in myocardial tissue, activation of the complement system, and lipid peroxidation. All these effects were reversed by MPA. The results suggest that MPA antagonizes the infarct-sparing effects of E(2), possibly through modulation of the immune response after ischemia and reperfusion.  相似文献   

4.
Zhelong Xu  Juan Zhou 《Biometals》2013,26(6):863-878
As an important trace element, zinc is required for the normal cellular structure and function, and impairment of zinc homeostasis is associated with a variety of health problems including cardiovascular disease. Zinc homeostasis is regulated through zinc transporters, zinc binding molecules, and zinc sensors. Zinc also plays a critical role in cellular signaling. Studies have documented that zinc homeostasis is impaired by ischemia/reperfusion in the heart and zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. Both exogenous and endogenously released zinc may play an important role in cardioprotection against ischemia/reperfusion injury. The goal of this review is to summarize the current understanding of the roles of zinc homeostasis and zinc signaling in myocardial ischemia/reperfusion injury.  相似文献   

5.
The complement system activation can mediate myocardial ischemia and reperfusion (I/R). Inhibition of C5a activity reveals attenuation of I/R-induced myocardial infarct size. However, the contribution of C5a receptor (C5aR) to I/R injury remains to be unknown. Here, we reported that both mRNA and protein for the C5aR were constitutively expressed on cardiomyocytes and upregulated as a function of time after I/R-induced myocardial cell injury in mice. Blockade of C5aR markedly decreased microvascular permeability in ischemic myocardial area and leukocyte adherence to coronary artery endothelium. Importantly, the blocking of C5aR with an anti-C5aR antibody was associated with inhibition in activation of protein kinase C delta (PKC-delta) and induction of PKC-mediated mitogen-activated protein kinase phosphatases-1 (MKP-1) leading to the increased activity of p42/p44 mitogen-activated protein (MAP) kinase cascade. These data provide evidence that C5aR-mediated myocardial cell injury is an important pathogenic factor, and that C5aR blockade may be useful therapeutic targets for the prevention of myocardial I/R injury.  相似文献   

6.
目的:观察骨骼肌缺血后处理(RPostC)、心肌的缺血后处理(MPostC)对缺血/再灌注心肌保护作用是否存在差异以及两者联合后作用是否叠加。方法:健康新西兰大白兔3O只,随机分为5组(n=6):缺血对照组(Con)、假手术组(sham)、心肌缺血后处理组(MPostC)和肢体缺血后处理组(RPostC)及心肌缺血后处理联合肢体缺血后处理组(MPostC+RPostC)。采用开胸结扎冠状动脉左室支45 min,再灌注120min方法制作缺血/再灌注模型,采用短暂结扎双侧髂外动脉固定部位5 min造成骨骼肌短暂缺血。以Evans蓝标记心肌缺血区范围,以TTC法检测梗死心肌范围,并分别于缺血前、后及再灌注1、2 h测定血浆磷酸肌酸激酶(CPK)活性和乳酸脱氢酶(LDH)含量。结果:和Con组相比,MPostC和RPostC组心肌梗死范围均明显降低(P<0.05);MPostC联合RPostC组心肌梗死范围与MPostC或RPostC组相比,均进一步降低(均P<0.05)。但MPostC组及RPostC组之间心肌坏死范围未见统计学差异。再灌注120 min末血浆CPK活性及LDH含量也显示相似趋势。结论:骨骼肌缺血后处理及心肌后处理对缺血/再灌注心肌均具有明显保护作用;且两者作用可以叠加;但骨骼肌和心肌后处理之间保护作用未显示统计学差异。  相似文献   

7.
目的:探讨激动乙醛脱氢酶2(ALDH2)在糖尿病大鼠心肌损伤中的作用。方法:腹腔注射55 mg/kg链脲佐菌素复制糖尿病大鼠模型,分为糖尿病组和乙醇+糖尿病组(n=8)。8周后行离体心肌缺血/再灌注(I/R),测定心室动力学指标和复灌期间冠脉流出液中乳酸脱氢酶(LDH)含量。测定空腹血糖、糖化血红蛋白(HbA1c)水平。RT-PCR和Western blot测定左心室前壁心尖组织线粒体ALDH2 mRNA和蛋白表达。结果:与正常大鼠心肌I/R相比,糖尿病大鼠左室发展压、左心室最大上升和下降速率、左室做功进一步下降,左室舒张末压抬高,复灌期冠脉流出液中LDH释放增多,心室ALDH2 mRNA和蛋白表达降低;与糖尿病大鼠心肌I/R相比,ALDH2激动剂乙醇明显促进左室发展压、左心室最大上升和下降速率、左室做功的恢复,降低左室舒张末压,同时降低HbA1c水平和LDH的释放,ALDH2 mRNA和蛋白表达增高。结论:糖尿病大鼠心肌缺血/再灌注时,心肌ALDH2表达降低;增强ALDH2在糖尿病大鼠心肌中的表达可发挥保护作用。  相似文献   

8.
Endurance exercise is associated with protection against myocardial ischemia/reperfusion (I/R) injury and has been shown to increase heat shock protein 72 (HSP72). Dietary antioxidants have also been reported to decrease I/R-induced injury. Because exercise and antioxidants may provide cardioprotection via different mechanisms, combining these countermeasures could provide additive protection. Alternatively, because exercise-induced oxidant production may promote expression of HSP72, antioxidants could attenuate exercise-induced HSP72 expression and decrease exercise-related cardioprotection. These experiments examined the individual and combined effects of exercise and antioxidants on myocardial I/R injury (in vivo). Rats receiving a mixed antioxidant diet or control diet were assigned to exercise or sedentary groups and randomized to receive: (i) short I/R (myocardial stunning), (ii) long I/R (myocardial infarction), or (iii) sham surgery. Antioxidants significantly increased total antioxidant capacity and attenuated exercise-related HSP72 accumulation. Nonetheless, during short I/R, exercise-trained animals demonstrated improved left ventricular developed pressure (LVDP), independent of diet. Further, antioxidants alone resulted in improved LVDP. Finally, compared to control diet/sedentary animals, both exercise groups (control and antioxidant diets) and the antioxidant diet/sedentary group sustained smaller infarctions. We conclude that exercise and antioxidants can independently provide protection against myocardial contractile dysfunction and infarction, and the combination of these two strategies does not enhance or inhibit the protection observed with each individual countermeasure.  相似文献   

9.
10.
Objective: To explore the role and mechanism of the Kelch sample related protein-1-nuclear factor erythroid-2 related factor 2/antioxidant response element (Keap1-Nrf2/ARE) signaling pathway in protection of dexmedetomidine (DEX) preconditioning against myocardial ischemia/reperfusion injury (MIRI). Methods: A total of 70 male SD rats were randomly divided into seven equal groups (n=10): blank control (S group), ischemia/reperfusion injury (C group), DEX preconditioning (DEX group), tertiary butylhydroquinone (tBHQ) control (tBHQ group), combined tBHQ and DEX preconditioning (tBHQ+DEX group), all-trans retinoic acid (ATRA) control (ATRA group), and combined ATRA and DEX preconditioning (ATRA+DEX group). Serum creatine kinase-MB (CK-MB) and cardiac troponin I (cTnI) concentrations were measured by ELISA kits, and the infarct size (IS) was assessed by Evan’s blue and 2,3,5-triphenyltetrazolium chloride (TTC) staining. Oxidative stress was assessed through Western blotting for expression of Keap1-Nrf2/ARE pathway members and oxidative stress markers. Results: Cardioprotection of DEX, tBHQ, and tBHQ+DEX preconditioning treatments were shown as lower concentrations of serum CK-MB and cTnI and a smaller IS following MIRI in rats compared with those of MIRI rats without pre-treatment. In addition, tBHQ+DEX preconditioning exhibited stronger myocardial protection compared with DEX preconditioning. Mechanistically, the cardioprotection offered by DEX, tBHQ, and tBHQ+DEX preconditioning treatments was mediated via exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway. Conversely, the protective effects of DEX were diminished by blocking the Keap1-Nrf2/ARE pathway with inhibitor ATRA. Conclusion: DEX preconditioning protects against MIRI by exerting antioxidant stress through activation of the Keap1-Nrf2/ARE signal transduction pathway, while inhibition of the Keap1-Nrf2/ARE signal transduction pathway reverses the protective effect of DEX preconditioning on MIRI.  相似文献   

11.
Among the heart diseases, ischemia and reperfusion (I/R) induced arrhythmias contribute to episodes of sudden death. Cardiac arrhythmias during ischemia reperfusion are believed to be related to oxidative stress. Therefore, the aim of this study was to examine whether treatment with Hesperidin alleviates arrhythmias and infarct size in experimentally-induced myocardial I/R injury using an in vivo rat model. In this study haemodynamics parameters, markers of inflammation, biomarkers of oxidative stress and tissue nitrite level and infarct size of the heart were estimated in various groups. I/R showed a significant decrease in tissue nitrite and antioxidant level and significant increase in arrhythmias, inflammation and myocardial cell apoptosis. Treatment with Hesperidin showed a significant increase in tissue nitrite, antioxidant level and reduction in inflammation, arrhythmias and apoptosis. In conclusion, the protecting effect of Hesperidin in I/R induced arrhythmias is due to reduction in inflammation and oxidative stress.  相似文献   

12.
Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown–Norway rats were dosed (8?mg/kg, intratracheal) 24?h prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs. control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed.  相似文献   

13.
Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown-Norway rats were dosed (8?mg/kg, intratracheal) 24?h prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs. control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed.  相似文献   

14.
Previous studies have shown that erythropoietin (EPO) has protective effects against ischemia/reperfusion (I/R) injury in several tissues. The aim of this study was to determine whether EPO could prevent intestinal tissue injury induced by I/R. Wistar rats were subjected to intestinal ischemia (30 min) and reperfusion (60 min). A single dose of EPO (5000 U/kg) was administered intraperitoneally at two different time points: either at five minutes before the onset of ischemia or at the onset of reperfusion. At the end of the reperfusion period, jejunum was removed for examinations. Myeloperoxidase (MPO), malondialdehyde (MDA), and antioxidant defense system were assessed by biochemical analyses. Histological evaluation was performed according to the Chiu scoring method. Endothelial nitric oxide synthase (eNOS) was demonstrated by immunohistochemistry. Apoptotic cells were determined by TUNEL staining. Compared with the sham, I/R caused intestinal tissue injury (Chiu score, 3+/-0.36 vs 0.4+/-0.24, P<0.01) and was accompanied by increases in MDA levels (0.747+/-0.076 vs 0.492+/-0.033, P<0.05), MPO activity (10.51+/-1.87 vs 4.3+/-0.45, P<0.05), intensity of eNOS immunolabelling (3+/-0.4 vs 1.3+/-0.33, P<0.05), the number of TUNEL-positive cells (20.4+/-2.6 vs 4.6+/-1.2, P<0.001), and a decrease in catalase activity (16.83+/-2.6 vs 43.15+/-4.7, P<0.01). Compared with the vehicle-treated I/R, EPO improved tissue injury; decreased the intensity of eNOS immunolabelling (1.6+/-0.24 vs 3+/-0.4, P<0.05), the number of TUNEL-positive cells (9.2+/-2.7 vs 20.4+/-2.6, P<0.01), and the high histological scores (1+/-0.51 vs 3+/-0.36, P<0.01), and increased catalase activity (42.85+/-6 vs 16.83+/-2.6, P<0.01) when given before ischemia, while it was found to have decreased the levels of MDA (0.483+/-0.025 vs 0.747+/-0.076, P<0.05) and MPO activity (3.86+/-0.76 vs 10.51+/-1.87, P<0.05), intensity of eNOS immunolabelling (1.4+/-0.24 vs 3+/-0.4, P<0.01), the number of TUNEL-positive cells (9.1+/-3 vs 20.4+/-2.6, P<0.01), and the number of high histological scores (1.16+/-0.4 vs 3+/-0.36, P<0.05) when given at the onset of reperfusion. These results demonstrate that EPO protects against intestinal I/R injury in rats by reducing oxidative stress and apoptosis. We attributed this beneficial effect to the antioxidative properties of EPO.  相似文献   

15.
Zhu HF  Dong JW  Zhu WZ  Ding HL  Zhou ZN 《Life sciences》2003,73(10):1275-1287
The aim of this study was to investigate the protection afforded by intermittent hypoxia (IH) against ischemia/reperfusion injury and its effects on calcium homeostasis during ischemia/reperfusion. The roles of KATP channels in these two actions were to be explored. Isolated hearts from IH and normoxic rats were subjected to 30 min global ischemia followed by 30 min reperfusion. Cardiac function was less deteriorated during ischemia and reperfusion in the IH rat hearts compared to normoxia rat hearts. Amplitude of the maximal contracture during ischemia was lower, while time to maximal contracture was extended in IH hearts. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax were higher in IH hearts than in normoxic hearts. KATP antagonist glibenclamide (10 microM) completely abolished these protective effects of IH, but had no appreciable influence on normoxic hearts. In cardiomyocytes isolated from normoxic hearts, [Ca2+]i, measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion (1.081 +/- 0.004 and 1.088 +/- 0.006 respectively, p<0.01 vs pre-ischemia perfusion). However, in cardiomyocytes isolated from IH hearts, [Ca2+]i kept at normal level during ischemia and reperfusion (1.012 +/- 0.006 and 1.021 +/- 0.002 respectively, P>0.05 vs pre-ischemia perfusion). 10 microM glibenclamide and 100 microM 5-hydroxydecanoate (a selective mitochondria KATP antagonist) respectively abolished this effect of IH; calcium overloading reappeared during ischemia (1.133 +/- 0.007 and 1.118 +/- 0.007 respectively, P<0.01) and reperfusion (1.091 +/- 0.004 and 1.095 +/- 0.012 respectivly, P<0.01). However they had no effects on simulated ischemia and reperfusion-induced calcium overloading in normoxic myocytes. 50 microM pinacidil, a KATP opener, attenuated calcium overloading during ischemia and reperfusion in normoxic myocytes, but had no effect on [Ca2+]i change in IH myocytes. These results suggested that KATP channels contributed to the cardiac protection induced by IH against ischemia/reperfusion injury; the elimination of calcium overloading during ischemia/reperfusion by IH might underlie the mechanism of protection.  相似文献   

16.
17.
目的:探讨丝裂素活化蛋白激酶P38MAPK是否参与单磷酰脂A预处理的延迟保护作用.方法:建立大鼠心肌缺血/再灌注损伤模型.应用单磷酰脂A及P38的特异性抑制剂SB203580预处理,检测预处理后不同时间点P38磷酸化水平,并观察各组单磷酸酰酯A预处理24 h后缺血/再灌注心肌的梗死范围LDH释放.结果:预处理后24 h其心梗范围缩小,血浆LDH活性升高程度减轻(分别P<0.01,vs I/R).用P38的特异性抑制剂SB203580可消除预处理后的延迟保护作用.结论:①单磷酰脂A预处理对24 h后缺血/再灌注心肌有保护作用.②P38参与单磷酰脂A预处理后的延迟保护作用,P38短暂而快速的激活可能是药物延迟保护作用的重要机制之一.  相似文献   

18.
Ischemia/reperfusion (I/R) injury is a serious problem resulting from clinical setting of coronary revascularization. Despite extensive studies on I/R injury, the molecular bases of cardiac dysfunction caused by I/R are still unknown, but are likely to result from alterations in protein expression. Isolated rat hearts were subjected to 15-30 min of no-flow ischemia without (Ischemia protocol) or with 30 min of reperfusion (I/R protocol). 2-DE analysis of heart proteins from both experimental protocols showed wide-ranging changes in protein levels. In the Ischemia protocol, 39 protein spots were changed in ischemic groups and those changes correlated with duration of ischemia. Ninety percent of the affected proteins were increased. In contrast to increased protein levels, the total messenger RNA (mRNA) level decreased approximately two fold. Compared to the Ischemia protocol, changes in protein levels in the I/R protocol did not correlate with the duration of ischemia and the degree of recovery of mechanical function. The decrease of affected protein from I/R protocol was associated with the increase in total protein level in reperfusate. Our studies show that the protein increase is correlated with the mechanical function of the I/R hearts and the increase is not likely associated with an increase in protein synthesis.  相似文献   

19.
Ischemia/reperfusion is a potentially hazardous condition that increases reactive oxygen species (ROS) production and oxidative damage. Seals of the phocid family experience repetitive episodes of ischemia/reperfusion during and after a dive as a consequence of preferential distribution of blood flow to the central nervous system and reduction or elimination of perfusion in most vascular beds. Previous studies showed that ROS production is higher in ringed seal than in domestic pig tissues as a direct consequence of the ischemia/reperfusion associated with the diving response; however, oxidative damage is not related to this high ROS production. Apparently, antioxidant enzyme activities participate in the antioxidant protection in ringed seal tissues. In the present study we addressed the potential antioxidant protection of the glutathione system against dive-induced ischemia/reperfusion in ringed seal tissues. Total glutathione (GSH-Eq = GSH + 2GSSG), glutathione (GSH) and glutathione disulfide (GSSG), the ratio GSSG:GSH-Eq, the activities of the enzymes glutathione disulfide reductase (GR) and glucose-6-phosphate dehydrogenase (G6PDH), as well as lipid peroxidation (TBARS) and carbonyl proteins, were measured in ringed seal and domestic pig heart, kidney, liver, lung and muscle samples. In heart, kidney, lung and muscle GSH-Eq and GSH content was higher in seal than in pig (p < 0.05). GSSG content was higher in seal than in pig heart kidney, liver and muscle (p < 0.05). GR and G6PDH activities were higher in all seal than in pig tissues (p < 0.05). GSSG:GSH-Eq ratio was higher in pig than in seal heart, and lung (p < 0.05). TBARS content was higher in pig than in seal lung (p < 0.05). Higher content of carbonyl proteins was present in pig than in seal heart, kidney, liver and muscle (p < 0.05). These results suggest that the glutathione levels and the activity of enzymes involved in its recycling are efficient mechanisms that ameliorate protein and lipid oxidative damage and protect ringed seal tissues against dive-induced ischemia/reperfusion.  相似文献   

20.
Neuregulin-1 (NRG-1), an endogenously produced polypeptide, is the ligand of cardiomyocyte ErbB receptors, with cardiovascular protective effects. In the present study, we explored whether the cardioprotective effect of NRG-1 against I/R injury is mediated by inhibiting myocardial endoplasmic reticulum (ER) stress. In vitro, NRG-1 directly inhibited the upregulation of ER stress markers such as glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12 induced by the ER stress inducers tunicamycin or dithiothreitol in both neonatal and adult ventricular myocytes. Attenuating ErbB signals by an ErbB inhibitor AG1478 or ErbB4 knockdown and preincubation with phosphoinositide 3-kinase inhibitors all reversed the effect of NRG-1 inhibiting ER stress in cultured neonatal rat cardiomyocytes. Concurrently, cardiomyocyte ER stress and apoptosis induced by hypoxia-reoxygenation were decreased by NRG-1 treatment in vitro. Furthermore, in an in vivo rat model of myocardium ischemia/reperfusion (I/R), intravenous NRG-1 administration significantly decreased ER stress and myocardial infarct size induced by I/R. NRG-1 could protect the heart against I/R injury by inhibiting myocardial ER stress, which might be mediated by the phosphoinositide 3-kinase/Akt signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号