首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
L-GLUTAMIC ACID DECARBOXYLASE IN NON-NEURAL TISSUES OF THE MOUSE   总被引:7,自引:5,他引:2  
Abstract— Low levels of γ-aminobutyric acid (GABA) and of glutamic acid decarboxylase (GAD) activity have been detected in mouse kidney, liver, spleen and pancreas. Quantitation of both 14CO2 and [14C]GABA produced in radiometric assays from [U-14CJglutamic acid has shown that measurement of 14CO2 evolution alone is not, in all cases, a valid estimate of true GAD activity. As evidenced by increased ,14CO2 production upon addition of NAD and CoA to assay mixtures, radiometric assay of GAD activity in crude homogenates may yield 14CO2 via the coupled reactions of glutamic acid dehydrogenase and a-ketoglutarate dehydrogenase. The addition of 1 mM aminooxyacetic acid (AOAA) to assays of kidney homogenates inhibited [,14C]GABA production 92 per cent while 14CO2 production was inhibited only 53 per cent. No evidence was found to confirm the reported existence of a second form of the enzyme, GAD II. previously described by Haber el al. (H aber B., K uriyama K. & R oberts E. (1970) Biochem. Pharmac. 19, 1119-1136). Based on sensitivity-to AOAA and chloride inhibition, the GAD activity in mouse kidney is. apparently, indistinguishable from that of neural origin.  相似文献   

2.
Abstract: We describe here a simple and convenient method for assay of tryptophan 5-monooxygenase (hydroxylase), applicable to enzyme in all states of purification. It is based on the enzyme-catalysed formation of 5-hydroxy-[4-3H]tryptophanfrom [5-3H]tryptophan, and the subsequent acid-dependent quantitative release of 3H as 3H2O; unreacted substrate is removed with activated charcoal. The assay is linear with respect to both protein concentration and time, and gives results similar to those in a standard fluorimetric assay.  相似文献   

3.
A simplified procedure for the assay and purification of an enzyme which activates a galactosyltransferase (EC 2.4.1.96) involved in volume regulation of the unicellular alga Poterioochromonas malhamensis (Peterfi) is described. The enzyme was extracted with water from membranes, followed by chromatography on DEAE-Sephacel, phenyl-Sepharose and fetuin-agarose. Its proteinase activity was demonstrated by cleavage of oxidized insulin A- and B-Chains. The predominant cleavage site of the oxidized A-chain is the peptide bond between 13Leu and 14Tyr whereas 16Leu-17Glu is also hydrolyzed with minor activity. Besides this chymotrypsin-like endopeptidase activity some carboxypeptidase activity was also observed.  相似文献   

4.
Complete purification of the alternative oxidase from plant mitochondria has not been achieved successfully, because of its instability on solubilization. We report here that the addition of pyruvate to the isolation medium stabilizes the activity of the solubilized enzyme. A procedure is described for the rapid isolation and partial purification of the cyanide-insensitive alternative oxidase from both Arum maculatum and soybean cotyledon ( Glycine max ) mitochondria. The degree of purification was 16- and 74-fold for Arum and soybean enzyme, respectively. The specific activities increased from 1 300 to 20 300 nmol oxygen consumed mg−1 protein min−1 (using duroquinol as substrate) after purification for the Arum erizyme and from 6 to 445 nmol oxygen consumed mg−1 protein min−1 for the soybean enzyme. A turnover for the partially purified Arum enzyme was estimated to be 47 electrons s−1.
The partially purified enzyme from both Arum and soybean cotyledon mitochondria was sensitive to alternative oxidase inhibitors such as salicylhydroxamic acid, n -propyl gallate and octyl gallate, but not to myxottriazol, KCN or antimycin A. The activity of the enzyme could be stimulated by pyruvate, but not by malate and suceinate. The stability of the purified enzyme was also dependent on the continued presence of pyruvate. In the absence of pyruvace, the enzyme activity was lost in a time-dependent manner and the ability of pyruvate to recover the activity was also irreversibly lost.  相似文献   

5.
Abstract. Purified and crude phosphoenolpyruvate carboxylase from the CAM plant Kalanchoë daigremontiana Hamet et Perrier ( Bryophyllum diagremontianum ) was assayed at temperatures between 10 and 45° C. The optimum temperature of the enzyme activity changed with substrate availability and effector concentration in the assay. l -malate inhibited the enzyme activity and lowered the optimum temperature. Glucose-6-phosphate raised the optimum temperature to 43°C. K m values for phosphoenolpyruvate increased with assay temperature from 0.12 mol m-3 at 15° C to 0.36 molm−3 at 35° C. Inhibition by malate increased with temperature and acidity of the assay. In the crude enzyme 50% of control activity was inhibited by 1.65 mol m-3 malate at 15° C and by 0.5 mol m-3 at 35° C (at pH 7.0). With purification malate sensitivity was lost ( K i values for malate at least 10 times higher). The shift in optimum temperatures for PEP-carboxylase activity thus results from changes in the kinetic parameters with temperature and allosteric effectors. The often low optimum temperatures for CO2 fixation observed in nature may thus be the result of substrate and effector concentrations in the cytoplasm and the antagonistic effect of temperature on substrate affinity and effector efficiency on phosphoenolpyruvate carboxylase.  相似文献   

6.
NADP+-dependent malic enzyme (L-malate : NADP+ oxidoreductase, decarboxylating, EC 1.1.1.40) was extracted from the leaves of yellow lupine. The purification procedure included fractionation with (NH4)2SO4 and Sephadex G-25 chromatography, followed by purification on DEAE-cellulose and Sephadex G-200 columns. The enzyme was purified 122-fold. The enzyme affinity towards L-malate was found to be significantly higher with Mn2+ than with Mg2+. The Hill coefficient for Mg2+ depended on concentration and was 1.6 for the lower and 3.9 for the higher concentrations. The dependence of the enzyme activity on NADP+ followed a hyperbolic curve. Km values and Hill coefficients for NADP+ were similar with both Mn2+ and Mg2+. The enzyme activity was strictly dependent on divalent cations and followed a sigmoidal curve at least for Mg2+. The enzyme had 4-fold higher affinity towards Mn2+ than towards Mg2+, the Km values being 0.3 and 1.15 m M respectively. Of several tested organic acids, oxalate was the most effective inhibitor followed by oxaloacetate while succinate was the strongest activator.  相似文献   

7.
A xyloglucan-derived pentasaccharide. Xyl2-Glc3, was shown by viscometry to promote the depolymerisation of xyloglucan by enzyme extracts from bean ( Phaseolus vulgaris L. cv. Canadian Wonder) leaves and pea ( Pisum sativum L. cv. Alaska) stems. Xyl2-Glc3 was also shown by a radiochemical assay to act as an acceptor substrate for xyloglucan endotransglycosylase activity (XET: EC 2.4.1.—) present in the same extracts. In both these assays, a heptasaccharide (Xyl3-Glc4) was more effective than Xyl2-Glc3 whereas two isomeric tetrasaccharides (Xyl1-Glc3) were essentially ineffective. The agreement in the structural requirements of the two assays suggests that they share a common basis; we therefore propose that the oligosaccharide-sensitive enzyme that depolymerises xyloglucan is XET rather than cellulase (EC 3.2.1.4). In the viscometric assay, the penta- and heptasaccharides would, according to our interpretation, compete with high molecular weight xyloglucan molecules as acceptor substrates for XET, leading to a decrease in the weight-average molecular weight of the xyloglucan and, therefore, to a decrease in viscosity.
Our results indicate that oligosaccharides have to possess two α- d -xylose residues in order to act as acceptor substrates for XET. The non-reducing end of a high-molecular weight xyloglucan can also act as an acceptor substrate. Therefore, it is likely that exo-hydrolysis by α- d -xylosidase would destroy the ability of a poly saccharide to act as an acceptor, even though α- d -xylosidase may remove only a single xylose residue from each polysaccharide molecule.  相似文献   

8.
An enzyme-linked immunosorbent assay (ELISA) using polyclonal antibodies, which were raised against indole-3-acetic acid (IAA) conjugated to bovine serum albumin (BSA) via the indolic nitrogen (IAA-N1-BSA), has been developed. The sensitivity and specificity of these antibodies were compared to those of polyclonal and monoclonal antibodies raised against IAA conjugated to BSA via C1 of the carboxyl group (IAA-C1-BSA). The sensitivity of the assays improved in the following order: monoclonal antibodies > antibodies to IAA-C1-BSA > antibodies to IAA-C1-BSA. Antibodies against IAA-C1-BSA had less cross-reactivity to indoles structurally related to IAA, excluding indole-3-pyruvic acid. A rapid and effective method for purification of IAA in citrus tissues before analysis by ELISA is described. Values of IAA in citrus ( Citrus sinensis [L.] Osbeck cv. Shamouti orange) shoot tips obtained with all three antibodies were similar. However, in leaf tissues which contain lower amounts of IAA compared to shoot tips, monoclonal antibodies gave higher values of IAA than polyclonal antibodies. Estimation of free IAA levels in purified extracts of citrus shoot tips, very young leaves, and mature leaves was ca 380, 248, and 74 ng (g fresh weight)−1 respectively.  相似文献   

9.
Shikimate dehydrogenase (SKDH, EC 1.1.1.25) was extracted from seedlings of pepper ( Capsicum annuum L.) and purified 347-fold. The purification procedure included precipitation with ammonium sulphate and chromatography in columns of Reactive Red-agarose, Q-Sepharose and Sephadex G-100. Pepper SKDH isozymes are separable only using PAGE. The purified enzyme has a relative molecular mass of 67 000 as estimated by gel filtration. The optimum pH of enzyme activity is 10.5 and the optimum temperature is 50°C, but the enzyme is quickly inactivated at temperatures higher than 40°C. The purified enzyme exhibited typical Michaelis-Menten kinetics and Km values are 0.087 m M for shikimic acid and 0.017 m M for NADP. The mechanism of reaction is sequential considering NADP as a cosubstrate. Ions such as Ca2+, Mg2+ and Mn2+ activate the enzyme, but Zn2+ and Cu2+ are strong inhibitors. Some phenolic compounds such as guaiacol, protocatechuic acid and 2,4-D are competitive inhibitors of pepper SKDH, showing Ki values of 0.38 m M , 0.27 m M and 0.16 m M , respectively.  相似文献   

10.
Chloroplast glutathione reductase: Purification and properties   总被引:4,自引:0,他引:4  
Glutathione reductase was partially purified from isolated pea chloroplasts ( Pisum sativum L. cv. Progress #9). A 1600-fold purification was obtained and the purified enzyme had a specific activity of 26 μmol NADPH oxidized (mg protein)−1 min−1. The enzyme had a native molecular weight of approximately 156 kdalton and consisted of two each of two subunits of about 41 and 42 kdalton. The Km for oxidized glutathione was 11 μ M and the Km for NADPH was 1.7 μ M . Enzyme activity was affected by the ionic strength of the assay medium, and maximum activity was observed at an ionic strength of between 60 and 100 m M . The enzyme was inactivated by sulfhydryl modifying reagents and the presence of either oxidized glutathione or NADPH affected the extent of inactivation. Chloroplast glutathione reductase probably serves in the removal of photosynthetically derived H2O2 by reducing dehydroascorbate for ascorbate-linked reduction of H2O2. Intermediates of this reaction sequence, dehydroascorbate, ascorbate, reduced glutathione, and NADPH had no effect on enzymic activity.  相似文献   

11.
Abstract: The structure of N -acetylaspartylglutamate (NAAG) suggests this neuronal dipeptide as a candidate for interaction with discrete subclasses of ionotropic and metabotropic acidic amino acid receptors. A substantial difficulty in the assay of these interactions is posed by membrane-bound peptidase activity that converts the dipeptide to glutamate and N -acetylaspartate, molecules that will interfere with receptor assays. We have developed two sets of unique receptor assay conditions and applied one standard assay to measure the interactions, under equilibrium binding conditions, of [3H]kainate, [3H]amino-3-hydroxy-5-methylisoxazole-4-propionic acid ([3H]AMPA), and [3H]CGS-19755 with the three classes (kainate, quisqualate, and N -methyl- d -aspartate) of ionotropic glutamate receptors, while inhibiting peptidase activity against NAAG. Under these conditions, NAAG exhibits apparent inhibition constants (IC50) of 500, 790, and 8.8 µ M in the kainate, AMPA, and CGS-19755 receptor binding assays, respectively. Glutamate was substantially more effective and less specific in these competition assays, with inhibition constants of 0.36, 1.1, and 0.37 µ M . These data support the hypothesis that, relative to glutamate, NAAG functions as a specific, low potency agonist at N -methyl- d -aspartate subclass of ionotropic acidic amino acid receptors, but the peptide is not likely to activate directly the kainate or quisqualate subclasses of excitatory ionotropic receptors under physiologic conditions.  相似文献   

12.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   

13.
The polymerase chain reaction (PCR) has the potential to detect low levels of the human pathogen Escherichia coli O157 : H7 in bovine faeces. To improve the utility of PCR for this application, several methods for preparing template DNA from bovine faeces, both directly and after non-selective enrichment, were tested. These were boiling, enzyme treatment, enzyme treatment plus phenol-chloroform extraction, and enzyme treatment plus phenol-chloroform extraction plus Geneclean® purification. Of these, the boiling method was the most consistent and had a sensitivity of approximately 3 cfu g−1 faeces, with an assay time of less than 32 h. The boiling method was also combined with immunomagnetic separation (IMS) to detect E. coli O157 : H7 in less than 8 h, but with a sensitivity of approximately 103 cfu g−1 faeces. These methods can be used to prepare template for PCR screening of bovine faeces using any appropriate PCR primers.  相似文献   

14.
Abstract: A radioimmunoassay specific for the COOH-terminus of Met-enkephalin [Arg6,Phe7] and a separate assay specific for the COOH-terminus of Met-enkephalin are described. Immunoreactivity by these two assays was compared in bovine caudate and bovine chromaffin granule preparation after Sephadex G75 chromatography in 50% acetic acid. When the assays were applied to the chromatography fractions of the bovine caudate extract, the majority of the immunoreactivity was found in the fractions corresponding to the heptapeptide and the pentapeptide respectively. When the chromaffin granule chromatography fractions were assayed, both of the radioimmunoassays showed that most reactivity was in several peaks in the larger molecular weight fractions. The major peak for the Met-enkephalin [Arg6,Phe7] assay had an apparent molecular weight of 2800, while with the Met-enkephalin assay the dominant peak of immunoreactivity had an apparent molecular weight of 10,000. The presence of authentic Met-enkephalin [Arg6,Phe7] in both caudate and chromaffin granule extracts was confirmed by reverse-phase chromatography of the previously sized fractions. It appears then that the processing of precursors of opioid peptides is directed, in the caudate, to the synthesis and storage of the enkephalins and of Met-enkephalin [Arg6,Phe7]; in the adrenal medulla the major products of precursor processing are a variety of polypeptides of larger sizes.  相似文献   

15.
Abstract 3 New spectrophotometric enzyme assays were developed for the study of microbial lignin-degrading enzymes. The conversion of 2-methoxy-3-phenylbenzoic acid to 2-hydroxy-3-phenylbenzoic acid led to the discovery of an extracellular, aromatic methyl ether demethylase produced by the white-rot fungus Phanerochaete chrysosporium . The conversion of methyl 2-hydroxy-3-phenylbenzoate to 2-hydroxy-3-phenylbenzoic acid allowed the identification of an extracellular, aromatic methyl ester esterase produced by this fungus. The Phanerochaete sp. also excreted an enzyme complex that oxidized 4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one, probably to aliphatic products. All 3 novel enzyme activities were produced together with, and probably comprise a part of, the Phanerochaete ligninolytic enzyme complex. Unlike previously known ligninases, these enzymes did not oxidize 3,4-dimethoxybenzyl alcohol. All 3 were H2O2-dependent and were activated by Mn2+ ions.  相似文献   

16.
5-Oxo-prolinase of cultured tobacco cells is a soluble enzyme predominantly localized in the cytoplasm. To get optimal enzyme activity, the presence of the monovalent cation ammonium and the divalent cations Mg2+ and Mn2+ in the assay mixture is necessary. The enzyme has an extremely alkaline pH—(9.5–10.5) and a high temperature - optimum (55°C). In contrary to the 5-oxo-prolinase from animal cells, where heat-stabilization by 5-oxo-proline is observed, the high temperature optimum of the tobacco enzyme is due to stabilization by ATP. High 5-oxo-prolinase activity in tobacco cell homogenates was not only shown with the co-substrate ATP, but with other purine-nucleotides, too, although ATP was the best co-substrate of the compounds tested. Substrate affinity of the tobacco enzyme (Km 5-oxo-proline = 30.5 μM) is similar to that demonstrated for wheat germ 5-oxo-prolinase. Competitive inhibition by the 5-oxo-proline analogues 2-imidazolidone-4-carboxylic acid(K1= 14.5 μ M ) and dihydroorotic acid (K1=2 m M ) revealed a much higher sensitivity of tobacco 5-oxo-prolinase to these compounds than observed for the mammalian enzyme.  相似文献   

17.
Abstract A protein kinase from Dictyostelium discoideum which phosphorylates the synthetic peptide, calmodulin-dependent protein kinase substrate (CDPKS, amino acid sequence: PLRRTLSVAA) and is stimulated by Ca2+/calmodulin is described. This is the first report of a protein kinase with these characteristics in D. discoideum . The enzyme was partially purified by Q-Sepharose chromatography. The protein kinase is very labile, and rapidly loses Ca2+/calmodulin-dependence upon standing at 4°C, even in the presence of protease inhibitors, making further purification and characterisation difficult. In the active fractions, a 55 kDa polypeptide is labelled with [γ-32 P]ATP in vitro under conditions in which intramolecular rather than intermolecular reactions are favoured. The phosphorylation of this peptide is stimulated in the presence of Ca2+ and calmodulin but not Ca2+ alone. Ca2+/calmodulin-dependent stimulation is inhibited in the presence of the calmodulin antagonist, trifluoperazine (TFP). It is proposed that the 55 kDa polypeptide may represent the autophosphorylated form of the enzyme.  相似文献   

18.
Abstract— A sensitive procedure for the determination of dopamine-β-hydroxylase (EC 1.14.2.1) activity in homogenates of rat brain and in rat serum is described. In the assay, the substrate, [14C]tyramine is enzymatically converted to [14C]octopamine which is then oxidized with periodate to the [l4C] p -hydroxybenzaldehyde. The latter compound is separated by solvent extraction into ether and its radioactivity determined. A simple method has been developed for the purification and convenient storage of [14C]tyramine which results in a boiled-blank value of about 100 d.p.m. per 106 d.p.m. of [I4C]tyramine. The low blank allows the detection of as little as 7.5 pmol of product. This makes the procedure several times more sensitive than other methods now available. The interactions of copper, N -ethylmaleimide and p -chloromercuriphenyl sulfonic acid with the endogenous inhibitors were also examined. The method should be generally applicable for the assay of DBH in any tissue homogenate once the appropriate copper and dilution parameters have been determined.  相似文献   

19.
Abstract. In the preliminary purification of Capsicum leaf nitrate reductase (EC 1.6.6.1), treatment of the crude extract on Sephadex G-25 was necessary to prevent a gelling of the extract and sedimentation of the enzyme. Its Km values for NADH and nitrate were estimated to be 9.3 and 105mmol m−3 ADP and ATP gave hyperbolic competitive inhibition, with respect to NADH, while the inhibition by AMP was linear competitive. Ki values calculated were: ADP and ATP approximately lmol m−3 and AMP 2.3 mol m−3. Inhibition by ADP was not altered by reduced glutathione.
The Capsicum nitrate reduclase was very susceptible to inhibition by NADH (in the absence of nitrate) and an in vivo assay showed that the activity of the enzyme was limited by the supply of nitrate. NADH and adenine nucleotide levels measured in the Capsicum leaf were used to estimate inhibition of nitrate reductase and a prediction was made of the nitrate reductase activity at different times in the photoperiod. This was shown to follow the same trend as the measured in vivo activity of the enzyme. Changes in adenine nucleotide levels had little effect on nitrate reductase activity.  相似文献   

20.
Isolated intact mesophyll protoplasts from Zea mays L. were used as an enzyme source for studying properties of phosphoenolpyruvate (PEP) carboxylase (EC 4.1 1 31) just after release from cells into the reaction medium. After the injection of protoplasts into the assay mixture, an initial lag of activity was observed, mainly due to the time necessary for complete disruption of protoplasts by the osmotic shock. The final specific activity obtained was ca 18 μmol mg-1 of liberated protein min-1, a value comparable to that usually achieved after arduous purification. Under the assay conditions employed, the chloroplasts were not disrupted and the retention of their proteins, together with the use of purified mesophyll protoplasts, were obviously the reasons for the high specific activity obtained. The activity and properties of phosphoenolpyruvate carboxylase stored in isolated protoplasts were stable for at least 24 h at 5°C. The main difference between the protoplast-derived and the routinely extracted enzyme was the sensitivity to malate inhibition, which was partially lost in the extracted phosphoenolpyruvate carboxylase; no difference was found in the Km(PEP). The stress imposed by the protoplast isolation procedure diminished the sensitivity of the enzyme to malate inhibition, so that it can be inferred that the real malate sensitivity of pbosphocnolpyruvale carboxylase is even greater and that it is grossly underestimated with routinely extracted enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号