首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monandry and polyandry as alternative lifestyles in a butterfly   总被引:10,自引:3,他引:7  
Butterflies show considerable variability in female mating frequency, ranging from monandrous species to females mating several timesin their lifetime. Degree of polyandry also varies within species,with some females only mating once and others mating multiply.Previous studies have shown that one reason for female multiplemating is to obtain nutritious male donations that both increasethe longevity of females and result in higher lifetime fecundity.Despite the presence of male nutrient donations, some femalesof the green-veined white butterfly (Pieridae: Pieris napi)never mate more than once. In this study, we examined thisapparent paradox. We assessed to what degree polyandry is undergenetic control by a full-sib analysis, and we also estimatedthe broad sense heritability of female lifetime fecundity in singly mated females. Both polyandry and lifetime fecundityhave a genetic component. However, degree of polyandry appearsto be traded off against reduced longevity when denied theopportunity to mate more than once. It is possible that femaleP. napi display different reproductive strategies, with somefemales relying on male donations to realize their potentialfecundity and others relying on their own resources for egg production. In nature, polyandrous females may be preventedfrom mating multiply due to unfavorable weather. We discussthe possibility that the trade-off between degree of polyandryand life span when singly mated may affect the maintenanceof genetic variability in female mating frequency in this species.Possible reasons for these different reproductive strategiesare discussed.  相似文献   

2.
In mating of the dobsonfly, Protohermes grandis (Thunberg), the male attaches the spermatophore externally to the female genitalia. The spermatophore includes a large gelatinous mass which the female detaches and feeds on after mating. While the female consumes this nuptial food gift, sperm is evacuated from the remaining portion of the spermatophore (sperm package) into her reproductive tract. Under laboratory conditions, mated females maintained receptivity throughout their lifetime, and they remated even on the day following copulation. A single insemination may supply enough sperm, as females mated only once deposited fertile eggs throughout life and, when dissected after death, all females had sperm in the spermatheca. There was a positive correlation between longevity and the number of matings. Lifetime fecundity also increased as mating multiplied. However, the size of eggs and hatchlings was not influenced by the number of matings. It seems that large spermatophore consumption by female P. grandis provides nutrients that increase fitness not in offspring quality, but in their quantity.  相似文献   

3.
Fitness advantage from nuptial gifts in female fireflies   总被引:3,自引:0,他引:3  
Abstract 1. In many insects, males provide nuptial gifts to females in the form of spermatophores, sperm-containing structures produced by male accessory glands.
2. The work reported here examined the influence of both spermatophore number and spermatophore size on female reproductive output in two related firefly beetles, Photinus ignitus and Ellychnia corrusca (Coleoptera: Lampyridae). Based on differences in adult diet, male spermatophores were predicted to increase female reproductive output to a greater extent in P. ignitus than in E. corrusca .
3. Female fecundity was significantly higher in triply mated females than in singly mated females in both species, with no difference between mating treatments in female lifespan or egg hatching success. No effects of second male spermatophore size on fecundity, lifespan, or egg hatching success were detected in either species.
4. These results suggest a direct fitness advantage from multiple mating for females in both species, although enhanced fecundity may be due either to allocation of spermatophore nutrients to eggs or to other substances transferred within the spermatophore acting as oviposition stimulants.  相似文献   

4.
We studied the effect of mating frequency on female longevity and fecundity in the mite Caloglyphus berlesei. We tested the hypothesis that high promiscuity is selected for in this species because females receive nutrients during copulation. Females were constantly exposed to either one or four males and fed either a standard or poor diet. The prediction that frequent mating benefits females was not confirmed. On the contrary, females kept with four males had significantly lower longevity on both diets and on the standard diet they also had decreased fecundity compared to females exposed to one male. On the poor diet the number of males had no significant effect on fecundity. Thus, increased mating frequency had a detrimental effect on female fitness.  相似文献   

5.
Although the primary function of mating is gamete transfer, male ejaculates contain numerous other substances that are produced by accessory glands and transferred to females during mating. Studies with several model organisms have shown that these substances can exert diverse behavioural and physiological effects on females, including altered longevity and reproductive output, yet a comprehensive synthesis across taxa is lacking. Here we use a meta‐analytic approach to synthesize quantitatively extensive experimental work examining how male ejaculate quantity affects different components of female fitness. We summarize effect sizes for female fecundity (partial and lifetime) and longevity from 84 studies conducted on 70 arthropod species that yielded a total of 130 comparisons of female fecundity and 61 comparisons of female longevity. In response to greater amounts of ejaculate, arthropod females demonstrate enhanced fecundity (both partial and lifetime) but reduced longevity, particularly for Diptera and Lepidoptera. Across taxa, multiply mated females show particularly large fecundity increases compared to singly mated females, indicating that single matings do not maximize female fitness. This fecundity increase is balanced by a slight negative effect on lifespan, with females that received more ejaculate through polyandrous matings showing greater reductions in lifespan compared with females that have mated repeatedly with the same male. We found no significant effect size differences for either female fecundity or longevity between taxa that transfer sperm packaged into spermatophores compared to taxa that transfer ejaculates containing free sperm. Furthermore, females that received relatively larger or more spermatophores demonstrated greater lifetime fecundity, indicating that these seminal nuptial gifts provide females with a net fitness benefit. These results contribute to our understanding of the evolutionary origin and maintenance of non‐sperm ejaculate components, and provide insight into female mate choice and optimal mating patterns.  相似文献   

6.
The frequency of mating in insects is often an important determinant of female reproductive output and male sperm competition. In Lepidoptera that provide male nutrients to the female when mating, it is hypothesized that polyandry may be more prevalent. This is thought to be especially so among species described as income breeders; that is, in species who do not derive all their nutrients for reproductive output entirely from the resources obtained during the larval stage. We selected the geometrid moth, Mnesampela privata (Guenée) (Lepidoptera: Geometridae), to examine this hypothesis further. We found this species was best characterized as an income breeder with female weight on emergence positively correlated with total egg load but not with the number of eggs laid. Further, in accord with income breeders, females emerged with a partially developed egg load and lifetime fecundity was positively correlated with the number of oviposition days. However, in the laboratory we found that incidence of repeated matings or polyandry was rare. When moths were paired singly over their lifetime, only 4% of mated females multiple mated. When females were paired with three males concurrently, female mating success increased from 60 to 81% with multiple mating among mated females increasing to just 15%. Dissection of wild caught M. privata found that polyandry levels were also low with a maximum of 16.4% of females collected at any one time being multiple mated. In accord with theory, mating significantly increased the longevity of females, but not of males, suggesting that females acquire essential resources from male ejaculates. Despite this, multiple mated females showed a trend toward decreasing rather than increasing female reproductive output. Spermatophore size, measured on death of the female, was not correlated with male or female forewing length but was negatively correlated with the number of fertile eggs laid and female longevity. Smaller spermatophore width may be related to uptake of more nutrients by the female from a spermatophore. We discuss our findings in relation to income breeding and its relationship to polyandry in Lepidoptera.  相似文献   

7.
A survival cost to mating in a polyandrous butterfly, Colias eurytheme   总被引:2,自引:0,他引:2  
Adaptations that enhance fitness in one sex may be harmful to members of the opposite sex and lead to antagonistic coevolution between the sexes. In fruit flies, for example, selection for fertilization success has rendered the male ejaculate slightly toxic to females. Here we investigated whether mating imposes a cost upon female fitness in a polyandrous pierid butterfly ( Colias eurytheme ) by comparing life history traits between once-mated females and virgins. Mated females laid relatively more eggs early in their adult life, but suffered a reduction in longevity relative to virgins held under identical experimental conditions. The effect of mating on female survivorship was statistically independent of lifetime and early life fecundity. Moreover, lifetime fecundity co-varied positively with longevity across all females, and across females within each treatment group, hence there was no phenotypic trade-off between survival and reproduction. These results suggest that the observed longevity difference between virgin and mated females represents a true cost of mating, possibly arising from a toxic side effect of the male ejaculate. However, irrespective of this cost, virgin and mated females laid an equivalent lifetime number of eggs. Female C. eurytheme are also known to use nutrients from the male ejaculate to supplement their reproductive output, hence it is presently unclear how the observed longevity cost may have influenced the evolution of lifetime mating schedules in this polyandrous species.  相似文献   

8.
Many organisms with complex life cycles show considerable variation in size and timing at metamorphosis. Adult males of Megarcyssignata (Plecoptera: Perlodidae) are significantly smaller than females and emerge before females (protandry) from two western Colorado streams. During summer 1992 stoneflies from a trout stream emerged earlier in the season and at larger sizes than those from a colder fishless stream, and size at metamorphosis did not change over the emergence period in either stream. We performed two experiments to determine whether variation in size at metamorphosis affected the fecundity, reproductive success and longevity of individuals of this stonefly species and if total lifetime fecundity was affected by the number of matings. In the first experiment, total lifetime fecundity (eggs oviposited) was determined for adult females held in small plastic cages in the field. Males were removed after one copulation, or pairs were left together for life and allowed to multiply mate. Most copulations occurred in the first few days of the experiment. Females in treatments allowing multiple matings had significantly lower total lifetime fecundity and shorter adult longevity than females that only mated once. Multiple matings also reduced longevity of males. Fecundity increased significantly with female body mass at emergence, but only for females that mated once. While multiple matings eliminated the fecundity advantage of large female body size, number of matings did not affect the significant positive relationship between body mass at metamorphosis and longevity of males or females. In a second experiment designed to determine if body mass at emergence affected male mating success, we placed one large and one small male Megarcys in an observation arena containing one female and recorded which male obtained the first mating. The large and the small male had equal probabilities of copulating with the female. Copulations usually lasted all night, and the unmated male made frequent, but unsuccessful attempts to take over the copulating female. Our data suggest that selection pressures determining body size at metamorphosis may operate independently on males and females, resulting in evolution of sexual size dimorphism, protandry, and mating early in the adult stage. We emphasize the importance of interpreting the fitness consequences of larval growth and development on the timing of and size at metamorphosis in the context of the complete life cycle. Received: 1 July 1997 / Accepted: 12 November 1997  相似文献   

9.
I investigated two possible reasons for remating in female Plodia interpunctella: i) females remate to obtain sufficient sperm to maintain fertility; and ii) male investment in non-sperm components increases female fecundity and longevity. The number of sperm and the mass of the spermatophore transferred by males decreases on successive matings. Sperm numbers and potential male investment were varied by allowing females to mate either once or twice with males either on their first or second mating. Females receiving a single small spermatophore containing few sperm (from a male on his second mating) had sufficient sperm to fertilize all their eggs. Females did not show increased fecundity or longevity as a result of obtaining more spermatophore material. I discuss why females remate when they already have sufficient sperm to fertilize all their eggs.  相似文献   

10.
1. In many organisms, males provide nutrients to females via ejaculates that can influence female fecundity, longevity and mating behaviour. The effect of male mating history on male ejaculate size, female fecundity, female longevity and female remating behaviour in the seed beetle Callosobruchus maculatus was determined.
2. The quantity of ejaculate passed to females declined dramatically with successive matings. Despite the decline, a male's ability to fertilize a female fully did not appear to decline substantially until his fourth mating.
3. When females multiply mated with males of a particular mated status, the pattern of egg production was cyclic, with egg production increasing after mating. Females multiply mated to virgins had higher fecundity than females mated to non-virgins, and females mated to twice-mated males had disproportionately increased egg production late in their life.
4. Females that mated to multiple virgins, and consequently laid more eggs, experienced greater mortality than females mated only once or mated to non-virgins, suggesting that egg production is costly, and rather than ameliorating these costs, male ejaculates may increase them by allowing or stimulating females to lay more eggs.
5. Females mating with non-virgin males remated more readily than did females mated to virgins. Females given food supplements were less likely to remate than females that were nutritionally stressed, suggesting that females remate in part to obtain additional nutrients.  相似文献   

11.
During courtship and copulation, males of many insect species provide the female with a nuptial gift of a prey item or synthesized material. These gifts may be explained as a form of paternal investment by increasing female reproductive output, or in terms of mating effort by increasing male fertilization success. These explanations, while not mutually exclusive, are controversial. While experimental studies examine the maintenance of nuptial gifts in single species, comparative studies are required to indicate more general evolutionary trends. Male bushcrickets provide females with a nuptial gift, a spermatophylax, which is transferred to females at mating along with the sperm-containing ampulla. Analysis of comparative data of 28 species of bushcrickets (Orthoptera: Tettigoniidae), reveals that male spermatophore size (spermatophylax and ampulla weight) is positively correlated with female refractory period, which, in turn, correlates with male fertilization success. Moreover, gift size (the spermatophylax) covaries with ejaculate size (the ampulla), which is consistent with the hypothesis that it serves as a sperm protection device. In contrast, there is no significant correlation between any measure of female fecundity and male spermatophylax size. This indicates that the variation in spermatophore size among bushcrickets is better explained by a mating-effort function than a paternal investment function.  相似文献   

12.
Harm to females increases with male body size in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Previous studies indicate that female Drosophila melanogaster are harmed by their mates through copulation. Here, we demonstrate that the harm that males inflict upon females increases with male size. Specifically, both the lifespan and egg-production rate of females decreased significantly as an increasing function of the body size of their mates. Consequently, females mating with larger males had lower lifetime fitness. The detrimental effect of male size on female longevity was not mediated by male effects on female fecundity, egg-production rate or female-remating behaviour. Similarly, the influence of male size on female lifetime fecundity was independent of the male-size effect on female longevity. There was no relationship between female size and female resistance to male harm. Thus, although increasing male body size is known to enhance male mating success, it has a detrimental effect on the direct fitness of their mates. Our results indicate that this harm is a pleiotropic effect of some other selected function and not an adaptation. To the extent that females prefer to mate with larger males, this choice is harmful, a pattern that is consistent with the theory of sexually antagonistic coevolution.  相似文献   

13.
The timing of mating of females under semi-natural condition, male ejaculate production and their effects on female fecundity were examined inEurema hecabe. Age of the first mating of females varied, and the number of matings increased with age. Male spermatophore production depended on age and body mass. The spermatophore mass at the second mating depended only on the interval between the first and second matings. The timing of the first mating and the spermatophore mass did not affect female fecundity. The timing of mating of females relative to the role of male spermatophores in female fecundity and male mating strategy are discussed.  相似文献   

14.
In butterflies, male reproductive success is highly related to the quality and the size of the spermatophore transferred to the female. The spermatophore is a capsule produced by the male during copulation, which in many species contains sperm in addition to a nuptial gift, and which is digested by the female after copulation. The nuptial gift may contribute to egg production and offspring quality, and in some cases also to female body maintenance. The production of the spermatophore, however, represents a cost for the male and, in polyandrous species, ejaculates are sometimes allocated adaptively across matings. Nonetheless, although the ecological factors affecting the reproductive success of female butterflies have been the topic of numerous studies, little information exists on the factors affecting males’ contribution to reproduction, and the indirect impacts on female fecundity and fitness. We used the Glanville fritillary butterfly, Melitaea cinxia (Linnaeus, 1758) (Nymphalidae), in order to assess variation in male allocation to matings. In this species, smaller males produce smaller spermatophores, but variation in spermatophore size is not correlated with female reproductive success. We show that spermatophore size increases with male age at first mating, decreases with mating frequency and adult food‐deprivation, and is not influenced by developmental food‐limitation. The length of copulation period does not influence the spermatophore size nor influences the polyandrous mating behavior in this species. Male contribution to his spermatophore size is clearly influenced by his condition and adult‐resource at the time of mating. Despite this variation, spermatophore size does not seem to have a direct impact on female reproductive output or mating behavior.  相似文献   

15.
Female reproductive effort can be influenced by the quality of her mate. In some species, females increase their reproductive effort by differentially allocating resources after mating with high-quality males. Examination of female reproductive effort in relation to male quality has implications for estimating the evolvability of traits and for sexual-selection models. Accurate quantification of reproductive investment is not possible in many species. Butterflies are an exception, as most nectar-feeding species emerge with almost intact reproductive resources, and in some species males provide nutrients at mating that enhance female fecundity. By manipulating male donations and using radioactive isotopes, we quantified the effect of variation in nutrient provisioning on female reproductive effort in two butterfly species. In the greenveined white butterfly, Pieris napi, females increased their reproductive effort after receiving large male donations. By contrast, in the speckled wood, Pararge aegeria, where males do not provide nutrients, female reproductive effort was independent of male ejaculate. Increased reproductive effort in Pieris napi resulted from the production of more eggs, rather than from investing more resources per egg. In this species donating ability is heritable; hence females laying more eggs after mating with high-donating males benefit both through higher fecundity and through the production of high-donating sons.  相似文献   

16.
It is generally thought that females can receive more of the material benefits from males by increasing mating frequency and polyandry can lead to greater reproductive success. The cabbage beetle, Colaphellus bowringi Baly (Coleoptera: Chrysomelidae), is a highly promiscuous species, in which females or males can readily mate repeatedly with a given partner or multiple partners at a very high frequency. In the present study, the effect of mating frequency (number of matings) and mating pattern (polyandry vs. monogamy) on female reproductive fitness was investigated by measuring fecundity, fertility, and female longevity. The results indicated that increased female mating frequency with the same male did not result in variation in lifetime fecundity, but significantly increased fertility and decreased female longevity. Moreover, five copulations were sufficient to acquire maximal reproductive potential. Female lifetime fecundity also did not differ between polyandrous and monogamous treatments. However, monogamous females exhibited a significant increase in fertility and significant prolongation of longevity compared with polyandrous females, further demonstrating that monogamy is superior to polyandry in this beetle.  相似文献   

17.
Males of the bushcricket Poecilimon veluchianus pass a large spermatophore to the female during mating. The spermatophore is eaten by the female after copulation. Because females mate with several males during their reproductive life, the competition between spermatozoa of different males affects a male's reproductive success. In order to determine the outcome of sperm competition, the paternity of the progeny of double–mated females was established by DNA fingerprinting with the oligonucleotide (GATA)4. Typical P. veluchianus DNA fingerprints consisted of 15 scoreable fragments per individual. The proportion of bands shared between presumably unrelated bushcrickets was 17%. After the second copulation the second mating male clearly predominated at fertilization. The mean proportion of eggs fertilized by the second male was 90.1%. There was no significant relationship between the level of sperm precedence and the time of ovipositions after the second mating. If female P. veluchianus increase the fitness of their offspring by the incorporation of spermatophore–derived substances in developing eggs, there is little chance for the feeding male to fertilize eggs containing his nutrients, because of the very short mating intervals of females and the observed high level of last–male sperm precedence in this species. Under such conditions the last mating male would fertilize many eggs containing nutrients from a prior male. Because nuptial gifts, like the tettigoniid spermatophore, function only as paternal investment if the donating male's progeny benefit from the gift, a paternal investment function of the P. veluchianus spermatophore seems to be unlikely.  相似文献   

18.
Females of the swallowtail butterfly Papilio xuthus L. (Lepidoptera: Papilionidae) mate multiply during their life span and use the spermatophores transferred to increase their longevity as well as fecundity. Sperm from different males may be stored in the sperm storage organs (bursa copulatrix and spermatheca). To clarify the pattern of sperm storage and migration in the reproductive tract, mated females are dissected after various intervals subsequent to the first mating, and the type and activity of sperm in the spermatheca are observed. When virgin females are mated with virgin males, the females store sperm in the spermatheca for more than 10 days. Sperm displacement is found in females that are remated 7 days after the first mating. Immediately after remating, these females flush out the sperm of the first male from the spermatheca before sperm migration of the second male has started. However, females receiving a small spermatophore at the second mating show little sperm displacement, and the sperm derived from the small spermatophore might not be able to enter the spermatheca. Females appear to use spermatophore size to monitor male quality.  相似文献   

19.
Females of many species experience costs associated with mating. Seminal products, including nuptial gifts, may mitigate these mating costs or exacerbate them. For example, nuptial gifts derived from male accessory glands may transfer nutrition or potentially harmful seminal proteins to females. In this study, we assay the costs of multiple mating and the consumption of seminal products in a ladybird beetle. We compared longevity in females mated singly or multiply, while allowing or preventing spermatophore consumption at each mating. In order to distinguish a cost of mating per se from a cost of elevated reproduction, we prevented reproduction by using nutrient‐stressed females. Mating singly or multiply had no effect on female longevity, nor did spermatophore feeding influence longevity. The results imply, first, that intermediate mating rates do not directly harm females, though females may experience other indirect costs of mating (e.g. reduced foraging efficiency) or costs of reproduction; and second, that spermatophores transfer neither food nor directly harmful substances to female ladybirds.  相似文献   

20.
Although females may require only one mating to become inseminated, many female animals engage in costly mating with multiple males. One potential benefit of polyandrous mating is gaining parental investment from multiple males. We developed two game theoretic models to explore this possibility. Our first model showed that male care of multiple females' offspring evolves when male help substantially increases offspring fitness, future mating opportunity is limited, and group size is small. In our second model, we assumed that males invest in the offspring of former mates and evaluated the fitness consequences of female monogamous and polyandrous mating strategies. Females benefit only from limited polyandry, that is, mating with several males. Polyandry is discouraged because females must share male investment with other polyandrous females, and paternal care is likely to experience diminishing returns. Females may enhance their access to male investment by competing with rival females and monopolizing investment, however. The results support the argument that females can gain paternal investment by mating with several males in small social groups (e.g., dunnocks Prunella modularis). The results do not support the argument that females can gain paternal investment from pronounced multiple mating in large social groups, however, as observed in many primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号