首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apoenzyme of the major NAD(P)H-utilizing flavin reductase FRG/FRase I from Vibrio fischeri was prepared. The apoenzyme bound one FMN cofactor per enzyme monomer to yield fully active holoenzyme. The FMN cofactor binding resulted in substantial quenching of both the flavin and the protein fluorescence intensities without any significant shifts in the emission peaks. In addition to FMN binding (K(d) 0.5 microM at 23 degrees C), the apoenzyme also bound 2-thioFMN, FAD and riboflavin as a cofactor with K(d) values of 1, 12, and 37 microM, respectively, at 23 degrees C. The 2-thioFMN containing holoenzyme was about 40% active in specific activity as compared to the FMN-containing holoenzyme. The FAD- and riboflavin-reconstituted holoenzymes were also catalytically active but their specific activities were not determined. FRG/FRase I followed a ping-pong kinetic mechanism. It is proposed that the enzyme-bound FMN cofactor shuttles between the oxidized and the reduced form during catalysis. For both the FMN- and 2-thioFMN-containing holoenzymes, 2-thioFMN was about 30% active as compared to FMN as a substrate. FAD and riboflavin were also active substrates. FRG/FRase I was shown by ultracentrifugation at 4 degrees C to undergo a monomer-dimer equilibrium, with K(d) values of 18.0 and 13.4 microM for the apo- and holoenzymes, respectively. All the spectral, ligand equilibrium binding, and kinetic properties described above are most likely associated with the monomeric species of FRG/FRase I. Many aspects of these properties are compared with a structurally and functionally related Vibrio harveyi NADPH-specific flavin reductase FRP.  相似文献   

2.
Summary In the presence of light, reduced nicotinamide adenine dinucleotide (NADH) and riboflavin formed a complex which was able to reduce certain tetrazolium salts. Neither NADH (10–3 M) nor riboflavin (10–4 M) alone was able to induce tetrazolium reduction in the presence of oxygen, but in a nitrogen atmosphere photoreduction of riboflavin induced reduction of tetrazolium salts. Only electrophilic nitro and thiazolyl substituted tetrazolium salts with more positive redox potentials were reduced by the NADH-riboflavin complex, and only monoformazans were produced from the ditetrazolium salts. The reduction kinetics of these tetrazolium salts are given, and the spectral area capable for induction of electron transfer in the NADH-riboflavin complex is screened. It is concluded that the electron transfer in flavin nucleotide dependent dehydrogenase systems will probably proceed without direct interference with the apoenzyme. This may have practical implications for the histochemistry of tetrazolium reductases especially as regards fixation. The catalytic action of light on tetrazolium reduction should also be taken into consideration when tetrazolium salts are used as electron acceptors in a histochemical reaction.  相似文献   

3.
It had been shown that thyroxine regulates the conversion of riboflavin to riboflavin mononucleotide and flavin adenine dinucleotide (FAD) in laboratory animals. In the hypothyroid rat, the flavin adenine dinucleotide level of the liver decreases to levels observed in riboflavin deficiency. We have shown that in six hypothyroid human adults, the activity of erythrocyte glutathione reductase, an accessible FAD-containing enzyme, is decreased to levels observed during riboflavin deficiency. Thyroxine therapy resulted in normal levels of this enzyme while the subjects were on a controlled dietary regimen. This demonstrates that thyroid hormone regulates the enzymatic conversion of riboflavin to its active coenzyme forms in the human adult.  相似文献   

4.
Dodecins, a group of flavin-binding proteins with a dodecameric quaternary structure, are able to incorporate two flavins within each of their six identical binding pockets building an aromatic tetrade with two tryptophan residues. Dodecin from the archaeal Halobacterium salinarum is a riboflavin storage device. We demonstrate that unwanted side reactions induced by reactive riboflavin species and degradation of riboflavin are avoided by ultrafast depopulation of the reactive excited state of riboflavin. Intriguingly, in this process, the staggered riboflavin dimers do not interact in ground and photoexcited states. Rather, within the tetrade assembly, each riboflavin is kept under the control of the respective adjacent tryptophan, which suggests that the stacked arrangement is a matter of optimizing the flavin load. We further identify an electron transfer in combination with a proton transfer as a central element of the effective excited state depopulation mechanism. Structural and functional comparisons of the archaeal dodecin with bacterial homologs reveal diverging evolution. Bacterial dodecins bind the flavin FMN instead of riboflavin and exhibit a clearly different binding pocket design with inverse incorporations of flavin dimers. The different adoption of flavin changes photochemical properties, making bacterial dodecin a comparably less efficient quencher of flavins. This supports a functional role different for bacterial and archaeal dodecins.  相似文献   

5.
Flavins are active components of many enzymes. In most cases, riboflavin (vitamin B2) as a coenzyme represents the catalytic part of the holoenzyme. Riboflavin is an amphiphatic molecule and allows a large variety of different interactions with the enzyme itself and also with the substrate. A great number of active riboflavin analogs can readily be synthesized by chemical methods and, thus, a large number of possible inhibitors for many different enzyme targets is conceivable. As mammalian and especially human biochemistry depends on flavins as well, the target of the inhibiting flavin analog has to be carefully selected to avoid unwanted effects. In addition to flavoproteins, enzymes, which are involved in the biosynthesis of flavins, are possible targets for anti-infectives. Only a few flavin analogs or inhibitors of flavin biosynthesis have been subjected to detailed studies to evaluate their biological activity. Nevertheless, flavin analogs certainly have the potential to serve as basic structures for the development of novel anti-infectives and it is possible that, in the future, the urgent need for new molecules to fight multiresistant microorganisms will be met.  相似文献   

6.
The work was aimed at studying enzymes involved in the metabolism of flavin nucleotides, namely, riboflavin kinase (EC 2.7.1.26) and FAD pyrophosphorylase (EC 2.7.7.2), as well as flavin mononucleotide hydrolysis by acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Streptomyces olivaceus actively producing vitamin B12. No correlation could be established between changes in the activity of the above enzymes during the culture growth and the qualitative composition of flavins. The enzyme activity was assayed using, as an enzyme preparation, both intact cells and a cell-free extract obtained by disintegrating the mycelium with different techniques. The screening effect of phosphatases exerted when the activity of riboflavin kinase was assayed could be partly eliminated by adding sodium fluoride to the incubation medium. The localisation of the above enzymes in the cytoplasm is discussed.  相似文献   

7.
Riboflavin nutritional status was assessed on the basis of activity coefficients of glutathione reductase in erythrocyte hemolysates of normal and streptozotocin-diabetic rats. Activity coefficient values higher than 1.3 were regarded as evidence of riboflavin deficiency. All diabetic animals were found to be riboflavin-deficient, with activity coefficient values of 1.47–2.11. Treatment of diabetic rats with either insulin or riboflavin returned their activity coefficients to normal. Rats fed a restricted diet had normal activity coefficient values. The erythrocyte glutathione reductase activity was significantly lower in diabetic rats, and the augmentation of enzyme activity in the presence of flavin-adenine dinucleotide (FAD) was 72% compared to 16% in normal rats. Hepatic activities of glutathione reductase and succinate dehydrogenase, both FAD-containing enzymes, were significantly lower in diabetic than in normal rats. Like activity coefficient values, all enzyme activities were normalized after insulin or riboflavin treatments. These data suggest that insulin and riboflavin enhance the synthesis of erythrocyte and hepatic FAD. The results of the present study suggest that experimental diabetes causes riboflavin deficiency, which in turn decreases erythrocyte and hepatic flavoprotein enzyme activities. These changes can be corrected for by either insulin or riboflavin. The pathogenesis of riboflavin deficiency in diabetes mellitus is not clearly understood. The data of the present study provide evidence in addition to the previous findings of an increased prevalence of riboflavin deficiency in genetically diabetic KK mice.  相似文献   

8.
Russell TR  Demeler B  Tu SC 《Biochemistry》2004,43(6):1580-1590
The homodimeric NADH:flavin oxidoreductase from Aminobacter aminovorans is an NADH-specific flavin reductase herein designated FRD(Aa). FRD(Aa) was characterized with respect to purification yields, thermal stability, isoelectric point, molar absorption coefficient, and effects of phosphate buffer strength and pH on activity. Evidence from this work favors the classification of FRD(Aa) as a flavin cofactor-utilizing class I flavin reductase. The isolated native FRD(Aa) contained about 0.5 bound riboflavin-5'-phosphate (FMN) per enzyme monomer, but one bound flavin cofactor per monomer was obtainable in the presence of excess FMN or riboflavin. In addition, FRD(Aa) holoenzyme also utilized FMN, riboflavin, or FAD as a substrate. Steady-state kinetic results of substrate titrations, dead-end inhibition by AMP and lumichrome, and product inhibition by NAD(+) indicated an ordered sequential mechanism with NADH as the first binding substrate and reduced FMN as the first leaving product. This is contrary to the ping-pong mechanism shown by other class I flavin reductases. The FMN bound to the native FRD(Aa) can be fully reduced by NADH and subsequently reoxidized by oxygen. No NADH binding was detected using 90 microM FRD(Aa) apoenzyme and 300 microM NADH. All results favor the interpretation that the bound FMN was a cofactor rather than a substrate. It is highly unusual that a flavin reductase using a sequential mechanism would require a flavin cofactor to facilitate redox exchange between NADH and a flavin substrate. FRD(Aa) exhibited a monomer-dimer equilibrium with a K(d) of 2.7 microM. Similarities and differences between FRD(Aa) and certain flavin reductases are discussed.  相似文献   

9.
Summary The acyl-CoA dehydrogenases are a family of mitochondrial flavoenzymes required for fatty acid beta-oxidation and branched-chain amino acid degradation. The hepatic activity of these enzymes, particularly the short-chain acyl-coenzyme A (CoA) dehydrogenase, is markedly decreased in riboflavin deficient rats. We now report that the in vivo effects of riboflavin deficiency on the beta-oxidation enzymes of this group are reproduced in FAO rat hepatoma cells cultured in riboflavin-deficient medium. Although it has been long known that hepatic short-chain acyl-CoA dehydrogenase activity is the most severely affected of the straight-chain specific enzymes in riboflavin deficiency, the mechanism by which its activity is decreased has not been reported. We have used this new cell culture system to characterize further this mechanism. Whole cell extracts from riboflavin-deficient and control cells were subjected to analysis by denaturing polyacrylamide gel electrophoresis. The contents of the gels were then electroblotted onto nitrocellulose filters and probed with short-chain acyl-CoA dehydrogenase-specific antiserum. The relative abundance of enzyme antigen was estimated autoradiographically. Our findings indicate that short-chain acyl-CoA dehydrogenase activity changes in parallel with its antigen, suggesting that riboflavin deprivation does not affect the activity of individual enzyme molecules. Further, no evidence of extramitochondrial enzyme precursor was found on the blots, making unlikely a significant block in the mitochondrial uptake process. These findings suggest that changes in short-chain acyl-CoA dehydrogenase activity in riboflavin deficiency result from either increased synthesis or decreased degradation of the enzyme. This work was supported by grants from the VA Medical Research Service, the Diabetes Association of Greater Cleveland, and the National Institutes of Health (HD25299), Bethesda, MD. Portions of the work presented here were presented at the 71st meeting of the Endocrine Society, Seattle, WA.  相似文献   

10.
Under various conditions of growth of the methylotrophic yeast Hansenula polymorpha, a tight correlation was observed between the levels of flavin adenine dinucleotide (FAD)-containing alcohol oxidase, and the levels of intracellularly bound FAD and flavin biosynthetic enzymes. Adaptation of the organism to changes in the physiological requirement for FAD was by adjustment of the levels of the enzymes catalyzing the last three steps in flavin biosynthesis, riboflavin synthetase, riboflavin kinase and flavin mononucleotide adenylyltransferase. The regulation of the synthesis of the latter enzymes in relation to that of alcohol oxidase synthesis was studied in experiments involving addition of glucose to cells of H. polymorpha growing on methanol in batch cultures or in carbon-limited continuous cultures. This resulted not only in selective inactivation of alcohol oxidase and release of FAD, as previously reported, but invariably also in repression/inactivation of the flavin biosynthetic enzymes. In further experiments involving addition of FAD to the same type of cultures it became clear that inactivation of the latter enzymes was not caused directly by glucose, but rather by free FAD that accumulated intracellularly. In these experiments no repression or inactivation of alcohol oxidase occurred and it is therefore concluded that the synthesis of this enzyme and the flavin biosynthetic enzymes is under separate control, the former by glucose (and possibly methanol) and the latter by intracellular levels of free FAD.Abbreviations FAD Flavin adenine dinucleotide - FMN riboflavin-5-phosphate; flavin mononucleotide - Rf riboflavin  相似文献   

11.
S Zenno  K Saigo 《Journal of bacteriology》1994,176(12):3544-3551
Genes encoding NAD(P)H-flavin oxidoreductases (flavin reductases) similar in both size and sequence to Fre, the most abundant flavin reductase in Escherichia coli, were identified in four species of luminous bacteria, Photorhabdus luminescens (ATCC 29999), Vibrio fischeri (ATCC 7744), Vibrio harveyi (ATCC 33843), and Vibrio orientalis (ATCC 33934). Nucleotide sequence analysis showed Fre-like flavin reductases in P. luminescens and V. fischeri to consist of 233 and 236 amino acids, respectively. As in E. coli Fre, Fre-like enzymes in luminous bacteria preferably used riboflavin as an electron acceptor when NADPH was used as an electron donor. These enzymes also were good suppliers of reduced flavin mononucleotide (FMNH2) to the bioluminescence reaction. In V. fischeri, the Fre-like enzyme is a minor flavin reductase representing < 10% of the total FMN reductase. That the V. fischeri Fre-like enzyme has no appreciable homology in amino acid sequence to the major flavin reductase in V. fischeri, FRase I, indicates that at least two different types of flavin reductases supply FMNH2 to the luminescence system in V. fischeri. Although Fre-like flavin reductases are highly similar in sequence to luxG gene products (LuxGs), Fre-like flavin reductases and LuxGs appear to constitute two separate groups of flavin-associated proteins.  相似文献   

12.
The dibenzothiophene (DBT) desulfurizing bacterium metabolizes DBT to form 2-hydroxybiphenyl without breaking the carbon skeleton. Of the DBT desulfurization enzymes, DszC and DszA catalyze monooxygenation reactions, both requiring flavin reductase. We searched for non-DBT-desulfurizing microorganisms producing a flavin reductase that couples more efficiently with DszC than that produced by the DBT desulfurizing bacterium Rhodococcus erythropolis D-1, and found Paenibacillus polymyxa A-1 to be a promising strain. The enzyme was purified to complete homogeneity. K(m) values for FMN and NADH were 2.1 microM and 0.57 mM, respectively. Flavin compounds were good substrates, some nitroaromatic compounds were also active, and regarding the electron donor, the activity for NADPH was about 1.5 times that for NADH. In the coupling assay with DszC, only FMN or riboflavin acted as the electron acceptor. The coupling reactions of P. polymyxa A-1 flavin reductase with DszC and DszA proceeded more efficiently (3.5- and 5-fold, respectively) than those of R. erythropolis D-1 flavin reductase when identical enzyme activities of each flavin reductase were added to the reaction mixture. The result of the coupling reaction suggested that, in the microbial DBT desulfurization, flavin reductase from the non-DBT-desulfurizing bacterium was superior to that from the DBT-desulfurizing bacterium.  相似文献   

13.
The role of ribityl side chain hydroxyl groups of the flavin moiety in the covalent flavinylation reaction and catalytic activities of recombinant human liver monoamine oxidases (MAO) A and B have been investigated using the riboflavin analogue: N(10)-omega-hydroxypentyl-isoalloxazine. Using a rib5 disrupted strain of Saccharomyces cerevisiae which is auxotrophic for riboflavin, MAO A and MAO B were expressed separately under control of a galactose inducible GAL10/CYC1 promoter in the presence of N(10)-omega-hydroxypentyl-isoalloxazine as the only available riboflavin analogue. Analysis of mitochondrial membrane proteins shows both enzymes to be expressed at levels comparable to those cultures grown on riboflavin and to contain covalently bound flavin. Catalytic activities, as monitored by kynuramine oxidation, are equivalent to (MAO A) or 2-fold greater (MAO B) than control preparations expressed in the presence of riboflavin. Although N(10)-omega-hydroxypentyl-isoalloxazine is unable to support growth of riboflavin auxotrophic S. cerevisiae, it is converted to the FMN level by yeast cell free extracts. The FMN form of the analogue is converted to the FAD level by the yeast FAD synthetase, as shown by expression of the recombinant enzyme in Escherichia coli. These data show that the ribityl hydroxyl groups of the FAD moiety are not required for covalent flavinylation or catalytic activities of monoamine oxidases A and B. This is in contrast to the suggestion based on mutagenesis studies that an interaction between the 3'-hydroxyl group of the flavin and the beta-carbonyl of Asp(227) is required for the covalent flavinylation reaction of MAO B (Zhou et al., J. Biol. Chem. 273 (1998) 14862-14868).  相似文献   

14.
A J Ramsey  M S Jorns 《Biochemistry》1992,31(36):8437-8441
DNA photolyase from Escherichia coli contains 1,5-dihydroFAD (FADH2) plus 5,10-methenyltetrahydropteroylpolyglutamate. The action spectrum observed for apoenzyme reconstituted with 5-deazaFADH2 (EdFADH2) matched its absorption spectrum after correction for the presence of a small amount of inactive 5-deazaFADox. The quantum yield for dimer repair with EdFADH2 (phi EdFADH2 = 0.110) was 6-fold lower than that observed with apoenzyme reconstituted with FADH2. Excited-state redox potential calculations indicate that 5-deazaFADH2 singlet is a better one-electron donor (E = -3.5 V) than FADH2 singlet (E = -2.7 V). Other studies indicate that the quantum yield for electron transfer from reduced flavin singlet to pyrimidine dimer (0.88) is unaffected when FADH2 is replaced by 5-deazaFADH2. Enhanced back electron transfer from pyrimidine dimer radical to flavin radical may account for the decreased quantum yield observed with EdFADH2 since, in the ground state, 5-deazaFADH. is a better oxidant than FADH.. The action spectrum observed for apoenzyme reconstituted with 5-deazaFADH2 plus 5,10-CH(+)-H4folate (EPtedFADH2) matched the absorption spectrum determined for enzyme-bound 5-deazaFADH2, indicating that the pterin chromophore was inactive as a sensitizer. This differs from results obtained with native enzyme, where pterin acts as a sensitizer via efficient singlet-singlet energy transfer to FADH2. The quantum yield for dimer repair by 5-deazaFADH2 bound to EPtedFADH2 (phi EPtedFADH2 = 0.0318) was 28.9% of that observed for EdFADH2. Spectroscopic studies indicate that singlet-singlet energy transfer in EPtedFADH2 is very efficient but only occurs in the "wrong" direction, i.e., from excited 5-deazaFADH2 to pterin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Under F1-ATPase irradiation by visible light two characteristic features of flavin main activities were detected: I/ESR signal g = 2.00 appearance which was in favor of flavin photochemical electron reduction and 2/photostimulated O2 consumption by F1-ATPase. The dependence of ESR signal g = 2.00 intensity on visible light wavelength completely coincided with the same dependence obtained for proteinless model riboflavin + ADP. Flavin localization in proximity of ADP bound in the enzyme active site was suggested. Under F1-ATPase irradiation by light lambda greater than 350 nm ATP synthesis was obtained similar to the proteinless model riboflavin + ADP + Pinorg. In this model endogenous flavin was suggested to serve as a photosensitizer, its photoexcitement being a model of dark energization of F1-ATPase in oxidative phosphorylation.  相似文献   

16.
P450 oxidoreductase (POR) has a pivotal role in facilitating electron transfer from nicotinamide adenine dinucleotide phosphate to microsomal cytochrome P450 (CYP) enzymes, including the steroidogenic enzymes CYP17A1 and CYP21A2. Mutations in POR have been shown recently to cause congenital adrenal hyperplasia with apparent combined CYP17A1 and CYP21A2 deficiency that comprises a variable clinical phenotype, including glucocorticoid deficiency, ambiguous genitalia, and craniofacial malformations. To dissect structure-function relationships potentially explaining this phenotypic diversity, we investigated whether specific POR mutations have differential effects on CYP17A1 and CYP21A2. We compared the impact of missense mutations encoding for single amino acid changes in three distinct regions of the POR molecule: 1), Y181D and H628P close to the central electron transfer area, 2) S244C located within the hinge close to the flavin adenine dinucleotide and flavin mononucleotide domains of POR, and 3) A287P that is clearly distant from the two other regions. Functional analysis using a yeast microsomal assay with coexpression of human CYP17A1 or CYP21A2 with wild-type or mutant human POR revealed equivalent decreases in CYP17A1 and CYP21A2 activities by Y181D, H628P, and S244C. In contrast, A287P had a differential inhibitory effect, with decreased catalytic efficiency (Vmax/Km) for CYP17A1, whereas CYP21A2 retained near normal activity. In vivo analysis of urinary steroid excretion by gas chromatography/mass spectrometry in 11 patients with POR mutations showed that A287P homozygous patients had the highest corticosterone/cortisol metabolite ratios, further indicative of preferential inhibition of CYP17A1. These findings provide novel mechanistic insights into the redox regulation of human steroidogenesis. Differential interaction of POR with electron-accepting CYP enzymes may explain the phenotypic variability in POR deficiency, with additional implications for hepatic drug metabolism by POR-dependant CYP enzymes.  相似文献   

17.
Fe(III)-respiring bacteria such as Shewanella species play an important role in the global cycle of iron, manganese, and trace metals and are useful for many biotechnological applications, including microbial fuel cells and the bioremediation of waters and sediments contaminated with organics, metals, and radionuclides. Several alternative electron transfer pathways have been postulated for the reduction of insoluble extracellular subsurface minerals, such as Fe(III) oxides, by Shewanella species. One such potential mechanism involves the secretion of an electron shuttle. Here we identify for the first time flavin mononucleotide (FMN) and riboflavin as the extracellular electron shuttles produced by a range of Shewanella species. FMN secretion was strongly correlated with growth and exceeded riboflavin secretion, which was not exclusively growth associated but was maximal in the stationary phase of batch cultures. Flavin adenine dinucleotide was the predominant intracellular flavin but was not released by live cells. The flavin yields were similar under both aerobic and anaerobic conditions, with total flavin concentrations of 2.9 and 2.1 μmol per gram of cellular protein, respectively, after 24 h and were similar under dissimilatory Fe(III)-reducing conditions and when fumarate was supplied as the sole electron acceptor. The flavins were shown to act as electron shuttles and to promote anoxic growth coupled to the accelerated reduction of poorly crystalline Fe(III) oxides. The implications of flavin secretion by Shewanella cells living at redox boundaries, where these mineral phases can be significant electron acceptors for growth, are discussed.  相似文献   

18.
DNA photolyase from the cyanobacterium Anacystis nidulans contains two chromophores, flavin adenine dinucleotide (FADH2) and 8-hydroxy-5-deazaflavin (8-HDF) (Eker, A. P. M., Kooiman, P., Hessels, J. K. C., and Yasui, A. (1990) J. Biol. Chem. 265, 8009-8015). While evidence exists that the flavin chromophore (in FADH2 form) can catalyze photorepair directly and that the 8-HDF chromophore is the major photosensitizer in photoreactivation it was not known whether 8-HDF splits pyrimidine dimer directly or indirectly through energy transfer to FADH2 at the catalytic center. We constructed a plasmid which over-produces the A. nidulans photolyase in Escherichia coli and purified the enzyme from this organism. Apoenzyme was prepared and enzyme containing stoichiometric amounts of either or both chromophores was reconstituted. The substrate binding and catalytic activities of the apoenzyme (apoE), E-FADH2, E-8-HDF, E-FAD(ox)-8-HDF, and E-FADH2-8-HDF were investigated. We found that FAD is required for substrate binding and catalysis and that 8-HDF is not essential for binding DNA, and participates in catalysis only through energy transfer to FADH2. The quantum yields of energy transfer from 8-HDF to FADH2 and of electron transfer from FADH2 to thymine dimer are near unity.  相似文献   

19.
The NADPH‐cytochrome P450 oxidoreductase (CYPOR) enzyme is a membrane‐bound protein and contains both FAD and FMN cofactors. The enzyme transfers two electrons, one at a time, from NADPH to cytochrome P450 enzymes to function in the enzymatic reactions. We previously expressed in Escherichia coli the membrane‐bound CYPOR (flAnCYPOR) from Anopheles minimus mosquito. We demonstrated the ability of flAnCYPOR to support the An. minimus CYP6AA3 enzyme activity in deltamethrin degradation in vitro. The present study revealed that the flAnCYPOR purified enzyme, analyzed by a fluorometric method, readily lost its flavin cofactors. When supplemented with exogenous flavin cofactors, the activity of flAnCYPOR‐mediated cytochrome c reduction was increased. Mutant enzymes containing phenylalanine substitutions at leucine residues 86 and 219 were constructed and found to increase retention of FMN cofactor in the flAnCYPOR enzymes. Kinetic study by measuring cytochrome c–reducing activity indicated that the wild‐type and mutant flAnCYPORs followed a non‐classical two‐site Ping‐Pong mechanism, similar to rat CYPOR. The single mutant (L86F or L219F) and double mutant (L86F/L219F) flAnCYPOR enzymes, upon reconstitution with the An. minimus cytochrome P450 CYP6AA3 and a NADPH‐regenerating system, increased CYP6AA3‐mediated deltamethrin degradation compared to the wild‐type flAnCYPOR enzyme. The increased enzyme activity could illustrate a more efficient electron transfer of AnCYPOR to CYP6AA3 cytochrome P450 enzyme. Addition of extra flavin cofactors could increase CYP6AA3‐mediated activity supported by wild‐type and mutant flAnCYPOR enzymes. Thus, both leucine to phenylalanine substitutions are essential for flAnCYPOR enzyme in supporting CYP6AA3‐mediated metabolism. © 2010 Wiley Periodicals, Inc.  相似文献   

20.
Riboflavin kinase (RFK) is an essential enzyme catalyzing the phosphorylation of riboflavin (vitamin B(2)) to form FMN, an obligatory step in vitamin B(2) utilization and flavin cofactor synthesis. The structure of human RFK revealed a six-stranded antiparallel beta barrel core structurally similar to the riboflavin synthase/ferredoxin reductase FAD binding domain fold. The binding site of an intrinsically bound MgADP defines a novel nucleotide binding motif that encompasses a loop, a 3(10) helix, and a reverse turn followed by a short beta strand. This active site loop forms an arch with ATP and riboflavin binding at the opposite side and the phosphoryl transfer appears to occur through the hole underneath the arch. The invariant residues Asn36 and Glu86 are implicated in the catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号