首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a method for the identification of single copy genes in Drosophila melanogaster polytene chromosomes, using fluorescence in situ hybridization (FISH). We demonstrate the detection of white (w) , a gene previously mapped to 1-1.5 region of the linkage map, and to 3C2 region of the cytogenetic map of X chromosome. Squash preparations of polytene chromosomes from salivary glands dissected out from third instar larvae of Drosophila melanogaster were denatured and subjected to hybridization with a digoxigenin labeled probe, corresponding to mini-white gene. The preparations were then washed and incubated with antidigoxigenin-fluorescein antibodies. After removal of the nonspecifically bound antibodies, the polytene chromosomes were counterstained with propidium iodide. Fluorescence microscopy revealed white locus in the X chromosome in a subterminal location, in agreement with the above mentioned maps. The protocol is efficient and adaptable for simultaneously multiple signal detection.  相似文献   

2.
3.
Loughlin R  Wilbur JD  McNally FJ  Nédélec FJ  Heald R 《Cell》2011,147(6):1397-1407
Bipolar spindles must separate chromosomes by the appropriate distance during cell division, but mechanisms determining spindle length are poorly understood. Based on a 2D model of meiotic spindle assembly, we predicted that higher localized microtubule (MT) depolymerization rates could generate the shorter spindles observed in egg extracts of X. tropicalis compared to X. laevis. We found that katanin-dependent MT severing was increased in X. tropicalis, which, unlike X. laevis, lacks an inhibitory phosphorylation site in the katanin p60 catalytic subunit. Katanin inhibition lengthened spindles in both species. In X. tropicalis, k-fiber MT bundles that connect to chromosomes at their kinetochores extended through spindle poles, disrupting them. In both X. tropicalis extracts and the spindle simulation, a balance between k-fiber number and MT depolymerization is required to maintain spindle morphology. Thus, mechanisms have evolved in different species to scale spindle size and coordinate regulation of multiple MT populations in order to generate a robust steady-state structure.  相似文献   

4.
The recent sequencing of a large number of Xenopus tropicalis expressed sequences has allowed development of a high-throughput approach to study Xenopus global RNA gene expression. We examined the global gene expression similarities and differences between the historically significant Xenopus laevis model system and the increasingly used X.tropicalis model system and assessed whether an X.tropicalis microarray platform can be used for X.laevis. These closely related species were also used to investigate a more general question: is there an association between mRNA sequence divergence and differences in gene expression levels? We carried out a comprehensive comparison of global gene expression profiles using microarrays of different tissues and developmental stages of X.laevis and X.tropicalis. We (i) show that the X.tropicalis probes provide an efficacious microarray platform for X.laevis, (ii) describe methods to compare interspecies mRNA profiles that correct differences in hybridization efficiency and (iii) show independently of hybridization bias that as mRNA sequence divergence increases between X.laevis and X.tropicalis differences in mRNA expression levels also increase.  相似文献   

5.
Sequences corresponding to the third intron of the X.laevis L1 ribosomal protein gene were isolated from the second copy of the X.laevis gene and from the single copy of X.tropicalis. Sequence comparison revealed that the three introns share an unusual sequence conservation which spans a region of 110 nucleotides. In addition, they have the same suboptimal 5' splice sites. The three introns show similar features upon oocyte microinjection: they have very low splicing efficiency and undergo the same site specific cleavages which lead to the accumulation of truncated molecules. Computer analysis and RNAse digestions have allowed to assign to the conserved region a specific secondary structure. Mutational analysis has shown that this structure is important for conferring the cleavage phenotype to these three introns. Competition experiments show that the cleavage phenotype can be prevented by coinjection of excess amounts of homologous sequences.  相似文献   

6.
7.
Microarrays have great potential for the study of developmental biology. As a model system Xenopus is well suited for making the most of this potential. However, Xenopus laevis has undergone a genome wide duplication meaning that most genes are represented by two paralogues. This causes a number of problems. Most importantly the presence of duplicated genes mean that a X. laevis microarray will have less or even half the coverage of a similar sized microarray from the closely related but diploid frog Xenopus tropicalis. However, to date, X. laevis is the most commonly used amphibian system for experimental embryology. Therefore, we have tested if a microarray based on sequences from X. tropicalis will work across species using RNA from X. laevis. We produced a pilot oligonucleotide microarray based on sequences from X. tropicalis. The microarray was used to identify genes whose expression levels changed during early X. tropicalis development. The same assay was then carried out using RNA from X. laevis. The cross species experiments gave similar results to those using X. tropicalis RNA. This was true at the whole microarray level and for individual genes, with most genes giving similar results using RNA from X. laevis and X. tropicalis. Furthermore, the overlap in genes identified between a X. laevis and a X. tropicalis set of experiments was only 12% less than the overlap between two sets of X. tropicalis experiments. Therefore researchers can work with X. laevis and still make use of the advantages offered by X. tropicalis microarrays.  相似文献   

8.
A new family, termed TxpB, of DNA transposons belonging to the piggyBac superfamily was found in 3 Xenopus species (Xenopus tropicalis, Xenopus laevis, and Xenopus borealis). Two TxpB subfamilies of Kobuta and Uribo1 were found in all the 3 species, and another subfamily termed Uribo2 was found in X. tropicalis. Molecular phylogenetic analyses of their open reading frames (ORFs) revealed that TxpB transposons have been maintained for over 100 Myr. Both the Uribo1 and the Uribo2 ORFs were present as multiple copies in each genome, and some of them were framed by terminal inverted repeat sequences. In contrast, all the Kobuta ORFs were present as a single copy in each genome and exhibited high evolutionary conservation, suggesting domestication of Kobuta genes by the host. Genomic insertion polymorphisms of the Uribo1 and Uribo2 transposons (nonautonomous type) were observed in a single species of X. tropicalis, indicating recent transposition events. Transfection experiments in cell culture revealed that an expression vector construct for the intact Uribo2 ORF caused precise excision of a nonautonomous Uribo2 element from the target vector construct but that for the Kobuta ORF did not. The present results support our viewpoint that some Uribo2 members are naturally active autonomous transposons, whereas Kobuta members may be domesticated by hosts.  相似文献   

9.
Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.  相似文献   

10.
By hybridizing a tritiated human genomic probe (pGD3) to metaphase chromosomes in situ, we have localized the gene for glucose-6-phosphate dehydrogenase (G6PD) in both the human and mouse complement. The locus on the intact human X chromosome is close to the telomere on the long arm, confirming the assignment based on studies of an X/autosome translocation in human-mouse hybrids. Although the signal:background ratio was reduced for the heterologous hybridization of the human probe to mouse metaphases, 20% of the grains were on the X chromosome and 93% of these were in the A region, relatively close to the centromere. The location of G6PD in mouse and man reflects intrachromosomal transposition of these homologous X loci. Genomic DNAs from mouse and man and from hybrids with human X/autosome translocations were digested with several restriction enzymes including EcoRI, PstI, and HpaII, and Southern blots were probed with 32P-pGD3. The results of the analysis also confirm the human G6PD assignment and are consistent with a single copy of the locus in the haploid genome of both species.  相似文献   

11.
The spatio-temporal expression pattern of the connexin43 gene during Xenopus development has been described (Van der Heyden et al. 2001). To further investigate the regulation and function of connexin43 (Cx43) in amphibians, we have isolated the gene from Xenopus tropicalis (Xt) and determined its structure. The X. tropicalis Cx43 gene displays the typical two exon-one intron connexin configuration, where the first exon is non-coding. The predicted amino acid sequence of the XtCx43 protein is highly homologous to that of X. laevis, chicken and mammals. Expression of XtCx43 cDNA in N2A cells results in gap-junction plaque formation. Promoter activity of a 3.5 kb upstream region of the X. tropicalis Cx43 gene, including exon 1, mimics endogenous timing of expression after injection of reporter constructs in X. laevis embryos.  相似文献   

12.
The draft genome sequence of the Western clawed frog Xenopus (Silurana) tropicalis facilitates the identification, expression analysis and phylogenetic classification of the amphibian globin gene repertoire. Frog and mammalian neuroglobin display about 67% protein sequence identity, with the expected predominant expression in frog brain and eye. Frog and mammalian cytoglobins share about 69% of their amino acids, but the frog protein lacks the mammalian-type extension at the C-terminus. Like in mammals, X. tropicalis cytoglobin is expressed in many organs including neural tissue. Neuroglobin and cytoglobin genomic regions are syntenically conserved in all vertebrate classes. Frog and fish globin X show only 57% amino acid identity, but gene synteny analysis confirms orthology. The expression pattern of X. laevis globin X differs from that in fish, with a prominent expression in the eye and weak expression in most other examined tissues. Globin X is possibly present as two paralogous copies in X. tropicalis, with one copy showing transition stages of non-functionalization. The amphibian genome contains a previously unknown globin type (tentatively named 'globin Y') which is expressed in a broad range of tissues and is distantly related to the cytoglobin lineage. The globin Y gene is linked to a cluster of larval and adult hemoglobin alpha and beta genes which contains substantially more paralogous hemoglobin gene copies than previously published. Database and gene synteny analyses confirm the absence of a myoglobin gene in X. tropicalis.  相似文献   

13.
A Xenopus laevis complementary DNA (cDNA) library prepared from messenger RNAs extracted from embryos has been screened for actin-coding sequences. Two cDNA clones corresponding to an alpha cardiac and an alpha skeletal muscle actin mRNA have been identified and characterized. From a genomic library, we have furthermore isolated the genes that correspond to the characterized cDNAs. In addition we have identified an actin processed gene which seems to be derived from a second type of skeletal muscle actin gene. Southern blot analysis of X. laevis DNA reveals that each of the three genes is present in at least two copies. In Xenopus tropicalis, a similar Southern blot analysis demonstrates that the three alpha actin genes exist as single copy. This result correlates with the genome duplication that has been proposed to have occurred recently in a X. laevis ancestor. A sequence comparison of the X. laevis cardiac and skeletal muscle actin cDNAs shows that the encoded peptides are highly conserved. Nevertheless, the numerous nucleotide changes at silent mutation sites suggest that the genes originated before the amphibia/reptile-bird divergence, more than 350 million years ago. Comparison of the promoters of the cardiac and skeletal actin genes, which are co-expressed in embryos, reveals a few common structural sequence elements.  相似文献   

14.
ABSTRACT: BACKGROUND: The X and Y sex chromosomes are conspicuous features of placental mammal genomes. Mammalian sex chromosomes arose from an ordinary pair of autosomes after the proto-Y acquired a male-determining gene and degenerated due to suppression of X-Y recombination. Analysis of earlier steps in X chromosome evolution has been hampered by the long interval between the origins of teleost and amniote lineages as well as scarcity of X chromosome orthologs in incomplete avian genome assemblies. RESULTS: This study clarifies the genesis and remodelling of the X chromosome by using a combination of sequence analysis, meiotic map information, and cytogenetic localization to compare amniote genome organization with that of the amphibian Xenopus tropicalis. Nearly all orthologs of human X genes localize to X. tropicalis chromosomes 2 and 8, consistent with an ancestral X-conserved region and a single X-added region precursor. This finding contradicts a previous hypothesis of three evolutionary strata in this region. Homologies between human, opossum, chicken and frog chromosomes suggest a single X-added region predecessor in therian mammals, corresponding to opossum chromosomes 4 and 7. A more ancient X-added ancestral region, currently extant as a major part of chicken chromosome 1, is likely to have been present in the progenitor of synapsids and sauropsids. Analysis of X chromosome gene content emphasizes conservation of single protein coding genes and the role of tandem arrays in formation of novel genes. CONCLUSIONS: Chromosomal regions orthologous to Therian X chromosomes have been located in the genome of the frog X. tropicalis. These ancestral components experienced a series of fusion and breakage events to give rise to avian autosomes and mammalian sex chromosomes. The early branching tetrapod X. tropicalis' simple diploid genome and robust synteny to amniotes greatly enhances studies of vertebrate chromosome evolution.  相似文献   

15.
The genes coding for the myosin heavy chain isoforms (unc-54, myo-1, myo-2 and myo-3) and the actins (act-1,2,3 and act-4) have been mapped on the embryonic metaphase chromosomes of Caenorhabditis elegans by in situ hybridization. The genes were cloned in a cosmid vector and the entire cosmid was nick translated to incorporate biotin-labeled dUTP. This produced a probe DNA complementary to a 35-45 kb length of chromosomal DNA. The hybridization signal from the cosmid probe, detected by immunofluorescence, could be easily seen by eye. The clear signals and the specific hybridization of the cosmid probes provided a faster means of mapping these single copy genes than small probes cloned in plasmid or lambda vectors. The myosin heavy chain genes are not clustered. Only unc-54 and myo-1 mapped to the same chromosome; the unc-54 locus is at the extreme right end of linkage group I and myo-1 mapped 40-50% from the left end of linkage group I. Myo-2 mapped to the X, 52-75% from the left end. The myo-3 gene mapped to the middle of linkage group V near the cluster of three actin genes (act-1,2,3). The fourth actin gene, act-4 mapped to 20-35% from the left end of X.  相似文献   

16.
Summary Fluorescence in situ hybridization (FISH) is a powerful tool for visualizing the chromosomal location of targeted sequences and has been applied in many areas, including karyotyping, breeding and characterization of genes introduced into the plant genome. A simple, routine and sensitive FISH procedure was developed for localizing single copy genes in rice (Oryza sativa L.) metaphase chromosomes. We used digoxygenin-labeled endogenous or T-DNA sequences as small as 5.6 kb to probe corresponding endogenous sequences or the T-DNA insert in denatured rice metaphase chromosomes prepared from root meristem tissue. The hybridized probe sequence was labeled with cy3-conjugated anti-mouse IgG and visualized using fluorescence microscopy. Single copy and multiple copy introduced T-DNA sequences, as well as endogenous sequences, were localized on the chromosomes. The FISH protocol was effectively used to sereen the chromosomal location of introduced T-DNA and number of integration loci in rice.  相似文献   

17.
Summary An in situ hybridization method was developed for detecting single or low copy number genes in metaphase chromosomes of plants. Using as a probe 3H-labelled plasmid pABDI, which confers kanamycin resistance (Kmr) to transformed cells. DNA introduced into the plant genome by direct gene transfer was detected with a high efficiency: about 60% to 80% of interphase and metaphase plates showed a strong signal. The insertion site of the Kmr gene in two independent transformants was localised on different homologous chromosome pairs. This result independently confirmed previous genetic data which had indicated that transformed DNA was integrated into plant chromosomes in single blocks.  相似文献   

18.
The drastic morphological changes of the tadpole are induced during the climax of anuran metamorphosis, when the concentration of endogenous thyroid hormone is maximal. The tadpole tail, which is twice as long as the body, shortens rapidly and disappears completely in several days. We isolated a cDNA clone, designated as Xl MMP-9TH, similar to the previously reported Xenopus laevis MMP-9 gene, and showed that their Xenopus tropicalis counterparts are located tandemly about 9 kb apart from each other in the genome. The Xenopus MMP-9TH gene was expressed in the regressing tail and gills and the remodeling intestine and central nervous system, and induced in thyroid hormone-treated tail-derived myoblastic cultured cells, while MMP-9 mRNA was detected in embryos. Three thyroid hormone response elements in the distal promoter and the first intron were involved in the upregulation of the Xl MMP-9TH gene by thyroid hormone in transient expression assays, and their relative positions are conserved between X. laevis and X. tropicalis promoters. These data strongly suggest that the MMP-9 gene was duplicated, and differentiated into two genes, one of which was specialized in a common ancestor of X. laevis and X. tropicalis to be expressed in degenerating and remodeling organs as a response to thyroid hormone during metamorphosis.  相似文献   

19.
20.
Noggin is a neural inducer secreted by cells of the Spemann organizer. A single noggin gene was identified until very recently in all tested vertebrates. The only exception was zebrafish, in which two close homologs of noggin, named noggin1 and noggin3, and one gene more diverged from them, noggin2, were cloned. Nevertheless, finding of three zebrafish noggins was attributed exclusively to specific genomic duplications in the fish evolutionary branch. However, very recently it was shown that Xenopus tropicalis have additional noggin homolog, called noggin2 [Fletcher, R.B., Watson, A.L., Harland, R.M. (2004). Expression of Xenopus tropicalis noggin1 and noggin2 in early development: two noggin genes in a tetrapod. Gene Expr. Patterns 5, 225-230], which indicates at least two independent noggin genes in vertebrate phylum. Now we report identification of two novel noggin homologs in each of so evolutionary distant species as Xenopus laevis, chicken and fugu. One of these noggins is ortholog of the X. tropicalis and zebrafish noggin2, whereas another, named noggin4, was not known previously. In the X. laevis embryos, the expression of noggin2 very resembles that of its counterpart in X. tropicalis: it begins with neurulation at the anterior margin of the neural plate and, afterward, continues mainly in the forebrain and dorsal hindbrain. At the same time, noggin4 is expressed starting from the beginning of gastrulation, throughout the ectoderm, with a local expression maximum in the prospective anterior neurectoderm. Later, it is widely expressed on the dorsal side of embryo, including neural tube, eyes, otic vesicles, cranial placodes, branchial arches, and somites. The data presented here demonstrate that the vertebrate phylum contains at least three distinct noggin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号