首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes as well as on heterologous cells transfected with PSGL-1 cDNA. PL1, but not PL2, blocked binding of 125-I-PSGL-1 to immobilized P-selectin, binding of fluid-phase P-selectin to myeloid and lymphoid leukocytes, adhesion of neutrophils to immobilized P-selectin under static conditions, and rolling of neutrophils on P-selectin-expressing CHO cells under a range of shear stresses. PSGL-1 was localized to microvilli on neutrophils, a topography that may facilitate its adhesive function. These data indicate that (a) PSGL-1 accounts for the high affinity binding sites for P-selectin on leukocytes, and (b) PSGL- 1 must interact with P-selectin in order for neutrophils to roll on P- selectin at physiological shear stresses.  相似文献   

2.
P-selectin glycoprotein ligand-1 (PSGL-1), the primary ligand for P-selectin, is constitutively expressed on the surface of circulating leukocytes. The objective of this study was to examine the effect of leukocyte activation on PSGL-1 expression and PSGL-1-mediated leukocyte adhesion to P-selectin. PSGL-1 expression was examined via indirect immunofluorescence and flow cytometry before and after leukocyte stimulation with platelet activating factor (PAF) and PMA. Human neutrophils, monocytes, and eosinophils were all demonstrated to have significant surface expression of PSGL-1 at baseline, which decreased within minutes of exposure to PAF or PMA. PSGL-1 was detected in the supernatants of PAF-activated neutrophils by immunoprecipitation. Along with the expression data, this suggests removal of PSGL-1 from the cell surface. Soluble PSGL-1 was also detected in human bronchoalveolar lavage fluids. Down-regulation of PSGL-1 was inhibited by EDTA. However, inhibitors of L-selectin shedding and other sheddase inhibitors did not affect PSGL-1 release, suggesting that PSGL-1 may be shed by an as yet unidentified sheddase or removed by some other mechanism. Functionally, PSGL-1 down-regulation was associated with decreased neutrophil adhesion to immobilized P-selectin under both static and flow conditions, with the most profound effects seen under flow conditions. Together, these data indicate that PSGL-1 can be removed from the surface of activated leukocytes, and that this decrease in PSGL-1 expression has profound effects on leukocyte binding to P-selectin, especially under conditions of flow.  相似文献   

3.
Interactions of selectins with cell surface glycoconjugates mediate the first step of the adhesion and signaling cascade that recruits circulating leukocytes to sites of infection or injury. P-selectin dimerizes on the surface of endothelial cells and forms dimeric bonds with P-selectin glycoprotein ligand-1 (PSGL-1), a homodimeric sialomucin on leukocytes. It is not known whether leukocyte L-selectin or endothelial cell E-selectin are monomeric or oligomeric. Here we used the micropipette technique to analyze two-dimensional binding of monomeric or dimeric L- and E-selectin with monomeric or dimeric PSGL-1. Adhesion frequency analysis demonstrated that E-selectin on human aortic endothelial cells supported dimeric interactions with dimeric PSGL-1 and monomeric interactions with monomeric PSGL-1. In contrast, L-selectin on human neutrophils supported monomeric interactions with dimeric or monomeric PSGL-1. Our work provides a new method to analyze oligomeric cross-junctional molecular binding at the interface of two interacting cells.  相似文献   

4.
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.  相似文献   

5.
Pei XH  Lin ZX  Geng JG 《生理学报》2008,60(4):520-524
P-选凝素表达于血管内皮细胞及血小板膜上,它可以与白细胞膜表面的P-选凝素糖蛋白配基-1(P-selectin glyco-protein ligand-1,PSGL-1)相互作用,在炎症过程中介导白细胞的滚动并启动随后的白细胞迁移级联过程.我们构建了重组人野生型可溶性P-选凝素及其钙离子结合位点突变体,同时构建了重组PSGL-1免疫球蛋白融合分子(PSGL-1-Rg),并应用昆虫杆状病毒表达系统在Sf9细胞中表达这些重组蛋白,最后用镍金属螯和柱或Protein A亲和柱予以纯化.结果显示,用该系统表达的P-选凝素或PSGL-1是有活性的,但是P-选凝素的4个钙离子结合位点突变体却没有活性.该研究证明了P-选凝素钙离子结合位点在其与配基相互作用中的重要性.  相似文献   

6.
P-selectin (CD62P) is a cell adhesion molecule expressed on stimulated endothelial cells and on activated platelets. It interacts with PSGL-1 (P-selectin glycoprotein ligand-1; CD162) on leukocytes and mediates recruitment of leukocytes during inflammation. P-selectin also binds to several types of cancer cells in vitro and facilitates growth and metastasis of colon carcinoma in vivo. Here we show that P-selectin, but not E-selectin, binds to NCI-H345 cells, a cell line derived from a human small cell lung cancer. EDTA or P7 (a leukocyte adhesion blocking mAb to P-selectin), but not PL5 (a leukocyte adhesion blocking mAb to PSGL-1), can inhibit this binding. P-selectin affinity chromatography can precipitate a approximately 110-kDa major band and a approximately 220-kDa minor band from [3H]-glucosamine-labeled NCI-H345 cells. No expression of PSGL-1 protein and mRNA can be detected in NCI-H345 cells. Taken together, these results suggest that NCI-H345 cells express glycoprotein ligands for P-selectin that are distinct from leukocyte PSGL-1.  相似文献   

7.
Stimulated endothelial cells and activated platelets express P-selectin, which reacts with P-selectin glycoprotein ligand-1 (PSGL-1) for leukocyte rolling on the stimulated endothelial cells and heterotypic aggregation of the activated platelets on leukocytes. P-selectin also binds to several cancer cells in vitro and promotes the growth and metastasis of human colon carcinoma in vivo. The P-selectin/PSGL-1 interaction requires tyrosine sulfation. However, it is unknown whether sulfation is necessary for P-selectin binding to somatic cancer cells. In this study, we show that P-selectin mediated adhesion of Acc-M cells, a cell line derived from a human adenoid cystic carcinoma of salivary gland. These cells had a moderate expression of heparan sulfate-like proteoglycans, but had no detectable expressions of PSGL-1, CD24, Lewis(x), and sialyl Lewis(x). Treatment with sodium chlorate (a sulfation biosynthesis inhibitor), but not 4-methylumbelliferyl-beta-D-xyloside (a proteoglycan biosynthesis inhibitor) or heparinases, reduced adhesion of these cells to P-selectin. Sodium chlorate also inhibited the P-selectin precipitation of the 160-, 54-, and 36-kDa molecules from the cell surface of Acc-M cells. Furthermore, P-selectin could bind to human breast carcinoma ZR-75-30 cells in a sulfation-dependent manner. Our results thus indicate that sulfation is essential for adhesion of nonblood-borne, epithelial-like human cancer cells to P-selectin.  相似文献   

8.
P-selectin glycoprotein ligand-1 (PSGL-1) is a disulfide-bonded, homodimeric mucin ( approximately 250 kDa) on leukocytes that binds to P-selectin on platelets and endothelial cells during the initial steps in inflammation. Because it has been proposed that only covalently dimerized PSGL-1 can bind P-selectin, we investigated the factors controlling dimerization of PSGL-1 and re-examined whether covalent dimers are required for binding its P-selectin. Recombinant forms of PSGL-1 were created in which the single extracellular Cys (Cys(320)) was replaced with either Ser (C320S-PSGL-1) or Ala (C320A-PSGL-1). Both recombinants migrated as monomeric species of approximately 120 kDa under both nonreducing and reducing conditions on SDS-polyacrylamide gel electrophoresis. P-selectin bound similarly to cells expressing either wild type or mutated forms of PSGL-1 in both flow cytometric and rolling adhesion assays. Unexpectedly, chemical cross-linking studies revealed that both C320S- and C320A-PSGL-1 noncovalently associate in the plasma membrane and cross-linking generates dimeric species. Chimeric recombinants of PSGL-1 in which the transmembrane domain in PSGL-1 was replaced with the transmembrane domain of CD43 (CD43TMD-PSGL-1) could not be chemically cross-linked, suggesting that residues within the transmembrane domain of PSGL-1 are required for noncovalent association. Cells expressing CD43TMD-PSGL-1 bound P-selectin. To further address the ability of P-selectin to bind monomeric derivatives of PSGL-1, intact HL-60 cells were trypsin-treated, which generated a soluble approximately 25-kDa NH(2)-terminal fragment of PSGL-1 that bound to immobilized P-selectin. Because N-glycosylation of PSGL-1 hinders trypsin cleavage, a recombinant form of PSGL-1 was generated in which all three potential N-glycosylation sites were mutated (DeltaN-PSGL-1). Cells expressing DeltaN-PSGL-1 bound P-selectin, and trypsin treatment of the cells generated NH(2)-terminal monomeric fragments (<10 kDa) of PSGL-1 that bound to P-selectin. These results demonstrate that Cys(320)-dependent dimerization of PSGL-1 is not required for binding to P-selectin and that a small monomeric fragment of PSGL-1 is sufficient for P-selectin recognition.  相似文献   

9.
Leukocyte adhesion to vascular endothelium under flow involves an adhesion cascade consisting of multiple receptor pairs that may function in an overlapping fashion. P-selectin glycoprotein ligand-1 (PSGL-1) and L-selectin have been implicated in neutrophil adhesion to P- and E-selectin under flow conditions. To study, in isolation, the interaction of PSGL-1 with P-and E-selectin under flow, we developed an in vitro model in which various recombinant regions of extracellular PSGL-1 were coupled to 10-μm-diameter microspheres. In a parallel plate chamber with well defined flow conditions, live time video microscopy analyses revealed that microspheres coated with PSGL-1 attached and rolled on 4-h tumor necrosis factor-α–activated endothelial cell monolayers, which express high levels of E-selectin, and CHO monolayers stably expressing E-or P-selectin. Further studies using CHO-E and -P monolayers demonstrate that the first 19 amino acids of PSGL-1 are sufficient for attachment and rolling on both E- and P-selectin and suggest that a sialyl Lewis x–containing glycan at Threonine-16 is critical for this sequence of amino acids to mediate attachment to E- and P-selectin. The data also demonstrate that a sulfated, anionic polypeptide segment within the amino terminus of PSGL-1 is necessary for PSGL-1–mediated attachment to P- but not to E-selectin. In addition, the results suggest that PSGL-1 has more than one binding site for E-selectin: one site located within the first 19 amino acids of PSGL-1 and one or more sites located between amino acids 19 through 148.  相似文献   

10.
Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sialyl Lewis(x) (sLe(x)), sialyl Lewis(a) (sLe(a)), and sulfated Lewis(x) (HSO(3)Le(x) support rolling adhesion on P-selectin surfaces. Although it has been suggested that glycosylation and sulfation of P-selectin glycoprotein ligand-1 (PSGL-1) is required for high-affinity binding and rolling on P-selectin, our findings indicate that sulfation of N-terminal tyrosine residues is not required for binding or rolling. However, beads coated with a tyrosine-sulfated, sLe(x)-modified, PSGL-1-Fc chimera support slower rolling on P-selectin than beads coated with sLe(x) alone, suggesting that sulfation improves rolling adhesion by modulating binding to P-selectin. In addition, we find it is not necessary that P-selectin carbohydrate ligands be multivalent for robust rolling to occur. Our results demonstrate that beads coated with monovalent sLe(x), exhibiting a more sparse distribution of carbohydrate than a similar amount of the multivalent form, are sufficient to yield rolling adhesion. The relative abilities of various ligands to support rolling on P-selectin are quantitatively examined among themselves and in comparison to human neutrophils. Using stop-time distributions, rolling dynamics at video frame rate resolution, and the average and variance of the rolling velocity, we find that P-selectin ligands display the following quantitative trend, in order of decreasing ability to support rolling adhesion on P-selectin: PSGL-1-Fc > sLe(a) approximately sLe(x) > HSO(3)Le(x).  相似文献   

11.
Colonization of neutrophils by the bacterium Anaplasma phagocytophilum causes the disease human granulocytic ehrlichiosis. The pathogen also infects mice, its natural host. Like binding of P-selectin, binding of A. phagocytophilum to human neutrophils requires expression of P-selectin glycoprotein ligand-1 (PSGL-1) and alpha1-3-fucosyltransferases that construct the glycan determinant sialyl Lewis x (sLex). Binding of A. phagocytophilum to murine neutrophils, however, requires expression of alpha1-3-fucosyltransferases but not PSGL-1. To further characterize the molecular features that A. phagocytophilum recognizes, we measured bacterial binding to microspheres bearing specific glycoconjugates or to cells expressing human PSGL-1 and particular glycosyltransferases. Like P-selectin, A. phagocytophilum bound to purified human PSGL-1 and to glycopeptides modeled after the N terminus of human PSGL-1 that presented sLex on an O-glycan. Unlike P-selectin, A. phagocytophilum bound to glycopeptides that contained sLex but lacked tyrosine sulfation or a specific core-2 orientation of sLex on the O-glycan. A. phagocytophilum bound only to glycopeptides that contained a short amino acid sequence found in the N-terminal region of human but not murine PSGL-1. Unlike P-selectin, A. phagocytophilum bound to cells expressing PSGL-1 in cooperation with sLex on both N-and O-glycans. Moreover, bacteria bound to microspheres coupled independently with glycopeptide lacking sLex and with sLex lacking peptide. These results demonstrate that, unlike P-selectin, A. phagocytophilum binds cooperatively to a nonsulfated N-terminal peptide in human PSGL-1 and to sLex expressed on PSGL-1 or other glycoproteins. Distinct bacterial adhesins may mediate these cooperative interactions.  相似文献   

12.
P-selectin glycoprotein ligand-1 (PSGL-1) is a dimeric membrane mucin on leukocytes that binds selectins. The molecular features of PSGL-1 that determine this high affinity binding are unclear. Here we demonstrate the in vitro synthesis of a novel glycosulfopeptide (GSP-6) modeled after the extreme N terminus of PSGL-1, which has been predicted to be important for P-selectin binding. GSP-6 contains three tyrosine sulfate (TyrSO(3)) residues and a monosialylated, core 2-based O-glycan with a sialyl Lewis x (C2-O-sLe(x)) motif at a specific Thr residue. GSP-6 binds tightly to immobilized P-selectin, whereas glycopeptides lacking either TyrSO(3) or C2-O-sLe(x) do not detectably bind. Remarkably, an isomeric glycosulfopeptide to GSP-6, termed GSP-6', which contains sLe(x) on an extended core 1-based O-glycan, does not bind immobilized P-selectin. Equilibrium gel filtration analysis revealed that GSP-6 binds to soluble P-selectin with a K(d) of approximately 350 nM. GSP-6 (<5 microM) substantially inhibits neutrophil adhesion to P-selectin in vitro, whereas free sLe(x) (5 mM) only slightly inhibits adhesion. In contrast to the inherent heterogeneity of post-translational modifications of recombinant proteins, glycosulfopeptides permit the placement of sulfate groups and glycans of precise structure at defined positions on a polypeptide. This approach should expedite the probing of structure-function relationships in sulfated and glycosylated proteins, and may facilitate development of novel drugs to treat inflammatory diseases involving P-selectin-mediated leukocyte adhesion.  相似文献   

13.
The selectin family of cell adhesion molecules mediates initial leukocyte adhesion to vascular endothelial cells at sites of inflammation. O-glycan structural similarities between oligosaccharides from human leukocyte P-selectin glycoprotein ligand-1 (PSGL-1) and from zona pellucida glycoproteins of porcine oocytes indicate the possible existence of a P-selectin ligand in the zona pellucida. Here, using biochemical as well as morphological approaches, we demonstrate that a P-selectin ligand is expressed in the porcine zona pellucida. In addition, a search for a specific receptor for this ligand leads to the identification of P-selectin on the acrosomal membrane of porcine sperm cells. In vitro binding of porcine acrosome-reacted sperm cells to oocytes was found to be Ca2+ dependent and inhibitable with either P-selectin, P-selectin receptor–globulin, or leukocyte adhesion blocking antibodies against P-selectin and PSGL-1. Moreover, porcine sperm cells were found to be capable of binding to human promyeloid cell line HL-60. Taken together, our findings implicate a potential role for the oocyte P-selectin ligand and the sperm P-selectin in porcine sperm– egg interactions.  相似文献   

14.
P-selectin glycoprotein ligand-1 (PSGL-1) and E-selectin ligand-1 (ESL-1) are the two major selectin ligands on mouse neutrophils. Transfection experiments demonstrate that each ligand requires alpha1,3-fucosylation for selectin-binding. However, the relative contributions made by the two known myeloid alpha1, 3-fucosyltransferases Fuc-TVII or Fuc-TIV to this alpha1, 3-fucosylation are not yet clear. To address this issue, we have used mice deficient in Fuc-TIV and/or Fuc-TVII to examine how these enzymes generate selectin-binding glycoforms of PSGL-1 and ESL-1 in mouse neutrophils. Selectin binding was analyzed by affinity isolation experiments using recombinant, antibody-like forms of the respective endothelial selectins. We observe essentially normal binding of E- or P-selectin to PSGL-1 expressed by Fuc-TIV-deficient neutrophils but find that PSGL-1 expressed by Fuc-TVII-deficient neutrophils is not bound by E- or P-selectin. By contrast, E-selectin binds with normal efficiency to ESL-1 on Fuc-TVII-deficient neutrophils but exhibits an 80% reduction in its ability to bind ESL-1 isolated from Fuc-TIV-deficient neutrophils. The same specificity with which Fuc-TVII and Fuc-TIV generate selectin-binding forms of PSGL-1 and ESL-1 was found in transfection experiments with CHO-Pro(-)5 cells. In contrast, each fucosyltransferase alone could generate selectin-binding glycoforms of each of the two ligands in CHO-DUKX-B1 cells. Our data imply that in mouse neutrophils and their precursors, Fuc-TVII exclusively directs expression of PSGL-1 glycoforms bound with high affinity by P-selectin. By contrast, Fuc-TIV preferentially directs expression of ESL-1 glycoforms that exhibit high affinity for E-selectin. This substrate specificity can be mimicked in CHO-Pro(-)5 cells.  相似文献   

15.
Activated T cells migrate from the blood into nonlymphoid tissues through a multistep process that involves cell rolling, arrest, and transmigration. P-Selectin glycoprotein ligand-1 (PSGL-1) is a major ligand for P-selectin expressed on subsets of activated T cells such as Th1 cells and mediates cell rolling on vascular endothelium. Rolling cells are arrested through a firm adhesion step mediated by integrins. Although chemokines presented on the endothelium trigger integrin activation, a second mechanism has been proposed where signaling via rolling receptors directly activates integrins. In this study, we show that Ab-mediated cross-linking of the PSGL-1 on Th1 cells enhances LFA-1-dependent cell binding to ICAM-1. PSGL-1 cross-linking did not enhance soluble ICAM-1 binding but induced clustering of LFA-1 on the cell surface, suggesting that an increase in LFA-1 avidity may account for the enhanced binding to ICAM-1. Combined stimulation by PSGL-1 cross-linking and the Th1-stimulating chemokine CXCL10 or CCL5 showed a more than additive effect on LFA-1-mediated Th1 cell adhesion as well as on LFA-1 redistribution on the cell surface. Moreover, PSGL-1-mediated rolling on P-selectin enhanced the Th1 cell accumulation on ICAM-1 under flow conditions. PSGL-1 cross-linking induced activation of protein kinase C isoforms, and the increased Th1 cell adhesion observed under flow and also static conditions was strongly inhibited by calphostin C, implicating protein kinase C in the intracellular signaling in PSGL-1-mediated LFA-1 activation. These results support the idea that PSGL-1-mediated rolling interactions induce intracellular signals leading to integrin activation, facilitating Th1 cell arrest and subsequent migration into target tissues.  相似文献   

16.
The micropipette adhesion assay was developed in 1998 to measure two-dimensional (2D) receptor-ligand binding kinetics. The assay uses a human red blood cell (RBC) as adhesion sensor and presenting cell for one of the interacting molecules. It employs micromanipulation to bring the RBC into contact with another cell that expresses the other interacting molecule with precisely controlled area and time to enable bond formation. The adhesion event is detected as RBC elongation upon pulling the two cells apart. By controlling the density of the ligands immobilized on the RBC surface, the probability of adhesion is kept in mid-range between 0 and 1. The adhesion probability is estimated from the frequency of adhesion events in a sequence of repeated contact cycles between the two cells for a given contact time. Varying the contact time generates a binding curve. Fitting a probabilistic model for receptor-ligand reaction kinetics to the binding curve returns the 2D affinity and off-rate. The assay has been validated using interactions of Fcγ receptors with IgG Fc, selectins with glycoconjugate ligands, integrins with ligands, homotypical cadherin binding, T cell receptor and coreceptor with peptide-major histocompatibility complexes. The method has been used to quantify regulations of 2D kinetics by biophysical factors, such as the membrane microtopology, membrane anchor, molecular orientation and length, carrier stiffness, curvature, and impingement force, as well as biochemical factors, such as modulators of the cytoskeleton and membrane microenvironment where the interacting molecules reside and the surface organization of these molecules. The method has also been used to study the concurrent binding of dual receptor-ligand species, and trimolecular interactions using a modified model. The major advantage of the method is that it allows study of receptors in their native membrane environment. The results could be very different from those obtained using purified receptors. It also allows study of the receptor-ligand interactions in a sub-second timescale with temporal resolution well beyond the typical biochemical methods. To illustrate the micropipette adhesion frequency method, we show kinetics measurement of intercellular adhesion molecule 1 (ICAM-1) functionalized on RBCs binding to integrin α(L)β(2) on neutrophils with dimeric E-selectin in the solution to activate α(L)β(2).  相似文献   

17.
Platelet-leukocyte adhesion may contribute to thrombosis and inflammation. We examined the heterotypic interaction between unactivated neutrophils and either thrombin receptor activating peptide (TRAP)-stimulated platelets or P-selectin-bearing beads (Ps-beads) in suspension. Cone-plate viscometers were used to apply controlled shear rates from 14 to 3000/s. Platelet-neutrophil and bead-neutrophil adhesion analysis was performed using both flow cytometry and high-speed videomicroscopy. We observed that although blocking antibodies against either P-selectin or P-selectin glycoprotein ligand-1 (PSGL-1) alone inhibited platelet-neutrophil adhesion by approximately 60% at 140/s, these reagents completely blocked adhesion at 3000/s. Anti-Mac-1 alone did not alter platelet-neutrophil adhesion rates at any shear rate, though in synergy with selectin antagonists it abrogated cell binding. Unstimulated neutrophils avidly bound Ps-beads and activated platelets in an integrin-independent manner, suggesting that purely selectin-dependent cell adhesion is possible. In support of this, antagonists against P-selectin or PSGL-1 caused dissociation of previously formed platelet-neutrophil and Ps-bead neutrophil aggregates under shear in a variety of experimental systems, including in assays performed with whole blood. In studies where medium viscosity and shear rate were varied, a shear threshold for P-selectin PSGL-1 binding was also noted at shear rates <100/s when Ps-beads collided with isolated neutrophils. Results are discussed in light of biophysical computations that characterize the collision between unequal-size particles in linear shear flow. Overall, our studies reveal an integrin-independent regime for cell adhesion and weak shear threshold for P-selectin PSGL-1 interactions that may be physiologically relevant.  相似文献   

18.
Endothelial and platelet P-selectin (CD62P) and leukocyte integrin αMβ2 (CD11bCD18, Mac-1) are cell adhesion molecules essential for host defense and innate immunity. Upon inflammatory challenges, P-selectin binds to PSGL-1 (P-selectin glycoprotein ligand-1, CD162) to mediate neutrophil rolling, during which integrins become activated by extracellular stimuli for their firm adhesion in a G-protein coupled receptor (GPCR)-dependent mechanism. Here we show that cross-linking of PSGL-1 by dimeric or multimeric forms of platelet P-selectin, P-selectin receptor-globulin, anti-PSGL-1 mAb and its F(ab’)2 induced adhesion of human neutrophils to fibrinogen (Fg) and intercellular cell adhesion molecule-1 (ICAM-1, CD54) and triggered a moderate clustering of αMβ2, but monomeric forms of soluble P-selectin and anti-PSGL-1 Fab did not. Interestingly, P-selectin did not induce a detectable interleukine-8 (IL-8) secretion (&lt;0.1 ng/ml) in 30 minutes, whereas a high concentration of IL-8 (>50 ng/ml) was required to increase neutrophil adhesion to Fg. P-selectin-induced neutrophil adhesion was significantly inhibited by PP2 (a Src kinase inhibitor), but not by Pertussis toxin (PTX; a GPCR inhibitor). Activated platelets also increased neutrophil binding to fibrinogen and triggered tyrosine phosphorylation of cellular proteins. Our results indicate that P-selectin-induced integrin activation (Src kinase-dependent) is distinct from that elicited by cytokines, chemokines, chemoattractants (GPCR-dependent), suggesting that these two signal transduction pathways may cooperate for maximal activation of leukocyte integrins.  相似文献   

19.
P-selectin is a cell adhesion molecule expressed on activated endothelial cells and platelets. P-selectin glycoprotein ligand 1 (PSGL-1) is a mucin expressed on leukocytes. The interaction of P-selectin and PSGL-1 mediates leukocyte tethering to and rolling on the vascular surface, which are initiating events in inflammatory and thrombotic processes. In the hemodynamic environment of the circulation, P-selectin and PSGL-1 are subject to a wide range of forces, which can cause deformation. For P-selectin/PSGL-1 interaction to be physically possible, these molecules may need to project above much of the glycocalyx layers of the respective cell surfaces, suggesting that they are either longer than the thickness of glycocalyx or better able to support compression than the glycocalyx. As such, the mechanical properties of these molecules and their functional implications merit investigation. Here we report determination of the bending rigidities of P-selectin and PSGL-1 by analyzing their thermally excited curvature fluctuations, whose values are of the order of magnitude of 100 pN nm2.  相似文献   

20.
Rosetting, or forming a cell aggregate between a single target nucleated cell and a number of red blood cells (RBCs), is a simple assay for cell adhesion mediated by specific receptor-ligand interaction. For example, rosette formation between sheep RBC and human lymphocytes has been used to differentiate T cells from B cells. Rosetting assay is commonly used to determine the interaction of Fc gamma-receptors (FcgammaR) expressed on inflammatory cells and IgG coated on RBCs. Despite its wide use in measuring cell adhesion, the biophysical parameters of rosette formation have not been well characterized. Here we developed a probabilistic model to describe the distribution of rosette sizes, which is Poissonian. The average rosette size is predicted to be proportional to the apparent two-dimensional binding affinity of the interacting receptor-ligand pair and their site densities. The model has been supported by experiments of rosettes mediated by four molecular interactions: FcgammaRIII interacting with IgG, T cell receptor and coreceptor CD8 interacting with antigen peptide presented by major histocompatibility molecule, P-selectin interacting with P-selectin glycoprotein ligand 1 (PSGL-1), and L-selectin interacting with PSGL-1. The latter two are structurally similar and are different from the former two. Fitting the model to data enabled us to evaluate the apparent effective two-dimensional binding affinity of the interacting molecular pairs: 7.19x10(-5) microm4 for FcgammaRIII-IgG interaction, 4.66x10(-3) microm4 for P-selectin-PSGL-1 interaction, and 0.94x10(-3) microm4 for L-selectin-PSGL-1 interaction. These results elucidate the biophysical mechanism of rosette formation and enable it to become a semiquantitative assay that relates the rosette size to the effective affinity for receptor-ligand binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号