首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Purified Ku/DNA-PKcs alone did not produce association of DNA ends with plasmid DNA suggesting that additional factors in the nuclear extract are necessary for this activity. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end binding was observed. Calculation of relative binding activities indicates that DNA end-binding activities to MAR sequences was 7–21-fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV and scaffold attachment factor A preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends suggesting that binding of these proteins to DNA ends is necessary for their association with MAR DNA. The ability of DNA-PKcs/Ku to direct DNA ends to MAR and pUC18 plasmid DNA is a new activity for DNA-PK and may be important for its function in double-strand break repair. A model for DNA repair based on these observations is presented.  相似文献   

2.
In peplomycin-supersensitive Chinese hamster lung cells, the increase in poly(ADP-ribose) synthesizing activity following peplomycin treatment was significantly reduced as compared with the parental lung cells, suggesting that peplomycin-supersensitive lung cells may have some deficiency in DNA repair. On the contrary, peplomycin-supersensitive ovary cells, which undergo increased DNA damage induced by peplomycin, showed normally increased poly(ADP-ribose) polymerizing activity compared with the parental ovary cells. Relationship between poly(ADP-ribose) polymerase and peplomycin sensitivity was discussed.  相似文献   

3.
The DNA damage induced by ascorbate in the presence of Cu2+ was analyzed by sequencing, and the mutagenic consequences of damages to plasmid pUC18 lacZ' were assayed in a forward repairing system in E. coli JM109 in vivo. Ascorbate induced two classes of DNA damage in the presence of Cu2+, one being non-base-specific direct strand cleavage, and the other being sequence-specific base modification labile to alkali treatment. Radicals generated from ascorbate hydroperoxide were involved in DNA damaging reactions. Ascorbate and Cu2+ caused mutations in pUC18 lacZ' gene. The mutation frequency by this method was about 10(-4) at 18% survivors when measured as a loss of alpha-complementation. All the mutations found were single-base substitutions that occurred in the structural part of the lacZ' gene. They were predominantly G:C----A:T transitions.  相似文献   

4.
When a colloidal solution consisting of nanosized acicular material and bacterial cells is stimulated with sliding friction at the interface between the hydrogel and interface-forming material where the frictional coefficient increases rapidly, the nanosized acicular material accompanying the bacterial cells forms a penetration intermediate. This effect is known as the Yoshida effect in honor of its discoverer. Through the Yoshida effect, a novel property in which penetration intermediates incorporate exogenous plasmid DNA has been identified. This report proposes a possible mechanism for exogenous plasmid acquisition by penetration intermediates in the Yoshida effect. Escherichia coli cells, pUC18, and chrysotile were used as recipient cells, plasmid DNA, and nanosized acicular material, respectively. Even when repeatedly washing the mixture consisting of pUC18 and chrysotile, transformation efficiency by pUC18 was stable. Accordingly, pUC18 adsorbed onto chrysotile was introduced into recipient E. coli cells. At saturation, the amount of pUC18 adsorbed onto chrysotile was 0.8-1.2 microg/mg. To investigate whether pUC18 adsorbed on chrysotile is replicated by polymerase, polymerase chain reaction (PCR) was carried out with the chrysotile. Amplification of the beta-lactamase gene coded in pUC18, which was adsorbed onto chrysotile, was strongly inhibited. This suggests that DNA adsorbed onto chrysotile is not replicated in vivo. When we searched for substances to release pUC18 adsorbed onto chrysotile, we found that a 300-bp single- or double-stranded segment of DNA releases pUC18 from chrysotile. Competitive adsorption onto chrysotile between double-stranded DNA and pUC18 was then examined through the Yoshida effect. The 310- and 603-bp double-stranded nucleotides caused 50% competitive inhibition at the same molar ratio with pUC18. Hence, the adsorbed region of pUC18 is about 300 bp in length. As the culture period for recipient cells increases, transformation efficiency decreases while the expression levels of small RNA of 300-600 bp also decrease. These results suggest that pUC18 adsorbed onto chrysotile can be released by 300-bp small RNA, replicated by DNA polymerase, and transferred to daughter cells.  相似文献   

5.
Peplomycin-mediated degradation of parallel-stranded (ps) duplex was investigated. It was found that Co- and Fe-peplomycins degraded ps DNA duplex by 4'-hydrogen abstraction at 5'-GPy (pyrimidine) site in a similar manner to that of antiparallel B-DNA. While the orientation of two strands of ps and B-form DNA duplexes are reversed, peplomycin metal complex can bind to ps DNA duplex to cause oxidative DNA damage. These results indicate that peplomycin metal complex mainly interacts with one strand which is damaged.  相似文献   

6.
The purpose of this study was to determine the yield of DNA base damages, deoxyribose damage, and clustered lesions due to the direct effects of ionizing radiation and to compare these with the yield of DNA trapped radicals measured previously in the same pUC18 plasmid. The plasmids were prepared as films hydrated in the range 2.5 < Gamma < 22.5 mol water/mol nucleotide. Single-strand breaks (SSBs) and double-strand breaks (DSBs) were detected by agarose gel electrophoresis. Specific types of base lesions were converted into SSBs and DSBs using the base-excision repair enzymes endonuclease III (Nth) and formamidopyrimidine-DNA glycosylase (Fpg). The yield of base damage detected by this method displayed a strikingly different dependence on the level of hydration (Gamma) compared with that for the yield of DNA trapped radicals; the former decreased by 3.2 times as Gamma was varied from 2.5 to 22.5 and the later increased by 2.4 times over the same range. To explain this divergence, we propose that SSB yields produced in plasmid DNA by the direct effect cannot be analyzed properly with a Poisson process that assumes an average of one strand break per plasmid and neglects the possibility of a single track producing multiple SSBs within a plasmid. The yields of DSBs, on the other hand, are consistent with changes in free radical trapping as a function of hydration. Consequently, the composition of these clusters could be quantified. Deoxyribose damage on each of the two opposing strands occurs with a yield of 3.5 +/- 0.5 nmol/J for fully hydrated pUC18, comparable to the yield of 4.1 +/- 0.9 nmol/J for DSBs derived from opposed damages in which at least one of the sites is a damaged base.  相似文献   

7.
Benzyl chloride (BC) and 4-chloromethylbiphenyl (4CMB) induce a class of alkaline-stable DNA damage in human cells which, like UV-induced pyrimidine dimers, undergoes repair at a slow rate by an excision-repair pathway which can be inhibited by cytosine arabinoside (araC). In the present study, in an attempt to clarify whether BC and 4CMB are UV-like agents, the excision-deficient xeroderma pigmentosum complementation group A fibroblasts and excision-proficient human alveolar tumour cells (A549) were exposed to various doses of these compounds prior to monitoring the inhibition of cell growth, DNA damage and DNA repair. The data indicate that such XP fibroblasts repair BC- and 4CMB-induced DNA damage at a normal rate, which suggests that the alkaline-stable DNA adducts induced by these chloromethyl compounds and the UV-induced pyrimidine dimers are processed by distinct excision-repair mechanisms in human cells.  相似文献   

8.
Treatment of cultured rat pancreatic islets of Langerhans with the combined cytokines interleukin-1beta (IL-1beta), interferon gamma (IFN gamma) and tumour necrosis factor alpha (TNF alpha) leads to DNA damage including strand breakage. We have investigated the nature of this damage and its repairability. When islets are further incubated for 4 h in fresh medium, the level of cytokine-induced strand breakage remains constant. If the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine (NMMA) is present during cytokine treatment, then strand breakage is prevented. If NMMA is added following, rather than during,the cytokine treatment and islets are incubated for 4 h, further nitric oxide synthesis is prevented and most cytokine-induced strand breaks are no longer seen. To investigate DNA repair following cytokine treatment, cells were transferred to fresh medium and incubated for 4 h in the presence of hydroxyurea (HU) and 1-beta-D-arabinosyl cytosine (AraC), as inhibitors of strand rejoining. In the presence of these inhibitors there was an accumulation of strand breaks that would otherwise have been repaired. However, when further nitric oxide synthesis was inhibited by NMMA, significantly less additional strand breakage was seen in the presence of HU and AraC. We interpret this, as indicating that excision repair of previously induced base damage did not contribute significantly to strand breakage. Levels of oxidised purines, as indicated by formamidopyrimidine glycosylase (Fpg) sensitive sites, were not increased in cytokine-treated islets. We conclude that in these primary insulin-secreting cells: (a) the DNA damage induced by an 18h cytokine treatment is prevented by an inhibitor of nitric oxide synthase, (b) much of the damage is in the form of apparent strand breaks rather than altered bases such as oxidised purines, (c) substantial repair is ongoing during the cytokine treatment and this repair is not inhibited in the presence of nitric oxide.  相似文献   

9.
The effect of aphidicolin on the repair of chemically induced DNA damage in rat hepatocytes was examined. Alkaline elution analysis of DNA damage and autoradiographic examination of unscheduled DNA synthesis both indicate that the repair of DNA damage was inhibited by aphidicolin. Because aphidicolin has been shown to be a specific inhibitor of alpha polymerase, these results suggest that the alpha polymerase plays an active role in the repair of rat hepatocyte DNA.  相似文献   

10.
The purpose of this study was to investigate possible involvement of poly(ADP-ribosyl)ation reactions in X-ray-induced cell killing, repair of potentially lethal damage (PLD), and formation and repair of radiation-induced DNA damage. As tools we used the inhibitors of poly(ADP-ribose)polymerase, 3-aminobenzamide (3AB), and 4-aminobenzamide (4AB). Both drugs inhibited PLD repair equally well but did not increase radiation-induced cell killing when cells were plated immediately after irradiation. 3AB affected repair of radiation-induced DNA damage, while 4AB had no effect. When 3AB was combined with aphidicolin (APC), it was found that the amount of DNA damage increased during the postirradiation incubation period. This means that the presence of 3AB stimulates the formation of DNA damage after X-irradiation. It is concluded that 3AB and 4AB sensitize HeLaS3 cells for radiation-induced cell killing by inhibiting repair of PLD. Because of the different effects of both inhibitors on repair of PLD and repair of radiation-induced DNA damage (a process known to be affected by inhibition of poly(ADP-ribosyl)ation), it is concluded that the observed inhibition of PLD repair is not caused by inhibition of poly(ADP-ribose)polymerase, and that the inhibitors affect repair of PLD and repair of DNA damage through independent mechanisms.  相似文献   

11.
A mutant allele of the Escherichia coli nfo gene encoding endonuclease IV, nfo-186, was cloned into plasmid pUC18. When introduced into an E. coli xthA nfo mutant, the gene product of nfo-186 complemented the hypersensitivity of the mutant to methyl methanesulfonate (MMS) but not to hydrogen peroxide (H2O2) and bleomycin. These results suggest that the mutant endonuclease IV has normal activity for repairing DNA damages induced by MMS but not those induced by H2O2 and bleomycin. A missense mutation in the cloned nfo-186 gene, in which the wild-type glycine 149 was replaced by aspartic acid, was detected by DNA sequencing. The wild-type and mutant endonuclease IV were purified to near homogeneity, and their apurinic (AP) endonuclease and 3'-phosphatase activities were determined. No difference was observed in the AP endonuclease activities of the wild-type and mutant proteins. However, 3'-phosphatase activity was dramatically reduced in the mutant protein. From these results, it is concluded that the endonuclease IV186 protein is specifically deficient in the ability to remove 3'-terminus-blocking damage, which is required for DNA repair synthesis, and it is possible that the lethal DNA damage by H2O2 is 3'-blocking damage and not AP-site damage.  相似文献   

12.
Treatment of cultured rat pancreatic islets of Langerhans with the combined cytokines interleukin-1β (IL-1β), interferon γ (IFN γ) and tumour necrosis factor α (TNF α) leads to DNA damage including strand breakage. We have investigated the nature of this damage and its repairability. When islets are further incubated for 4?h in fresh medium, the level of cytokine-induced strand breakage remains constant. If the nitric oxide synthase inhibitor NG-monomethyl-l-arginine (NMMA) is present during cytokine treatment, then strand breakage is prevented. If NMMA is added following, rather than during, the cytokine treatment and islets are incubated for 4?h, further nitric oxide synthesis is prevented and most cytokine-induced strand breaks are no longer seen. To investigate DNA repair following cytokine treatment, cells were transferred to fresh medium and incubated for 4?h in the presence of hydroxyurea (HU) and 1-β-d-arabinosyl cytosine (AraC), as inhibitors of strand rejoining. In the presence of these inhibitors there was an accumulation of strand breaks that would otherwise have been repaired. However, when further nitric oxide synthesis was inhibited by NMMA, significantly less additional strand breakage was seen in the presence of HU and AraC. We interpret this, as indicating that excision repair of previously induced base damage did not contribute significantly to strand breakage. Levels of oxidised purines, as indicated by formamidopyrimidine glycosylase (Fpg) sensitive sites, were not increased in cytokine-treated islets. We conclude that in these primary insulin-secreting cells: (a) the DNA damage induced by an 18?h cytokine treatment is prevented by an inhibitor of nitric oxide synthase, (b) much of the damage is in the form of apparent strand breaks rather than altered bases such as oxidised purines, (c) substantial repair is ongoing during the cytokine treatment and this repair is not inhibited in the presence of nitric oxide.  相似文献   

13.

Background

miR-18a is one of the most up-regulated miRNAs in colorectal cancers (CRC) based on miRNA profiling. In this study, we examined the functional significance of miR-18a in CRC.

Methods

Expression of miR-18a was investigated in 45 CRC patients. Potential target genes of miR-18a were predicted by in silico search and confirmed by luciferase activity assay and Western blot. DNA damage was measured by comet assay. Gene function was measured by cell viability, colony formation and apoptosis assays.

Results

The up-regulation of miR-18a was validated and confirmed in 45 primary CRC tumors compared with adjacent normal tissues (p<0.0001). Through in silico search, the 3′UTR of Ataxia telangiectasia mutated (ATM) contains a conserved miR-18a binding site. Expression of ATM was down-regulated in CRC tumors (p<0.0001) and inversely correlated with miR-18a expression (r = -0.4562, p<0.01). Over-expression of miR-18a in colon cancer cells significantly reduced the luciferase activity of the construct with wild-type ATM 3′UTR but not that with mutant ATM 3′UTR, inferring a direct interaction of miR-18a with ATM 3′UTR. This was further confirmed by the down-regulation of ATM protein by miR-18a. As ATM is a key enzyme in DNA damage repair, we evaluated the effect of miR-18a on DNA double-strand breaks. Ectopic expression of miR-18a significantly inhibited the repair of DNA damage induced by etoposide (p<0.001), leading to accumulation of DNA damage, increase in cell apoptosis and poor clonogenic survival.

Conclusion

miR-18a attenuates cellular repair of DNA double-strand breaks by directly suppressing ATM, a key enzyme in DNA damage repair.  相似文献   

14.
Postreplication repair facilitates tolerance of DNA damage during replication, overcoming termination of replication at sites of DNA damage. A major post-replication repair pathway in mammalian cells is translesion synthesis, which is carried out by specialized polymerase(s), such as polymerase eta, and is identified by focus formation by the polymerase after irradiation with UVC light. The formation of these foci depends on RAD18, which ubiquitinates PCNA for the exchange of polymerases. To understand the initial processes in translesion synthesis, we have here analyzed the response to damage of RAD18 in human cells. We find that human RAD18 accumulates very rapidly and remains for a long period of time at sites of different types of DNA damage, including UVC light-induced lesions, and x-ray microbeam- and laser-induced single-strand breaks, in a cell cycle-independent manner. The accumulation of RAD18 at DNA damage is observed even when DNA replication is inhibited, and a small region containing a zinc finger motif located in the middle of RAD18 is essential and sufficient for the replication-independent damage accumulation. The zinc finger motif of RAD18 is not necessary for UV-induced polymerase eta focus formation, but another SAP (SAF-A/B, Acinus and PIAS) motif near the zinc finger is required. These data indicate that RAD18 responds to DNA damage in two distinct ways, one replication-dependent and one replication-independent, involving the SAP and zinc finger motifs, respectively.  相似文献   

15.
Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.  相似文献   

16.
染色质作为真核细胞遗传信息,体内外各种因素的作用致使不断的产生损伤,但是细胞仍能保持正常的生长、分裂和繁殖,这与基因组稳定性和完整性保持,并且通过自身的损伤修复有着密切的联系。ATP依赖的染色质重塑是染色质重塑的最重要的方式之一,主要是利用ATP水解释放的能量,将凝聚的异染色质打开,协调损伤修复蛋白与DNA损伤位点的作用,通过对组蛋白的共价键修饰或ATP依赖的染色质重塑复合物开启了DNA的损伤修复的大门。CHD4/Mi-2β的类SWI2/SNF2 ATP酶/解螺旋酶域结构域保守性最强,这一结构域存在与多种依赖于ATP的核小体重构复合物。Mi-2蛋白复合物称为核小体重塑及去乙酰化酶NuRd(nucleoside remodeling and deacetylase,NuRD),是个多亚基蛋白复合物,Mi2β/CHD4是该复合物的核心成员。近来的研究发现,CHD4具有染色质重塑功能,并且参与DNA损伤修复的调控。CHD4羧基端的PHD通过乙酰化或甲基化识别组蛋白H3氨基端Lys9(H3K9ac和H3K9me),并且通过Lys4甲基化(H3K4me)或Ala1乙酰化(H3A Lac)抑制与H3、H4的结合,为染色质重塑提供了保障。Mi-2β/CHD4参与DNA损伤反应,定位于DNA损伤γ-H2AX的foci。沉默Mi-2β/CHD4基因,细胞自发性DNA损伤增多和辐射敏感性增强。表明CHD4在染色质重塑中具有重要的作用。  相似文献   

17.
Many proteins involved in DNA replication and repair undergo post-translational modifications such as phosphorylation and ubiquitylation. Proliferating cell nuclear antigen (PCNA; a homotrimeric protein that encircles double-stranded DNA to function as a sliding clamp for DNA polymerases) is monoubiquitylated by the RAD6-RAD18 complex and further polyubiquitylated by the RAD5-MMS2-UBC13 complex in response to various DNA-damaging agents. PCNA mono- and polyubiquitylation activate an error-prone translesion synthesis pathway and an error-free pathway of damage avoidance, respectively. Here we show that replication factor C (RFC; a heteropentameric protein complex that loads PCNA onto DNA) was also ubiquitylated in a RAD18-dependent manner in cells treated with alkylating agents or H(2)O(2). A mutant form of RFC2 with a D228A substitution (corresponding to a yeast Rfc4 mutation that reduces an interaction with replication protein A (RPA), a single-stranded DNA-binding protein) was heavily ubiquitylated in cells even in the absence of DNA damage. Furthermore RFC2 was ubiquitylated by the RAD6-RAD18 complex in vitro, and its modification was inhibited in the presence of RPA. The inhibitory effect of RPA on RFC2 ubiquitylation was relatively specific because RAD6-RAD18-mediated ubiquitylation of PCNA was RPA-insensitive. Our findings suggest that RPA plays a regulatory role in DNA damage responses via repression of RFC2 ubiquitylation in human cells.  相似文献   

18.
The plasmid pUC18 DNA isolated from Escherichia coli HB101 were analyzed by two-dimensional agarose gel electrophoresis and hybridization. The results show that the DNA sample can be separated into six groups of different structural components. The plectonemically and solenoidally supercoiled pUC18 DNA coexist in it. These two different conformations of supercoiled DNA are interchangeable with the circumstances (ionic strength and type, etc.). The amount of solenoidally supercoiled pUC18 DNA in the samples can be changed by treatment of DNA topoisome rases. Under an electron microscope, the solenoidal supercoiling DNA has a round shape with an average diameter of 45 nm. The facts suggest that solenoidaUy supercoiled DNA be a structural entity independent of histones. The polymorphism of DNA structure may be important to packing of DNA in vivo.  相似文献   

19.
Kim RH  Kwon OJ  Park JW 《Biochimie》2001,83(6):487-495
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA in vitro, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and cysteine as an electron donor. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepentaacetic acid, a spin-trapping agent, 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and catalase. Ceruloplasmin also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Incubation of Cp with Cys-MCO resulted in an increase in the content of carbonyl groups and the significant alteration of the ferroxidase activity, as well as the proteolytic susceptibility. The deoxyribose assay and the salicylate hydroxylation assay showed that hydroxyl free radicals were generated in the reaction of Cp with Cys-MCO. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we interpret the enhancing effect of Cp on DNA damage and mutagenicity induced by Cys-MCO as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged Cp, and H(2)O(2) produced by Cys-MCO. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.  相似文献   

20.
The effects of adriamycin (AM) on DNA repair replication, the frequency of sister-chromatid exchange (SCE), the rate of cell proliferation and the frequency of DNA strand breaks were studied in human cells in vitro. No repair replication was observed in lymphocytes exposed to AM in concentrations up to 10?3 moles/1. DNA repair replication induced by UV and alkylating agents was not affected by a concentration of AM that completely inhibited cell proliferation (10?6 moles/1).Fibroblasts exposed to AM at 10?4 moles/1 in the presence of hydroxyurea showed an increase of strand breaks and cross-links in DNA. When AM was added to UV-irradiated fibroblasts, there was an increase of DNA strand breaks in addition to the breaks caused by UV alone. Similar effects were observed in lymphocytes.A dose-dependent increase of SCE was observed in lymphocytes exposed to low concentrations of AM (<10?7 moles/1). At higher concentrations the increase of SCE levelled off, and cell proliferation became severely inhibited. There was no evidence of removal of SCE-inducing damage in cells exposed to AM during G0 or G1. The level of SCE induced in the third cell cycle after treatment with AM was not different from that induced during the first two cell cycles.These results suggest that the various genotoxic and cytotoxic effects of AM are caused by different types of cellular damage. Moreover, AM-induced DNA damage persists for several cell cycles in human cells in vitro and seems to be resistant to repair activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号