首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The involvement of three NAD(P)+-L-glutamate dehydrogenase (GDH; EC 1.4.1.3) isoenzymes, named GDH1, GDH2 and GDH3, in the carbon and nitrogen metabolism of the green alga Chlamydomonas reinhardtü 6145c has been investigated under different environmental and stress conditions. GDH1 activity decreased, but GDH2 and GDH3 activities increased with the age of cultures. When the extracellular ammonium concentration was high, only GDH1 activity increased with growth whereas GDH2 and GDH3 remained unchanged. In the presence of L-methionine-D,L-sulfoximine (MSX), an inhibitor of L-glutamine synthetase (GS), a significant increase of GDH1 and a slight decrease in GDH3 activity was observed, whereas GDH2 did not change. A significant increase in the intracellular 2-oxoglutarate was also found upon addition of azaserine, an inhibitor of L-glutamate synthase (GOGAT) activity. However, no significant changes in GDH isoenzyme activities were observed after addition of azaserine or azaserine plus MSX, except an induction of GDH3 in the latter case. Moreover, in the presence of ethoxyzolamide (ETZ), an inhibitor of carbonic anhydrase activity, an induction of total GDH activity, mainly due to an increase in GDH1 and to a minor extent in GDH2, was observed in cells under low CO2 (0.03%). In the dark, cells showed an increase in GDH1 activity, but when acetate was present GDH1 activity was repressed. All these results taken together suggest a relationship between GDH1 and nitrogen assimilation, whereas GDH2 and GDH3 seem to be involved in the production of 2-oxoglutarate to fuel the tricarboxylic acid (TCA) cycle.  相似文献   

2.
3.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

4.
5.
Seeds of Phaseolus vulgaris L. cv. White Kidney were germinated and grown either in a nitrogen-free or in an ammonia-supplied medium. The changes in the soluble protein concentration and in the levels of glutamine synthetase (GS, EC 6.3.1.2), NADH–glutamate synthase (NADH-GOGAT, EC 1.4.1.14), ferredoxin-glutamate synthase (Fd-GOGAT, EC 1.4.7.1) and glutamate dehydrogenase (GDH, EC 1.4.1.2), both NADH- and NAD+-dependent, were examined in cotyledons and roots during the first 10 days after sowing. Soluble protein declined rapidly in the cotyledons and increased slightly in the roots. GS activity was initially high both in cotyledons and roots but subsequently decreased during seedling growth. Exogenous ammonia hardly affected GS activity. High levels of NADH-GOGAT were present both in cotyledons and roots during the first days of germination. The activity then gradually declined in both organs. In contrast, Fd-GOGAT in cotyledons was initially low and progressively increased with seedling development. In roots, the levels of Fd-GOGAT were higher in young than in old seedlings. Supply of ammonia to the seedlings increased the levels of NADH-GOGAT and Fd-GOGAT both in cotyledons and roots. NADH-GDH (aminating) activity gradually increased during germination. In contrast, the levels of NAD+-GDH (deaminating) activity were highest during the first days of germination. Exogenous ammonia did not significantly affect the activities of GDH.  相似文献   

6.
Fluorescence techniques have been used to study the structural characteristics of many proteins. The thermophilic enzyme NAD-glutamate dehydrogenase from Thermus thermophilus HB8 is found to be a hexameric enzyme. Fluorescence spectra of native and denatured protein and effect of denaturants as urea and guanidine hydrochloride on enzyme activity of thermophilic glutamate dehydrogenase (t-GDH) have been analyzed. Native t-GDH presents the maximum emission at 338 nm. The denaturation process is accompanied by an exposure to the solvent of the tryptophan residues, as manifested by the red shift of the emission maximum. Fluorescence quenching by external quenchers, KI and acrylamide, has also been carried out.  相似文献   

7.
The activities NADH and NADPH dehydrogenases were measured with ferricyanide as electron-acceptor (NADH-FeCN-ox and NADPH-FeCN-ox, respectively) in mitochondria-free chloroplasts of barley leaf segments after receiving various treatments affecting senescence. NADPH-FeCN-ox declined during senescence in the dark, in a way similar to chlorophyll and Hill reaction, and increased when leaf segments were incubated at light. These results suggest that NADPH-FeCN-ox is related to some photosynthetic electron transporter activity (probably ferredoxin-NADP+ oxidoreductase). In contrast, NADH-FeCN-ox is notably stable during senescence in the dark and at light. This activity increased during incubation with kinetin or methyl-jasmonate (Me-JA) but decreased when leaf segments were treated with abscisic acid (ABA). The effects of the inhibitors of protein synthesis cycloheximide and chloramphenicol suggest that the changes of NAD(P)H dehydrogenase activities may depend on protein synthesis in chloroplasts. In senescent leaf, chloroplast NADH dehydrogenase might be a way to dissipate NADH produced in the degradation of excess carbon which is released from the degradation of amino acids.Abbreviations ABA abscisic acid - DCPIP 2,6-dichlorophenol-indo-phenol - DOC deoxycholate - Me-JA methyl jasmonate - NADH-FeCN-ox NADH ferricyanide oxidoreductase - NADPH-FeCN-ox NADPH ferricyanide oxidoreductase  相似文献   

8.
Branched-chain amino acids (BCAAs) catabolism follows sequential reactions and their metabolites intersect with other metabolic pathways. The initial enzymes in BCAA metabolism, the mitochondrial branched-chain aminotransferase (BCATm), which deaminates the BCAAs to branched-chain α-keto acids (BCKAs); and the branched-chain α-keto acid dehydrogenase enzyme complex (BCKDC), which oxidatively decarboxylates the BCKAs, are organized in a supramolecular complex termed metabolon. Glutamate dehydrogenase (GDH1) is found in the metabolon in rat tissues. Bovine GDH1 binds to the pyridoxamine 5′-phosphate (PMP)-form of human BCATm (PMP-BCATm) but not to pyridoxal 5′-phosphate (PLP)-BCATm in vitro. This protein interaction facilitates reamination of the α-ketoglutarate (αKG) product of the GDH1 oxidative deamination reaction. Human GDH1 appears to act like bovine GDH1 but human GDH2 does not show the same enhancement of BCKDC enzyme activities. Another metabolic enzyme is also found in the metabolon is pyruvate carboxylase (PC). Kinetic results suggest that PC binds to the E1 decarboxylase of BCKDC but does not effect BCAA catabolism. The protein interaction of BCATm and GDH1 promotes regeneration of PLP-BCATm which then binds to BCKDC resulting in channeling of the BCKA products from BCATm first half reaction to E1 and promoting BCAA oxidation and net nitrogen transfer from BCAAs. The cycling of nitrogen through glutamate via the actions of BCATm and GDH1 releases free ammonia. Formation of ammonia may be important for astrocyte glutamine synthesis in the central nervous system. In peripheral tissue association of BCATm and GDH1 would promote BCAA oxidation at physiologically relevant BCAA concentrations.  相似文献   

9.
We investigated the effects of genetic modification of nitrogen metabolism via the bacterial glutamate dehydrogenase (GDH) on plant growth and metabolism. The gdhA gene from Escherichia coli encoding a NADPH-GDH was expressed in tobacco plants under the control of the 35 S promoter. The specific activity of GDH in gdhA plants was 8-fold of that in E. coli. Damage caused by spray application of 1.35 mM of phosphinothricin (PPT) herbicide, a glutamine synthetase (GS) inhibitor, was less pronounced in gdhA plants as compared with the control plants which suggests that the introduced GDH can assimilate some of the excess ammonium, at least during GS inhibition. However, gdhA plants were susceptible to 2.7 mM PPT. Biomass production was consistently increased in gdhA transgenic plants grown under controlled conditions and in the field. Total free amino acids and total carbohydrates were increased in gdhA plants grown in the greenhouse suggesting that both nitrogen and carbon metabolism were altered. We conclude that the modifications in transgenic plants may result from both increased nitrogen efficiency and altered gene expression and metabolism. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Anaerobically grown cells of Saccharomyces cerevisiae entrapped in polyacrylamide gel have been shown to provide a stable source of alcohol dehydrogenase [(ADH) alcohol:NAD+ oxidoreductase, EC 1.1.1.1] for effective regeneration of NAD(H). This system was able to provide the coenzyme required for the operation of other dehydrogenases, such as lactate dehydrogenase [(LDH) l-lactate: NAD+ oxidoreductase, EC 1.1.1.27] and malate dehydrogenase [(MDH) l-malate:NAD+ oxidoreductase, EC 1.1.1.37]. Yeast cells coimmobilized with a dehydrogenase are capable of the reversible regeneration of the reduced or oxidized coenzyme, depending on the additions made. A two-cell system can also be constituted using the same strain of yeast, adapted differently. Cells grown anaerobically and aerobically as sources of ADH and MDH, respectively, can operate efficiently on coimmobilization. The system can be used repeatedly without measurable loss of efficiency.  相似文献   

11.
Ammonia assimilation in Bacillus fastidiosus proceeds via the NADP-dependent glutamate dehydrogenase. The enzyme, purified to homogeneity, is composed of identical subunits with a molecular weight of about 48 000 dalton. Presumably the enzyme is a hexamer. The enzyme is specific for NADP (H). The pH optima for the amination and deamination reactions are 7.7 and 8.6, respectively. The temperature optimum is 60°C. Furthermore, temperature stability and apparent Km values for substrates of both the amination and deamination reactions were determined. Several metabolites were tested for their effect on the enzyme activity. Only malate and fumarate showed some inhibitory effect.Abbreviation GDH glutamate dehydrogenase  相似文献   

12.
The gdhA gene encoding glutamate dehydrogenase (GDH) from the hyperthermophilic archaeon Pyrococcus sp. KOD1 was cloned and sequenced. Phylogenetic analysis was performed on an alignment of 25 GDH sequences including KOD1-GDH, and two protein families were distinguished, as previously reported. KOD1-GDH was classified as new member of the hexameric GDH Family II. The gdhA gene was expressed in Escherichia coli, and recombinant KOD1-GDH was purified. Its enzymatic characteristics were compared with those of the native KOD1-GDH. Both enzymes had a molecular mass of 47 300 Da and were shown to be functional in a hexameric form (284 kDa). The N-terminal amino acid sequences of native KOD1-GDH and the recombinant GDH were VEIDPFEMAV and MVEIDPFEMA, respectively, indicating that native KOD1-GDH does not retain the initial methionine at the N-terminus. The recombinant GDH displayed enzyme characteristics similar to those of the native GDH, except for a lower level of thermostability, with a half-life of 2 h at 100° C, compared to 4 h for the native enzyme purified from KOD1. Kinetic studies suggested that the reaction is biased towards glutamate production. KOD1-GDH utilized both coenzymes NADH and NADPH, as do most eukaryal GDHs. Received: 6 May 1997 / Accepted: 23 September 1997  相似文献   

13.
Abstract. Under stress conditions (darkness, nitrogen starvation, high ammonium concentrations, glutamine synthetase and glutamate synthase inhibition) glutamate dehydrogenase animating activity levels of Chlamydomonas cells varied inversely to those of glutamine synthetase. Nitrogen and carbon sources also influenced glutamate dehydrogenase levels in Chlamydomonas , the highest values being found in cells cultured mixotrophically with ammonium, under which conditions glutamate dehydrogenase and glutamine synthetase levels were likewise inversely related. These facts, together with the analysis of internal fluctuations of ammonium, 2-oxoglutarate, and the amino acid pool as well as the variations of certain enzymes involved in carbon metabolism indicate that glutamate dehydrogenase animating activity is adaptative, being involved in the maintenance of intracellular levels of L-glutamate when they cannot be maintained by the GS-GOGAT cycle, and probably more connected with carbon than nitrogen metabolism.  相似文献   

14.
Cell-free extracts of proteolytic strains of Clostridium botulinum types A, B and F (group I) were found to have unusually high specific activities of NAD+-dependent L-glutamate dehydrogenase (NAD-GDH). In comparison, nonproteolytic strains of types B, E and F (group II) had low specific activities. The enzyme was purified 131-fold from C. botulinum 113B to a final specific activity of >1,092 molxmin-1xmg protein-1. The enzyme is a hexamer of a polypeptide of Mr=42,500, and the native molecular weight is 250,800. The apparent K m values for substrates were 5.3 mM for glutamate and 0.028 mM for NAD+ in the deamination reaction, and 7.2 mM for -ketoglutarate, 243 mM for NH 4 + and 0.028 mM for NADH in the reverse reaction. NADP+ did not serve as a hydrogen acceptor for the enzyme. Activity in the animation direction was inhibited by fumarate, oxalacetate, aspartate, glutamate and glutamine. The results suggest that GDH is important in group I (proteolytic) C. botulinum to generate -ketoglutarate as a substrate for transamination reactions. We have also found that the high activity decreases significantly when cells are exposed to sodium chloride. Therefore GDH probably has several important physiological roles in group I proteolytic C. botulinum.  相似文献   

15.
16.
Full-length cDNAs encoding the - and -subunits and a truncated mutant subunit of the Chlorella sorokiniana NADP-GDH isozymes were constructed and expressed in Escherichia coli cells. The kinetic and thermal stability properties of the resultant homohexamers were examined. The electrophoretic mobility of the recombinant - and -subunits was identical to that of the native subunits as determined by immunoblotting. The homohexamers were purified by anion-exchange and gel-filtration chromatography. The - and -homohexamers that were synthesized in the bacterial cells were shown to have similar Michaelis constants for their substrates as previously shown after synthesis in C. sorokiniana cells (Bascomb and Schmidt, 1987). The homohexamer synthesized in the bacterium was allosteric with respect to NADPH but to a lesser degree than when isolated from the alga. The mutant homohexamer was composed of subunits that were truncated by 40 amino acids at their N-termini. This mutant isozyme was kinetically similar to the larger, anabolic -homohexamer, but it did not display the allosteric response to NADPH shown by the -homohexamer. The three isozymes had significant thermal tolerance and were stable at 50 °C. The temperature optimum for catalytic activity for the - and -homohexamers was 60 °C, and 65 °C for the 40N homohexamer. This study demonstrated that most of the kinetic properties of the Chlorella sorokiniana NADP-GDH isozymes were retained after their synthesis in a heterologous system, and that the distinctive N-terminal domains of these isozymes have dramatic effects on their biochemical characteristics.  相似文献   

17.
After incubation at 42°C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (ΔndhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of ΔndhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42°C for 6 h, the photochemical activity declined more markedly in ΔndhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (ΔpH), while the consumption of ΔpH was highly inhibited in ΔndhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra ΔpH, thus reducing the photooxidative damage.  相似文献   

18.
The environmental temperature is one of the mainfactors affecting plant growth and development. Insummer, plants are frequently influenced by hightemperature. In recent years, global temperature wasremarkably elevated accompanied with the climaticchanges,…  相似文献   

19.
The NAD-dependent glutamate dehydrogenase (GDH) (EC 1.4.1.2) fromLaccaria bicolorwas purified 410-fold to apparent electrophoretic homogeneity with a 40% recovery through a three-step procedure involving ammonium sulfate precipitation, anion-exchange chromatography on DEAE–Trisacryl, and gel filtration. The molecular weight of the native enzyme determined by gel filtration was 470 kDa, whereas sodium dodecyl sulfate–polyacrylamide gel electrophoresis gave rise to a single band of 116 kDa, suggesting that the enzyme is composed of four identical subunits. The enzyme was specific for NAD(H). The pH optima were 7.4 and 8.8 for the amination and deamination reactions, respectively. The enzyme was found to be highly unstable, with virtually no activity after 20 days at −75°C, 4 days at 4°C, and 1 h at 50°C. The addition of ammonium sulfate improved greatly the stability of the enzyme and full activity was still observed after several months at −75°C. NAD-GDH activity was stimulated by Ca2+and Mg2+but strongly inhibited by Cu2+and slightly by the nucleotides AMP, ADP, and ATP. The Michaelis constants for NAD, NADH, 2-oxoglutarate, and ammonium were 282 μM, 89 μM, 1.35 mM, and 37 mM, respectively. The enzyme had a negative cooperativity for glutamate (Hill number of 0.3), and itsKmvalue increased from 0.24 to 3.6 mM when the glutamate concentration exceeded 1 mM. These affinity constants of the substrates, compared with those of the NADP-GDH of the fungus, suggest that the NAD-GDH is mainly involved in the catabolism of glutamate, while the NADP-GDH is involved in the catalysis of this amino acid.  相似文献   

20.
Glutamate dehydrogenase (GDH) from vertebrates is unusual among NAD(P)H-dependent dehydrogenases in that it can use either NAD(H) or NADP(H) as cofactor. In this study, we measure the rate of cofactor utilization by bovine GDH when both cofactors are present. Methods for both reaction directions were developed, and for the first time, to our knowledge, the GDH activity has been simultaneously studied in the presence of both NAD(H) and NADP(H). Our data indicate that NADP(H) has inhibitory effects on the rate of NAD(H) utilization by GDH, a characteristic of GDH not previously recognized. The response of GDH to allosteric activators in the presence of NAD(H) and NADP(H) suggests that ADP and leucine moderate much of the inhibitory effect of NADP(H) on the utilization of NAD(H). These results illustrate that simple assumptions of cofactor preference by mammalian GDH are incomplete without an appreciation of allosteric effects when both cofactors are simultaneously present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号