首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox properties, the site of action of the inhibitor NQNO, and the question of interheme transfer in the chloroplast cytochrome b6 have been examined with regard to the role of the b6-f complex in quinol oxidation and H+ translocation. (i) The two hemes of the cytochrome ba and bp, have similar (delta Em less than or equal to 50 mV) oxidation-reduction midpoint potentials that are pH-independent in the range pH 6.5-8.0 (Em7 = -40 mV) but are pH dependent below this range with an estimated pK = 6.7. (ii) Only half of cytochrome b6, the stromal-side heme, ba, was reducible by NADPH and ferredoxin. (iii) The 2-3-fold increase (to 0.60 +/- 0.09 heme/600 Chl) in the amplitude of flash-induced cytochrome reduction caused by NQNO was not affected when heme ba was initially reduced, implying that NQNO affects flash reduction at the site of heme bp. (iv) Multiple light flashes did not increase the amplitude of b6 reduction in the presence or absence of NQNO or show binary oscillations. Together with localization of a site of action of NQNO near heme bp, these data provide no evidence for efficient electron transfer from heme bp to heme ba as specified by the Q cycle model. (v) NQNO interaction with heme bp does not block its oxidation, since reoxidation of the flash-reduced cytochrome in its presence or absence was 4-5 times faster (t1/2 approximately 30 ms) when heme ba was reduced. The faster oxidation of the photoreduced cytochrome after NADPH-Fd reduction of heme ba indicates that the oxidation of ba and bp may be cooperative.  相似文献   

2.
Flash-induced redox changes of b-type and c-type cytochromes have been studied in chromatophores from the aerobic photosynthetic bacterium Roseobacter denitrificans under redox-controlled conditions. The flash-oxidized primary donor P+ of the reaction center (RC) is rapidly re-reduced by heme H1 (Em,7 = 290 mV), heme H2 (Em,7 = 240 mV) or low-potential hemes L1/L2 (Em,7 = 90 mV) of the RC-bound tetraheme, depending on their redox state before photoexcitation. By titrating the extent of flash-induced low-potential heme oxidation, a midpoint potential equal to -50 mV has been determined for the primary quinone acceptor QA. Only the photo-oxidized heme H2 is re-reduced in tens of milliseconds, in a reaction sensitive to inhibitors of the bc1 complex, leading to the concomitant oxidation of a cytochrome c spectrally distinct from the RC-bound hemes. This reaction involves cytochrome c551 in a diffusional process. Participation of the bc1 complex in a cyclic electron transfer chain has been demonstrated by detection of flash-induced reduction of cytochrome b561, stimulated by antimycin and inhibited by myxothiazol. Cytochrome b561, reduced upon flash excitation, is re-oxidized slowly even in the absence of antimycin. The rate of reduction of cytochrome b561 in the presence of antimycin increases upon lowering the ambient redox potential, most likely reflecting the progressive prereduction of the ubiquinone pool. Chromatophores contain approximately 20 ubiquinone-10 molecules per RC. At the optimal redox poise, approximately 0.3 cytochrome b molecules per RC are reduced following flash excitation. Cytochrome b reduction titrates out at Eh < 100 mV, when low-potential heme(s) rapidly re-reduce P+ preventing cyclic electron transfer. Results can be rationalized in the framework of a Q-cycle-type model.  相似文献   

3.
Spectral and potentiometric analysis of cytochromes from Bacillus subtilis   总被引:4,自引:0,他引:4  
Bacillus subtilis cytoplasmic membranes contain several cytochromes which are linked to the respiratory chain. At least six different cytochromes have been separated and identified by ammonium sulphate fractionation and ion-exchange chromatography. They include two terminal oxidases with CO-binding properties and cyanide sensitivity. One of these is an aa3-type cytochrome c oxidase which has characteristic absorption maxima in the reduced-oxidized difference spectrum at 601 nm in the alpha-band and at 443 nm in the Soret band regions. In the alpha-band two separate electron transitions with Em = +205 mV and Em = +335 mV can be discriminated by redox potentiometric titration. The other CO-binding cytochrome c oxidase contains two cytochrome b components with alpha-band maxima at 556 nm and 559 nm. Cytochrome b556 can be reduced by ascorbate and has an Em + +215 mV, whereas cytochrome b559 has an Em = +140 mV. Furthermore a complex consisting of a cytochrome b564 (Em = +140 mV) associated with a cytochrome c554 (Em = +250 mV) was found. This cytochrome c554, which can be reduced by ascorbate, appears to have an asymmetrical alpha-peak and stains for heme-catalyzed peroxidase activity on SDS-containing polyacrylamide gels. A protein with a molecular mass of about 30 kDa is responsible for this activity. A cytochrome b559 (Em = +65 mV) appears to be an essential part of succinate dehydrogenase. Finally a cytochrome c550 component with an apparent mid-point potential of Em = +195 mV has been detected.  相似文献   

4.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. To understand the possible role of DCCD in inhibiting the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores. DCCD has two distinct effects on phase III of the electrochromic bandshift of carotenoids reflecting the electrogenic reactions of the bc(1) complex. At low concentrations, DCCD increases the magnitude of the electrogenic process because of a decrease in the permeability of the membrane, probably through inhibition of F(o)F(1). At higher concentrations (>150 microM), DCCD slows the development of phase III of the electrochromic shift from about 3 ms in control preparations to about 23 ms at 1.2 mM DCCD, without significantly changing the amplitude. DCCD treatment of chromatophores also slows down the kinetics of flash-induced reduction of both cytochromes b and c, from 1.5-2 ms in control preparations to 8-10 ms at 0.8 mM DCCD. Parallel slowing of the reduction of both cytochromes indicates that DCCD treatment modifies the reaction of QH(2) oxidation at the Q(o) site. Despite the similarity in the kinetics of both cytochromes, the onset of cytochrome c re-reduction is delayed 1-2 ms in comparison to cytochrome b reduction, indicating that DCCD inhibits the delivery of electrons from quinol to heme c(1). We conclude that DCCD treatment of chromatophores leads to modification of the rate of Q(o)H(2) oxidation by the iron-sulfur protein (ISP) as well as the donation of electrons from ISP to c(1), and we discuss the results in the context of the movement of ISP between the Q(o) site and cytochrome c(1).  相似文献   

5.
N,N'-dicyclohexylcarbodiimide (DCCD) has been reported to inhibit steady-state proton translocation by cytochrome bc(1) and b(6)f complexes without significantly altering the rate of electron transport, a process referred to as decoupling. In chromatophores of the purple bacterium Rhodobacter sphaeroides, this has been associated with the specific labeling of a surface-exposed aspartate-187 of the cytochrome b subunit of the bc(1) complex [Wang et al. (1998) Arch. Biochem. Biophys. 352, 193-198]. To explore the possible role of this amino acid residue in the protonogenic reactions of cytochrome bc(1) complex, we investigated the effect of DCCD modification on flash-induced electron transport and the electrochromic bandshift of carotenoids in Rb. sphaeroides chromatophores from wild type (WT) and mutant cells, in which aspartate-187 of cytochrome b (Asp(B187)) has been changed to asparagine (mutant B187 DN). The kinetics and amplitude of phase III of the electrochromic shift of carotenoids, reflecting electrogenic reactions in the bc(1) complex, and of the redox changes of cytochromes and reaction center, were similar (+/- 15%) in both WT and B187DN chromatophores. DCCD effectively inhibited phase III of the carotenoid bandshift in both B187DN and WT chromatophores. The dependence of the kinetics and amplitude of phase III of the electrochromic shift on DCCD concentration was identical in WT and B187DN chromatophores, indicating that covalent modification of Asp(B187) is not specifically responsible for the effect of DCCD-induced effects of cytochrome bc(1) complex. Furthermore, no evidence for differential inhibition of electrogenesis and electron transport was found in either strain. We conclude that Asp(B187) plays no crucial role in the protonogenic reactions of bc(1) complex, since its replacement by asparagine does not lead to any significant effects on either the electrogenic reactions of bc(1) complex, as revealed by phase III of the electrochromic shift of carotenoids, or sensitivity of turnover to DCCD.  相似文献   

6.
T Iyanagi  S Watanabe  K F Anan 《Biochemistry》1984,23(7):1418-1425
The one-electron oxidation-reduction properties of flavin in hepatic NADH-cytochrome b5 reductase were investigated by optical absorption spectroscopy, electron paramagnetic resonance (EPR), and potentiometric titration. An intermediate with a peak at 375 nm previously described by Iyanagi (1977) [ Iyanagi , T. (1977) Biochemistry 16, 2725-2730] was confirmed to be a red anionic semiquinone. The NAD+-bound reduced enzyme was oxidized by cytochrome b5 via the semiquinone intermediate. This indicates that electron transfer from flavin to cytochrome b5 proceeds in two successive one-electron steps. Autoxidation of the NAD+-bound reduced enzyme was slower than that of the NAD+-free reduced enzyme and was accompanied by the appearance of an EPR signal. Midpoint redox potentials of the consecutive one-electron-transfer steps in the presence of excess NAD+ were Em,1 = -88 mV and Em,2 = 147 mV at pH 7.0. This corresponds to a semiquinone formation constant of 8. The values of Em,1 and Em,2 were also studied as a function of pH. A mechanism for electron transfer from NADH to cytochrome b5 is discussed on the basis of the one-electron redox potentials of the enzyme and is compared with the electron-transfer mechanism of NADPH-cytochrome P-450 reductase.  相似文献   

7.
Membrane fragments isolated from the aerobic phototrophic bacterium Roseobacter denitrificans were examined. Ninety-five percent of the total NADH-dependent oxidative activity was inhibited either by antimycin A or myxothiazol, two specific inhibitors of the cytochrome bc1 complex, which indicates that the respiratory electron transport chain is linear. In agreement with this finding, light-induced oxygen uptake, an electron transport activity catalyzed by the "alternative quinol oxidase pathway" in membranes of several facultative phototrophic species, was barely detectable in membranes of Rsb. denitrificans. Redox titrations at 561-575 nm, 552-540 nm, and 602-630 nm indicated the presence of three b-type cytochromes (Em,7 of +244 +/- 8, +24 +/- 3, -163 +/- 11 mV), four c-type cytochromes (Em,7 of +280 +/- 10, +210 +/- 5, +125 +/- 8, and 20 +/- 3 mV) and two a-type cytochromes (Em,7 of +335 +/- 15, +218 +/- 18 mV). The latter two a-type hemes were shown to be involved in cytochrome c oxidase activity, which was inhibited by both cyanide (I50 = 2 microM) and azide (I50 = 1 mM), while a soluble cytochrome c (c551, Em,7 = +217 +/- 2 mV) was shown to be the physiological electron carrier connecting the bc1 complex to the cytochrome c oxidase. A comparison of the ATP synthesis generated by continuous light in membranes of Rsb. denitrificans and Rhodobacter capsulatus showed that in both bacterial species photophosphorylation requires a membrane redox poise at the equilibrium (Eh > or = +80 < or = +140 mV), close to the oxidation-reduction potential of the ubiquinone pool. These data, taken together, suggest that, although the photosynthetic apparatus of Rsb. denitrificans is functionally similar to that of typical anoxygenic phototrophs, e.g. Rba. capsulatus, the in vivo requirement of a suitable redox state at the ubiquinone pool level restricts the growth capacity of Rsb. denitrificans to oxic conditions.  相似文献   

8.
The kinetics of the photoreduction of cytochrome b-559 and plastoquinone were measured using well-coupled spinach chloroplasts. High potential (i.e, hydroquinone reducible) cytochrome b-559 was oxidized with low intensity far-red light in the presence of N-methyl phenazonium methosulfate or after preillumination with high intensity light. Using long flashes of red light, the half-reduction time of cytochrome b-559 was found to be 100 +/- 10 ms, compared to 6-10 ms for the photoreduction of the plastoquinone pool. Light saturation of the photoreduction of cytochrome b-559 occurred at a light intensity less than one-third of the intensity necessary for the saturation of ferricyanide reduction under identical illumination conditions. The photoreduction of cytochrome b-559 was accelerated in the presence of dibromothymoquinone with a t 1/2 = 25-35 ms. The addition of uncouplers, which caused stimulatory effect on ferricyanide reduction under the same experimental conditions resulted in a decrease in the rate of cytochrome b-559 reduction. The relatively slow photoreduction rate of cytochrome b-559 compared to the plastoquinone pool implies that electrons can be transferred efficiently from Photosystem II to plastoquinone without the involvement of cytochrome b-559 as an intermediate. These results indicate that it is unlikely that high potential cytochrome b-559 functions as an obligatory redox component in the main electron transport chain joining the two photosystems.  相似文献   

9.
A combination of potentiometric analysis and electrochemically poised low-temperature difference spectroscopy was used to examine a mutant strain of Escherichia coli that was previously shown by immunological criteria to be lacking the cytochrome d terminal oxidase. It was shown that this strain is missing cytochromes d, a1, and b558 and that the cytochrome composition of the mutant is similar to that of the wild-type strain grown under conditions of high aeration. The data indicate that the high-aeration branch of the respiratory chain contains two cytochrome components, b556 (midpoint potential [Em] = +35 mV) and cytochrome o (Em = +165 mV). The latter component binds to CO and apparently has a reduced-minus-oxidized split-alpha band with peaks at 555 and 562 nm. When the wild-type strain was grown under conditions of low aeration, the components of the cytochrome d terminal oxidase complex were observed: cytochrome d (Em = +260 mV), cytochrome a1 (Em = +150 mV) and cytochrome b558 (Em = +180 mV). All cytochromes appeared to undergo simple one-electron oxidation-reduction reactions. In the absence of CO, cytochromes b558 and o have nearly the same Em values. In the presence of CO, the Em of cytochrome o is raised, thus allowing cytochromes b558 and o to be individually quantitated by potentiometric analysis when they are both present.  相似文献   

10.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c(2) oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c(1) and c(2), the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0-3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c(1) and c(2), and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 is oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c(2) oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c(1) and c(2) is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   

11.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

12.
1. Chloroplasts suspended in a medium containing ethanediol and water (1 : 1, v/v) at -16 degrees C show light-induced proton uptake and subsequent dark efflux. Proton uptake in continuous light showed biphasic kinetics. 2. A 1 ms flash caused a single turnover of the photochemical centres at -16 degrees C. Under the same conditions 3H+ were taken up from the external medium in the presence of methyl viologen as electron acceptor. 3. The flash-induced proton uptake was exponential and monophasic with t1/2 = 3 s. The flash-induced proton release into the thylakoid interior was biphasic, with half-times of less than 0.1 s and 3 s. The fast phase represented approximately 30% of the total release and may be correlated with the oxidation of water. 4. The half-time of reduction of cytochrome f in the dark following illumination in the presence of 2 mM NH4Cl (2.5 s) is similar to the half-time of the slow phase of proton release, suggesting a correlation between the kinetics of cytochrome f reduction and plastoquinol oxidation.  相似文献   

13.
The midpoint potentials of the mitochondrial respiratory chain cytochromes of the protozoan Crithidia fasciculata at pH 7.2, Em7.2, show great similarity to those measured in higher organisms. Values of Em7.2 for cytochromes a and a3 are +165 and +340 mV. Both c cytochromes have Em7.2 = +230 mV. There are two b cytochromes with the same spectral characteristics with Em7.2 = -20 and -135 mV. These values are compatible with two sites of energy conservation for oxidative phosphorylation in these mitochondria. All cytochrome components show potentiometric titrations with n = 1. There is a fluorescent flavoprotein in these mitochondria with Em7.2 = -40 mV and n =2, whose function is not known.  相似文献   

14.
(1) The role of the ubiquinone pool in the reactions of the cyclic electron-transfer chain has been investigated by observing the effects of reduction of the ubiquinone pool on the kinetics and extent of the cytochrome and electrochromic carotenoid absorbance changes following flash illumination. (2) In the presence of antimycin, flash-induced reduction of cytochrome b-561 is dependent on a coupled oxidation of ubiquinol. The ubiquinol oxidase site of the ubiquinol:cytochrome c2 oxidoreductase catalyses a concerted reaction in which one electron is transferred to a high-potential chain containing cytochromes c1 and c2, the Rieske-type iron-sulfur center, and the reaction center primary donor, and a second electron is transferred to a low-potential chain containing cytochromes b-566 and b-561. (3) The rate of reduction of cytochrome b-561 in the presence of antimycin has been shown to reflect the rate of turnover of the ubiquinol oxidase site. This diagnostic feature has been used to measure the dependence of the kinetics of the site on the ubiquinol concentration. Over a limited range of concentration (0–3 mol ubiquinol/mol cytochrome b-561), the kinetics showed a second-order process, first order with respect to ubiquinol from the pool. At higher ubiquinol concentrations, other processes became rate determining, so that above approx. 25 mol ubiquinol/mol cytochrome b-561, no further increase in rate was seen. (4) The kinetics and extents of cytochrome b-561 reduction following a flash in the presence of antimycin, and of the antimycin-sensitive reduction of cytochrome c1 and c2, and the slow phase of the carotenoid change, have been measured as a function of redox potential over a wide range. The initial rate for all these processes increased on reduction of the suspension over the range between 180 and 100 mV (pH 7). The increase in rate occurred as the concentration of ubiquinol in the pool increased on reduction, and could be accounted for in terms of the increased rate of ubiquinol oxidation. It is not necessary to postulate the presence of a tightly bound quinone at this site with altered redox properties, as has been previously assumed. (5) The antimycin-sensitive reactions reflect the turnover of a second catalytic site of the complex, at which cytochrome b-561 ix oxidized in an electrogenic reaction. We propose that ubiquinone is reduced at this site with a mechanism similar to that of the two-electron gate of the reaction center. We suggest that antimycin binds at this site, and displaces the quinone species so that all reactions at the site are inhibited. (6) In coupled chromatophores, the turnover of the ubiquinone reductase site can be measured by the antimycin-sensitive slow phase of the electrochromic carotenoid change. At redox potentials higher than 180 mV, where the pool is completely oxidized, the maximal extent of the slow phase is half that at 140 mV, where the pool contains approx. 1 mol ubiquinone/mol cytochrome b-561 before the flash. At both potentials, cytochrome b-561 became completely reduced following one flash in the presence of antimycin. The results are interpreted as showing that at potentials higher than 180 mV, ubiquinol stoichiometric with cytochrome b-561 reaches the complex from the reaction center. The increased extent of the carotenoid change, when one extra ubiquinol is available in the pool, is interpreted as showing that the ubiquinol oxidase site turns over twice, and the ubiquinone reductase sites turns over once, for a complete turnover of the ubiquinol:cytochrome c2 oxidoreductase complex, and the net oxidation of one ubiquinol/complex. (7) The antimycin-sensitive reduction of cytochrome c1 and c2 is shown to reflect the second turnover of the ubiquinol oxidase site. (8) We suggest that, in the presence of antimycin, the ubiquinol oxidase site reaches a quasi equilibrium with ubiquinol from the pool and the high- and low-potential chains, and that the equilibrium constant of the reaction catalysed constrains the site to the single turnover under most conditions. (9) The results are discussed in the context of a detailed mechanism. The modified Q-cycle proposed is described by physicochemical parameters which account well for the results reported.  相似文献   

15.
The oxidation-reduction midpoint potential of the cytochrome b found in the plasma membrane of human neutrophils has been determined at pH 7.0 (Em,7.0) from measurements of absorption spectra at fixed potentials. In both unstimulated and phorbol myristate acetate-stimulated cells Em,7.0 was -245 mV. Changes in pH affected the Em of the cytochrome b, with a slope of approx. 25 mV/pH unit change. The Em,7.0 of the haem group(s) of the membrane-bound myeloperoxidase of human neutrophils was found to be +34 mV. The plasma membranes contained no detectable ubiquinone, and no iron-sulphur compounds were detected by e.p.r. spectroscopy at 5-20 K. No flavins were detected by e.p.r. spectroscopy. The cytochrome b-245 was not reduced by added NADH or NADPH. Dithionite-reduced cytochrome b-245 formed a complex with CO, supplied as a saturated solution, which was dissociated with 26 microseconds illumination from a xenon flash lamp, and the recombination with CO had a half-time of approx. 6 ms. Partly (80%) reduced cytochrome b-245 was oxidized by added air-saturated buffer with a half-time faster than 1 s at 20 degrees C, a resolution limited by mixing time. These results are compatible with cytochrome b-245 acting as an oxidase.  相似文献   

16.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

17.
(1) The reaction of the resting form of oxidised cytochrome c oxidase from ox heart with dithionite has been studied in the presence and absence of cyanide. In both cases, cytochrome a reduction in 0.1 M phosphate (pH 7) occurs at a rate of 8.2 · 104 M−1 · s−1. In the absence of cyanide, ferrocytochrome a3 appears at a rate (kobs) of 0.016 s−1. Ferricytochrome a3 maintains its 418 nm Soret maximum until reduced. The rate of a3 reduction is independent of dithionite concentration over a range 0.9 mM–131 mM. In the presence or cyanide, visible and EPR spectral changes indicate the formation of a ferric a3/cyanide complex occurs at the same rate as a3 reduction in the absence of cyanide. A g = 3.6 signal appears at the same time as the decay of a g = 6 signal. No EPR signals which could be attributed to copper in any significant amounts could be detected after dithionite addition, either in the presence or absence of cyanide. (2) Addition of dithionite to cytochrome oxidase at various times following induction of turnover with ascorbate/TMPD, results in a biphasic reduction of cytochrome a3 with an increasing proportion of the fast phase of reduction occurring after longer turnover times. At the same time, the predominant steady state species of ferri-cytochrome a3 shifts from high to low spin and the steady-state level of reduction of cytochrome a drops indicating a shift in population of the enzyme molecules to a species with fast turnover. In the final activated form, oxygen is not required for fast internal electron transfer to cytochrome a3. In addition, oxygen does not induce further electron uptake in samples of resting cytochrome oxidase reduced under anaerobic conditions in the presence of cyanide. Both findings are contrary to predictions of certain O-loop types of mechanism for proton translocation. (3) A measurement of electron entry into the resting form of cytochrome oxidase in the presence of cyanide, using TMPD or cytochrome c under anaerobic conditions, shows that three electrons per oxidase enter below a redox potential of around +200 mV. An initial fast entry of two electrons is followed by a slow (kobs ≈ 0.02 s) entry of a third electron. Above +200 mV, the number of electrons taken up in the initial fast phase drops as a redox center (presumably CuA) titrates with an apparent mid-point potential of +240 mV. The slow phase of reduction remains at the more positive redox values. (4) The results are interpreted in terms of an initial fast reduction of cytochrome a (and CuA at redox values more negative than +240 mV) followed by a slow reduction of CuB. CuB reduction is proposed to spin-uncouple cytochrome a3 to form a cyanide sensitive center, and trigger a conformational change to an activated form of the enzyme with faster intramolecular electron transfer.  相似文献   

18.
The lumen segment of cytochrome f consists of a small and a large domain. The role of the small domain in the biogenesis and stability of the cytochrome b(6)f complex and electron transfer through the cytochrome b(6)f complex was studied with a small domain deletion mutant in Chlamydomonas reinhardtii. The mutant is able to grow photoautotrophically but with a slower rate than the wild type strain. The heme group is covalently attached to the polypeptide, and the visible absorption spectrum of the mutant protein is identical to that of the native protein. The kinetics of electron transfer in the mutant were measured by flash kinetic spectroscopy. Our results show that the rate for the oxidation of cytochrome f was unchanged (t(12) = approximately 100 micros), but the half-time for the reduction of cytochrome f is increased (t(12) = 32 ms; for wild type, t(12) = 2.1 ms). Cytochrome b(6) reduction was slower than that of the wild type by a factor of approximately 2 (t(12) = 8.6 ms; for wild type, t(12) = 4.7 ms); the slow phase of the electrochromic band shift also displayed a slower kinetics (t(12) = 5.5 ms; for wild type, t(12) = 2.7 ms). The stability of the cytochrome b(6)f complex in the mutant was examined by following the kinetics of the degradation of the individual subunits after inhibiting protein synthesis in the chloroplast. The results indicate that the cytochrome b(6)f complex in the small domain deletion mutant is less stable than in the wild type. We conclude that the small domain is not essential for the biogenesis of cytochrome f and the cytochrome b(6)f complex. However, it does have a role in electron transfer through the cytochrome b(6)f complex and contributes to the stability of the complex.  相似文献   

19.
Ubiquinol-cytochrome c oxidoreductase (cytochrome bc1) complexes were demonstrated to be present in the membranes of the alkaliphilic and halophilic purple sulfur bacteria Ectothiorhodospira halophila, Ectothiorhodospira mobilis, and Ectothiorhodospira shaposhnikovii by protoheme extraction, immunoblotting, and electron paramagnetic resonance spectroscopy. The gy values of the Rieske [2Fe-2S] clusters observed in membranes of E. mobilis and E. halophila were 1.895 and 1.910, respectively. In E. mobilis membranes, the cytochrome bc1 complex was present in a stoichiometry of approximately 0.2 per reaction center. This complex was isolated and characterized. It contained four prosthetic groups: low-potential cytochrome b (cytochrome bL; Em = -142 mV), high-potential cytochrome b (cytochrome bH; Em = 116 mV), cytochrome c1 (Em = 341 mV), and a Rieske iron-sulfur cluster. The absorbance spectrum of cytochrome bL displayed an asymmetric alpha-band with a maximum at 564 nm and a shoulder at 559 nm. The alpha bands of cytochrome bH and cytochrome c1 peaked at 559.5 and 553 nm, respectively. These prosthetic groups were associated with three different polypeptides: cytochrome b, cytochrome c1, and the Rieske iron-sulfur protein, with apparent molecular masses of 43, 30, and 21 kDa, respectively. No evidence for the presence of a fourth subunit was obtained. Maximal ubiquinol-cytochrome c oxidoreductase activity of the purified complex was observed at pH 8; the turnover rate was 57 mol of cytochrome c reduced.(mol of cytochrome c1)-1.s-1. The complex showed a strikingly low sensitivity towards typical inhibitors of cytochrome bc1 complexes.  相似文献   

20.
Turnover of the cyclic electron transfer chain around photosystem I in intact chloroplasts was induced by addition of sodium dithionite after poisoning with 3-(3,4-dichlorophenyl)-1,1-dimethylurea. A substantial permeability barrier to dithionite allowed redox poising to a level sufficiently negative to activate, but not overreduce, the cycle. Spectral changes could thus be studied without interference from photosystem II reactions. Illumination by repetitive single-turnover flashes showed the participation in the cycle of cytochromes f and b563 with an apparent 1:1 stoichiometry. The rise of the flash-induced electrochromic bandshift (“P518”) showed a fast phase with rise time < 10 μs and a slow phase with rise time variable in the millisecond range. The slow phase had an amplitude equal to that of the fast phase and occurred only when electron transfer between cytochromes b563 and f was uninhibited. A kinetic correlation was observed between the rise of the slow phase and the rereduction of cytochrome f, whereas cytochrome b563 reoxidation was slower than both. Redox titrations of the appearance of the slow rise in the P518 response showed that it was only observed on repetitive flashes when a component of midpoint potential ~- ?55 mV (pH 8.1), n = 2, was reduced before the flash. A comparison is drawn between this protonmotive electron transfer cycle and that of the purple nonsulfur bacterium Rhodopseudomonas capsulata; possible arrangements of electron carriers in the photosystem I cycle are discussed, and a modified Q cycle is proposed to account for the properties observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号