首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sphingosine 1-phosphate (Sph-1-P) is considered to play a dual role in cellular signaling, acting intercellularly as well as intracellularly. In this study, we examined the role of Sph-1-P as a signaling molecule in human platelets, using DL-threo-dihydrosphingosine (DHS) and N,N-dimethylsphingosine (DMS), inhibitors of Sph kinase and protein kinase C. Both DMS and DL-threo-DHS were confirmed to be competitive inhibitors of Sph kinase obtained from platelet cytoplasmic fractions. In intact platelets labeled with [3H]Sph, stimulation with 12-O-tetradecanoylphorbol 13-acetate or thrombin did not affect [3H]-Sph-1-P formation. While both DMS and DL-threo-DHS inhibited not only [3H]Sph-1-P formation but also protein kinase C-dependent platelet aggregation, staurosporine, a potent protein kinase inhibitor, only inhibited the protein kinase C-dependent reaction. Hence, it is unlikely that Sph kinase activation and the resultant Sph-1-P formation are mediated by protein kinase C in platelets. Furthermore, Ca2+ mobilization induced by platelet agonists that act on G protein-coupled receptor was not affected by DMS or DL-threo-DHS. Our results suggest that Sph-1-P does not mediate intracellular signaling, including Ca2+ mobilization, in platelets.  相似文献   

2.
Sphingosine 1-phosphate: synthesis and release   总被引:4,自引:0,他引:4  
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

3.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive sphingolipid, acting both as an intracellular second messenger and extracellular mediator, in mammalian cells. In cell types where Sph-1-P acts as an intracellular messenger, stimulation-dependent synthesis of Sph-1-P, possibly resulting from sphingosine (Sph) kinase activation, is essential. Since this important kinase has recently been cloned, precise regulation of intracellular Sph-1-P synthesis will be clarified in the near future. As an intercellular mediator, elucidation of sources for extracellular Sph-1-P is important, in addition to identification of the cell surface receptors for this phospholipid. Blood platelets are very unique in that they store Sph-1-P abundantly (possibly due to the existence of highly active Sph kinase and a lack of Sph-1-P lyase) and release this bioactive lipid extracellularly upon stimulation. It is likely that platelets are an important source for extracellular Sph-1-P, especially for plasma and serum Sph-1-P. Platelet-derived Sph-1-P seems to play an important role in vascular biology.  相似文献   

4.
Sphingolipids, including ceramide (Cer), sphingosine (Sph), and sphingosine 1-phosphate (Sph-1-P) have recently emerged as signal-transducing molecules. Functionally, a distinguishing characteristic of these lipids is their apparent participation in pro- or anti-proliferative cell regulation pathways. In this study, we examined the involvement of sphingolipids in the fate of FRTL-5 thyroid follicular cells. We first examined the effects of sphingolipids on FRTL-5 cell viability. Sph and Cer induced apoptosis, as revealed by fluorescence microscopy of TUNEL-positive fragmented nuclei and 180-300 bp DNA fragmentation on agarose gel electrophoresis while Sph-1-P was confirmed to prevent FRTL-5 cell apoptosis induced by deprivation of serum and TSH, possibly via cell surface receptors. We then analysed the metabolism of radiolabelled Sph and C(6)-Cer (a synthetic cell-permeable Cer) in FRTL-5 cells by thin layer chromatography, followed by autoradiography. Sph was mainly metabolized to Cer, and then to sphingomyelin, while Sph conversion into Sph-1-P was hardly detected. These changes were not affected by stimulation of the cells with TSH. Our results indicate the involvement of sphingolipid mediators in the fate of FRTL-5 thyroid cells.  相似文献   

5.
Cultured human fibroblasts were fed with two differently labelled sulphatide molecules [one labelled on C-3 of the sphingosine (Sph) moiety [( Sph-3H]sulphatide), the second on C-1 of stearic acid [( stearoyl-14C]sulphatide)], and the intracellular metabolic fate of radioactivity was monitored. Incorporated radioactivity was almost all recovered in the total lipid extract, regardless of the labelling position of the added sulphatide; however, large differences in the level of incorporation occurred among labelled glycosphingolipids. For example, sphingomyelin was present as the major radiolabelled lipid after [Sph-3H]-sulphatide incubation, but was detectable only in trace amounts after [stearoyl-14C]sulphatide administration; in the latter case the radioactivity was located predominantly in glycerophospholipids. From this finding it can be inferred that the free long-chain base (sphingosine) that originates from lysosomal catabolism of sulphatide is mainly, and quite specifically, utilized for sphingomyelin biosynthesis, whereas the ceramide moiety is not; conversely the fatty acid released from ceramide is non-specifically re-utilized for phospholipid biosynthesis.  相似文献   

6.
The importance of sphingosine 1-phosphate (Sph-1-P) as an intercellular sphingolipid mediator has been established in various systems, and this is especially true in the areas of vascular biology and immunology. Blood platelets store Sph-1-P abundantly and release this bioactive lysophospholipid extracellularly upon stimulation, while vascular endothelial cells and smooth muscle cells respond dramatically to this platelet-derived bioactive lipid. Most of the responses elicited by extracellular Sph-1-P are believed to be mediated by G protein-coupled cell surface receptors, i.e., S1Ps. It is likely that regulation of Sph-1-P biological activity could be important for therapeutics, including but not limited to control of vascular disorders. Furthermore, elucidation of the mechanisms by which the levels of Sph-1-P in the blood are regulated seems important. Accordingly, the application of Sph-1-P analysis to laboratory medicine may be an important task in clinical medicine. In this review, Sph-1-P-related metabolism in the plasma will be summarized. Briefly, the levels and bioactivities of plasma Sph-1-P in vivo may be regulated by various factors, including Sph-1-P release from platelets (and red blood cells, based upon the recent reports), Sph-1-P distribution between albumin and lipoproteins, and S1P expression and lipid phosphate phosphatase activity on the cell surface. Then, application of Sph-1-P analysis to laboratory medicine will be discussed.  相似文献   

7.
To analyze the involvement in allergic reactions of platelets and sphingosine 1-phosphate (Sph-1-P), a lysophospholipid mediator released from activated platelets, the effects of Sph-1-P and a supernatant prepared from activated platelets on mast cell line RBL-2H3 were examined. Sph-1-P strongly inhibited the migration of both non-stimulated and fibronectin-stimulated RBL-2H3 cells, which was reversed by JTE-013, a specific antagonist of G protein-coupled Sph-1-P receptor S1P(2); S1P(2) was confirmed to be expressed in these cells. A similar anti-motility effect of Sph-1-P was observed in a phagokinetic assay. Consistent with these results, treatment of RBL-2H3 cells with Sph-1-P resulted in a rounded cell morphology, which was blocked by JTE-013. Under the present conditions, Sph-1-P failed to induce intracellular Ca(2+) mobilization or histamine degranulation, responses postulated to be elicited by intracellular Sph-1-P. Importantly, the Sph-1-P effect, i.e., the regulation of RBL-2H3 cell motility, was mimicked by the supernatant (both with and without boiling) prepared from activated platelets, and this effect of the supernatant was also blocked by JTE-013. Our results suggest that the motility of mast cells can be regulated by Sph-1-P and also platelets (which release Sph-1-P), via cell surface receptor S1P(2) (not through intracellular Sph-1-P actions, postulated previously in the same cells).  相似文献   

8.
Sphingosine 1-phosphate (Sph-1-P) is a bioactive lipid released from activated platelets and plays an important role in vascular biology. In this study, we investigated Sph-1-P-related metabolism in the blood vessel, mainly using radio-labeled Sph and Sph-1-P. Sph was metabolically stable in the plasma, while it was converted into Sph-1-P in the presence of activated platelets. When the mixture of Sph-1-P and plasma was fractionated on a gel-filtration column, all Sph-1-P co-eluted with protein fractions that coincide with lipoproteins and albumin by agarose gel electrophoresis. When evaluated by polyacrylamide gel electrophoresis, 7.2 +/- 3.8%, 53.3 +/- 6.4%, and 39.5 +/- 7.9% of the radioactivity of Sph-1-P added to plasma was recovered in the low-density lipoprotein (LDL), high-density lipoprotein (HDL), and albumin fractions, respectively. On the other hand, 5.2 +/- 3.2%, 38.4 +/- 5.5%, and 56.3 +/- 5.7% of the radioactivity of Sph-1-P converted from Sph in collagen-stimulated platelets and released into the plasma was recovered in the LDL, HDL, and albumin fractions, respectively. When Sph-1-P release from activated platelets was examined, a stronger response was observed in the presence of albumin than lipoproteins, suggesting efficient Sph-1-P extraction from platelets by albumin. Finally, Sph-1-P, which is stable in the plasma, was markedly degraded by an ectophosphatase activity in the presence of vascular endothelial cells or in whole blood. Although Sph-1-P is stable in the plasma, it is likely that the level of this bioactive lipid is dynamically controlled by various factors including release from platelets, distribution among plasma proteins, and degradation by ectophosphatase.  相似文献   

9.
The bioactive molecule sphingosine 1-phosphate (S1P) is abundantly stored in platelets and can be released extracellularly. However, although they have high sphingosine (Sph) kinase activity, platelets lack the de novo sphingolipid biosynthesis necessary to provide the substrates. Here, we reveal a generation pathway for Sph, the precursor of S1P, in human platelets. Platelets incorporated extracellular 3H-labeled Sph much faster than human megakaryoblastic cells and rapidly converted it to S1P. Furthermore, Sph formed from plasma sphingomyelin (SM) by bacterial sphingomyelinase (SMase) and neutral ceramidase (CDase) was rapidly incorporated into platelets and converted to S1P, suggesting that platelets use extracellular Sph as a source of S1P. Platelets abundantly express SM, possibly supplied from plasma lipoproteins, at the cell surface. Treating platelets with bacterial SMase resulted in Sph generation at the cell surface, conceivably by the action of membrane-bound neutral CDase. Simultaneously, a time-dependent increase in S1P levels was observed. Finally, we demonstrated that secretory acid SMase also induces S1P increases in platelets. In conclusion, our results suggest that in platelets, Sph is supplied from at least two sources: generation in the plasma followed by incorporation, and generation at the outer leaflet of the plasma membrane, initiated by cell surface SM degradation.  相似文献   

10.
Since sphingosine 1-phosphate (Sph-1-P) is stored in abundant amounts in blood platelets and released extracellularly upon stimulation, it is important to clarify the effects of this bioactive lysophospholipid on vascular endothelial cells from the viewpoint of platelet-endothelial cell interactions. In this study, we investigated the effects of Sph-1-P on the cytoskeletal remodeling of human umbilical vein endothelial cells (HUVECs). Of a focal adhesion kinase (FAK) family of non-receptor protein-tyrosine kinases, HUVECs were found to express FAK, but scarcely proline-rich tyrosine kinase 2. Sph-1-P induced FAK tyrosine phosphorylation, myosin light chain phosphorylation, and the formation of stress fibers in HUVECs. The specific Rho inactivator C3 transferase from Clostridium botulinum abolished all of these cytoskeletal responses induced by Sph-1-P, while pertussis toxin only partly inhibited FAK tyrosine phosphorylation, and hardly affected myosin light chain phosphorylation and stress fiber formation. In contrast, Sph-1-P-induced intracellular Ca(2)(+) mobilization was suppressed by pertussis toxin, but not at all by C3 exoenzyme. Our results suggest that Sph-1-P, a bioactive lipid released from activated platelets, induces endothelial cell cytoskeletal reorganization, mainly through Rho-mediated signaling pathways.  相似文献   

11.
The selective import of phospholipids into cells could be mediated by proteins secreted from the cells into the extracellular compartment. We observed that the supernatants obtained from suspensions of thrombin-activated platelets stimulated the exchange of pyrene (py)-labeled sphingomyelin between lipid vesicles in vitro. The proteins with sphingomyelin transfer activity were purified and identified as the chemokine connective tissue-activating peptide III (CTAP-III) and platelet basic protein. Isolated CTAP-III stimulated the exchange of py-sphingomyelin between lipid vesicles but did not affect the translocations of py-labeled phosphatidylcholine and phosphatidylethanolamine. CTAP-III rapidly increased the transfer of py-sphingomyelin from low density lipoproteins into peripheral blood lymphocytes, other immune cells, and fibroblasts. In the presence of heparin, CTAP-III was unable to insert sphingomyelin into the peripheral blood lymphocytes. The activation energy of the py-sphingomyelin transfer suggested that the translocation proceeded entirely in a hydrophobic environment. [(3)H]Sphingomyelin transferred to the cells by CTAP-III was hydrolyzed to [(3)H]ceramide and [(3)H]sphingosine after activation with tumor necrosis factor alpha. The generation of the [(3)H]sphingolipid messengers was catalyzed by acid sphingomyelinase. Our results identify CTAP-III as the first mediator of the selective (endocytosis-independent) cellular import of sphingomyelin allowing the paracrine modulation of the sphingolipid signaling.  相似文献   

12.
The late endosomal/lysosomal compartment (LE/LY) plays a key role in sphingolipid breakdown, with the last degradative step catalyzed by acid ceramidase. The released sphingosine can be converted to ceramide in the ER and transported by ceramide transfer protein (CERT) to the Golgi for conversion to sphingomyelin. The mechanism by which sphingosine exits LE/LY is unknown but Niemann-Pick C1 protein (NPC1) has been suggested to be involved. Here, we used sphingomyelin, ceramide and sphingosine labeled with [(3) H] in carbon-3 of the sphingosine backbone and targeted them to LE/LY in low-density lipoprotein (LDL) particles. These probes traced LE/LY sphingolipid degradation and recycling as suggested by (1) accumulation of [(3) H]-sphingomyelin-derived [(3) H]-ceramide and depletion of [(3) H]-sphingosine upon acid ceramidase depletion, and (2) accumulation of [(3) H]-sphingosine-derived [(3) H]-ceramide and attenuation of [(3) H]-sphingomyelin synthesis upon CERT depletion. NPC1 silencing did not result in the accumulation of [(3) H]-sphingosine derived from [(3) H]-sphingomyelin/LDL or [(3) H]-ceramide/LDL. Additional evidence against NPC1 playing a significant role in LE/LY sphingosine export was obtained in experiments using the [(3) H]-sphingolipids or a fluorescent sphingosine derivative in NPC1 knock-out cells. Instead, NPC1-deficient cells displayed an increased affinity for sphingosine independently of protein-mediated lipid transport. This likely contributes to the increased sphingosine content of NPC1 cells.  相似文献   

13.
Fluid shear stress modulates the functional responses of platelets and vascular cells, and plays an important role in the pathogenesis of vascular disorders, including atherosclerosis and restenosis. Since shear stress induces activation of platelets, which abundantly store sphingosine 1-phosphate (Sph-1-P), and upregulates the mRNA expression of S1P(1), the most important Sph-1-P receptor expressed on the endothelial cells, we examined the effects of shear stress on the Sph-1-P-related responses involving these cells. Shear stress was found to induce Sph-1-P release from the platelets in a shear intensity- and time-dependent manner. Inhibitors of protein kinase C suppressed this mechanical force-induced Sph-1-P release, suggesting involvement of this kinase. On the other hand, in vascular endothelial cells, shear stress increased S1P(1) protein expression, as revealed by flow-cytometric analysis, and the responsiveness to Sph-1-P, which was assessed by monitoring the intracellular Ca(2+) concentration. These results indicate that shear stress enhances the Sph-1-P responses in cell-cell interactions between platelets and endothelial cells.  相似文献   

14.
Platelet-derived mediators may play an important role in the development of renal diseases through interaction with glomerular mesangial cells (MCs), and we, in this study, examined the effect of sphingosine 1-phosphate (Sph-1-P), a bioactive lipid released from activated platelets, on the contraction of MCs. Sph-1-P was found to induce MC contraction through mediation of Rho kinase both in cell shape change and collagen gel contraction assays. The specific antagonist of the Sph-1-P receptor S1P(2) inhibited the response. Similar results were obtained when the supernatant from activated platelet suspensions were used instead of Sph-1-P. Our findings suggest that platelet-derived Sph-1-P may be involved in MC contraction via S1P(2) and that regulation of this receptor might be useful therapeutically.  相似文献   

15.
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the “sphingolipid rheostat”, producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

16.
Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases   总被引:8,自引:0,他引:8  
Sphingolipids are ubiquitous components of cell membranes and their metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) have important physiological functions, including regulation of cell growth and survival. Cer and Sph are associated with growth arrest and apoptosis. Many stress stimuli increase levels of Cer and Sph, whereas suppression of apoptosis is associated with increased intracellular levels of S1P. In addition, extracellular/secreted S1P regulates cellular processes by binding to five specific G protein coupled-receptors (GPCRs). S1P is generated by phosphorylation of Sph catalyzed by two isoforms of sphingosine kinases (SphK), type 1 and type 2, which are critical regulators of the "sphingolipid rheostat", producing pro-survival S1P and decreasing levels of pro-apoptotic Sph. Since sphingolipid metabolism is often dysregulated in many diseases, targeting SphKs is potentially clinically relevant. Here we review the growing recent literature on the regulation and the roles of SphKs and S1P in apoptosis and diseases.  相似文献   

17.
The pathways of metabolic processing of exogenously administered GM1 ganglioside in rat liver was investigated at the subcellular level. The GM1 used was 3H-labelled at the level of long-chain base ([Sph(sphingosine)-3H]GM1) or of terminal galactose ([Gal-3H]GM1). The following radioactive compounds, derived from exogenous GM1, were isolated and chemically characterized: gangliosides GM2, GM3, GD1a and GD1b (nomenclature of Svennerholm [(1964) J. Lipid Res. 5, 145-155] and IUPAC-IUB Recommendations [(1977) Lipids 12, 455-468]); lactosylceramide, glucosylceramide and ceramide; sphingomyelin. GM2, GM3, lactosylceramide, glucosylceramide and ceramide, relatively more abundant shortly after GM1 administration, were mainly present in the lysosomal fraction and reflected the occurrence of a degradation process. 3H2O was also produced in relevant amounts, indicating complete degradation of GM1, although no free long-chain bases could be detected. GD1a and GD1b, relatively more abundant later on after administration, were preponderant in the Golgi-apparatus fraction and originated from a biosynthetic process. More GD1a was produced starting from [Sph-3H]GM1 than from [Gal-3H]GM1, and radioactive GD1b was present only after [Sph-3H]GM1 injection. This indicates the use of two biosynthetic routes, one starting from a by-product of GM1 degradation, the other implicating direct sialylation of GM1. Both routes were used to produce GD1a, but only the first one for producing GD1b. Sphingomyelin was the major product of GM1 processing, especially at the longer times after injection, and arose from a by-product of GM1 degradation, most likely ceramide.  相似文献   

18.
Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (Sph-1-P) are known as structurally related bio-active lipids activating platelets through their respective receptors. Although the receptors for LPA and Sph-1-P have been recently identified in various cells, the identification and characterization of ones in platelets have been reported only preliminarily. In this report, we first investigated the distinct modes of LPA and Sph-1-P actions in platelet activation and found that LPA functioned as a much stronger agonist than Sph-1-P, and high concentrations of Sph-1-P specifically desensitized LPA-induced intracellular Ca(2+) mobilization. In order to identify the responsible receptors underlying these observations, we analyzed the LPA and Sph-1-P receptors which might be expressed in human platelets, by RT-PCR. We found for the first time that Edg2, 4, 6 and 7 mRNA are expressed in human platelets.  相似文献   

19.
A fluorescence-labeled sphingosine and sphingosine 1-phosphate have been successfully synthesized from the oxazolidinone methyl ester derived from glycidol via monoalkylation and the stereoselective reduction of the resulting ketone. The labeled sphingosine was converted into its phosphate by treatment with sphingosine kinase 1 (SPHK1) from mouse, and in platelets, and it was incorporated into the Chinese Hamster Ovarian (CHO) cells. In addition, MAPK was activated by NBD-Sph-1-P through Edg-1, Sph-1-P receptor.  相似文献   

20.
Since blood platelets release sphingosine 1-phosphate (Sph-1-P) upon activation, it is important to examine the effects of this bioactive lipid on vascular endothelial cell functions from the viewpoint of platelet-endothelial cell interactions. In the present study, we examined Sph-1-P-stimulated signaling pathways related to human umbilical vein endothelial cell (HUVEC) motility, with a special emphasis on the cytoskeletal docking protein Crk-associated substrate (Cas). Sph-1-P stimulated tyrosine phosphorylation of Cas, which was inhibited by the G(i) inactivator pertussis toxin but not by the Rho inactivator C3 exoenzyme or the Rho kinase inhibitor Y-27632. Fyn constitutively associated with and phosphorylated Cas, suggesting that Cas tyrosine phosphorylation may be catalyzed by Fyn. Furthermore, upon HUVEC stimulation with Sph-1-P, Crk, through its SH2 domain, interacted with tyrosine-phosphorylated Cas, and the Cas-Crk complex translocated to the cell periphery (membrane ruffles), through mediation of G(i) (Fyn) but not Rho. In contrast, tyrosine phosphorylation of focal adhesion kinase, and formation of stress fibers and focal adhesion were mediated by Rho but not G(i) (Fyn). Finally, Sph-1-P-enhanced HUVEC motility, assessed by a phagokinetic assay using gold sol-coated plates and a Boyden's chamber assay, was markedly inhibited not only by pertussis toxin (or the Fyn kinase inhibitor PP2) but also by C3 exoenzyme (or Y-27632). In HUVECs stimulated with Sph-1-P, these data suggest the following: (i) cytoskeletal signalings may be separable into G(i)-mediated signaling pathways (involving Cas) and Rho-mediated ones (involving FAK), and (ii) coordinated signalings from both pathways are required for Sph-1-P-enhanced HUVEC motility. Since HUVECs reportedly express the Sph-1-P receptors EDG-1 (coupled with G(i)) and EDG-3 (coupled with G(13) and G(q)) and the EDG-3 antagonist suramin was found to block specifically Rho-mediated responses, it is likely that Cas-related responses following G(i) activation originate from EDG-1, whereas Rho-related responses originate from EDG-3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号