首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In the myocardium, the Na(+)/H(+) exchanger isoform-1 (NHE1) activity is detrimental during ischemia-reperfusion (I/R) injury, causing increased intracellular Na(+) (Na(i)(+)) accumulation that results in subsequent Ca(2+) overload. We tested the hypothesis that increased expression of NHE1 would accentuate myocardial I/R injury. Transgenic mice were created that increased the Na(+)/H(+) exchanger activity specifically in the myocardium. Intact hearts from transgenic mice at 10-15 wk of age showed no change in heart performance, resting intracellular pH (pH(i)) or phosphocreatine/ATP levels. Transgenic and wild-type (WT) hearts were subjected to 20 min of ischemia followed by 40 min of reperfusion. Surprisingly, the percent recovery of rate-pressure product (%RPP) after I/R improved in NHE1-overexpressing hearts (64 +/- 5% vs. 41 +/- 5% in WT; P < 0.05). In addition, NMR spectroscopy revealed that NHE1 overexpressor hearts contained higher ATP during early reperfusion (levels P < 0.05), and there was no difference in Na(+) accumulation during I/R between transgenic and WT hearts. HOE642 (cariporide), an NHE1 inhibitor, equivalently protected both WT and NHE1-overexpressing hearts. When hearts were perfused with bicarbonate-free HEPES buffer to eliminate the contribution of HCO(3)(-) transporters to pH(i) regulation, there was no difference in contractile recovery after reperfusion between controls and transgenics, but NHE1-overexpressing hearts showed a greater decrease in ATP during ischemia. These results indicate that the basal activity of NHE1 is not rate limiting in causing damage during I/R, therefore, increasing the level of NHE1 does not enhance injury and can have some small protective effects.  相似文献   

2.
3.
We monitored myocardial function in postinfarcted wild-type (WT) and transgenic (TG) mouse hearts with overexpression of the cardiac Na(+)/Ca(2+) exchanger. Five weeks after infarction, cardiac function was better maintained in TG than WT mice [left ventricular (LV) systolic pressure: WT, 41 +/- 2; TG, 58 +/- 3 mmHg; P < 0.05; maximum rising rate of LV pressure (+dP/dt(max)): WT, 3,750 +/- 346; TG, 5,075 +/- 334 mmHg/s; P < 0.05]. The isometric contractile response to beta-adrenergic stimulation was greater in papillary muscles from TG than WT mice (WT, 13.2 +/- 0.9; TG, 16.3 +/- 1.0 mN/mm(2) at 10(-4) M isoproterenol). The sarcoplasmic reticulum (SR) Ca(2+) content investigated by rapid cooling contractures in papillary muscles was greater in TG than WT mouse hearts. We conclude that myocardial function is better preserved in TG mice 5 wk after infarction, which results from enhanced SR Ca(2+) content via overexpression of the Na(+)/Ca(2+) exchanger.  相似文献   

4.
Although the transient receptor potential vanilloid type 1 (TRPV1)-containing afferent nerve fibers are widely distributed in the heart, the relationship between TRPV1 function and cardiac ischemic preconditioning (PC) has not been well defined. Using TRPV1 knockout mice (TRPV1(-/-)), we studied the role of TRPV1 in PC-induced myocardial protection. Hearts of gene-targeted TRPV1-null mutant (TRPV1(-/-)) or wild-type (WT) mice were Langendorffly perfused in the presence or absence of CGRP(8-37), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; or RP-67580, a selective neurokinin-1 receptor antagonist when hearts were subjected to three 5-min periods of ischemia PC followed by 30 min of global ischemia and 40 min of reperfusion (I/R). PC before I/R decreased left ventricular (LV) end-diastolic pressure and increased LV developed pressure, coronary flow (CF), peak-positive maximum rate of rise of LV pressure in WT mice (PC-WT) compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts (P < 0.05), and PC also decreased LV end-diastolic pressure in PC-TRPV1(-/-) compared with TRPV1(-/-). CGRP(8-37) or RP-67580 abolished PC-induced protection in WT but not TRPV1(-/-) hearts (P < 0.05). Moreover, PC decreased lactate dehydrogenase release and infarct size in PC-WT compared with PC-TRPV1(-/-), TRPV1(-/-), or WT hearts, and it also lowered these parameters in PC-TRPV1(-/-) compared with TRPV1(-/-) hearts (P < 0.05). Radioimmunoassay showed that the release of substance P and CGRP after PC was higher in WT hearts than in TRPV1(-/-) hearts (P < 0.05), which was attenuated by capsazepine in WT but not TRPV1(-/-) hearts. Thus PC-induced protection of the heart was impaired in TRPV1(-/-) hearts, indicating that TRPV1 contributes to the beneficial effects of preconditioning against I/R injury through release substance P and CGRP.  相似文献   

5.
In this study we tested the hypothesis that ventricular homeostasis of L-type Ca(2+) current (I(Ca,L)) minimally involves regulation of the main pore-forming alpha-subunit (Ca(V)1.2) and auxiliary proteins that serve as positive or negative regulators of I(Ca,L). We treated animals for 24 h with verapamil (Ver, 3.6 mg.kg(-1).day(-1)), isoproterenol (Iso, 30 mg.kg(-1).day(-1)), or Iso + Ver via osmotic minipumps. To test for alterations of Ca(2+) channel complex components we performed real-time PCR and Western blot analysis on ventricle. In addition, cardiac myocytes (CMs) were dispersed and current was recorded in the whole cell configuration to evaluate I(Ca,L). Surprisingly, 24- to 48-h Ver increased Ca(V)1.2 mRNA and protein and I(Ca,L) current (Ver 11 +/- 1pA/pF vs. control 7 +/- 0.5pA/pF; P < 0.01). I(Ca,L) from CMs in Ver mice showed no change in whole cell capacitance. To examine the in vivo effects of a physiologically relevant Ca(2+) channel agonist, we treated mice with Iso. Twenty-four-hour Iso infusion increased heart rate; Ca(V)1.2- and Ca(V)beta(2) mRNA levels were constant, but the Ca(2+) channel subunit mRNA Rem was increased twofold. Cells isolated from 24-h Iso hearts showed no change in basal I(Ca,L) density and diminished responsiveness to acute 1 muM Iso. To further examine the homeostatic regulation of the Ca(2+) channel, we treated animals for 24 h with Iso + Ver. The influence of Iso + Ver was similar that of to Iso alone on Ca(2+) channel mRNAs and I(Ca,L), with the exception that it prevented the increase in Rem seen with Iso treatment. Long-term Ca(2+) channel blockade induces an increase of Ca(V)1.2 mRNA and protein and significantly increases I(Ca,L).  相似文献   

6.
Transgenic (TG) TNF1.6 mice, which cardiac specifically overexpress tumor necrosis factor-alpha (TNF-alpha), exhibit heart failure (HF) and increased mortality, which is markedly higher in young (<20 wk) males (TG-M) than females (TG-F). HF in this model may be partly caused by remodeling of the extracellular matrix and/or structure/function alterations at the single myocyte level. We studied left ventricular (LV) structure and function using echocardiography and LV myocyte morphometry, contractile function, and intracellular Ca(2+) (Ca(i)(2+)) handling using cell edge detection and fura 2 fluorescence, respectively, in 12-wk-old TG-M and TG-F mice and their wild-type (WT) littermates. TG-F mice showed LV hypertrophy without dilatation and only a small reduction of basal fractional shortening (FS) and response to isoproterenol (Iso). TG-M mice showed a large LV dilatation, higher mRNA levels of beta-myosin heavy chain and atrial natriuretic factor versus TG-F mice, reduced FS relative to both WT and TG-F mice, and minimal response to Iso. TG-F and TG-M myocytes were similarly elongated (by approximately 20%). The amplitude of Ca(i)(2+) transients and contractions and the response to Iso were comparable in WT and TG-F myocytes, whereas the time to 50% decline (TD(50%)) of the Ca(i)(2+) transient, an index of the rate of sarcoplasmic reticulum Ca(2+) uptake, was prolonged in TG-F myocytes. In TG-M myocytes, the amplitudes of Ca(i)(2+) transients and contractions were reduced, TD(50%) of the Ca(i)(2+) transient was prolonged, and the inotropic effect of Iso on Ca(i)(2+) transients was reduced approximately twofold versus WT myocytes. Protein expression of sarco(endo)plasmic reticulum Ca(2+)-ATPase 2 and phospholamban was unaltered in TG versus WT hearts, suggesting functional origins of impaired Ca(2+) handling in the former. These results indicate that cardiac-specific overexpression of TNF-alpha induces myocyte hypertrophy and gender-dependent alterations in Ca(i)(2+) handling and contractile function, which may at least partly account for changes in LV geometry and in vivo cardiac function in this model.  相似文献   

7.
In avian and mammalian embryos, surgical ablation or severely reduced migration of the cardiac neural crest leads to a failure of outflow tract septation known as persistent truncus arteriosus (PTA) and leads to embryo lethality due partly to impaired excitation-contraction coupling stemming primarily from a reduction in the L-type Ca(2+) current (I(Ca),(L)). Decreased I(Ca,L) occurs without a corresponding reduction in the alpha(1)-subunit of the Ca(2+) channel. We hypothesize that decreased I(Ca),(L) is due to reduced function at the single channel level. The cell-attached patch clamp with Na(+) as the charge carrier was used to examine single Ca(2+) channel activity in myocytes from normal hearts from sham-operated embryos and from hearts diagnosed with PTA at embryonic days (ED) 11 and 15 after laser ablation of the cardiac neural crest. In normal hearts, the number of single channel events per 200-ms depolarization and the mean open channel probability (P(o)) was 1.89 +/- 0.17 and 0.067 +/- 0.008 for ED11 and 1.14 +/- 0.17 and 0.044 +/- 0.005 for ED15, respectively. These values represent a normal reduction in channel function and I(Ca),(L) observed with development. However, the number of single channel events was significantly reduced in hearts with PTA at both ED11 and ED15 (71% and 47%, respectively) with a corresponding reduction in P(o) (75% and 43%). The open time frequency histograms were best fitted by single exponentials with similar decay constants (tau approximately or equal 4.5 ms) except for the sham operated at ED15 (tau = 3.4 ms). These results indicate that the cardiac neural crest influences the development of myocardial Ca(2+) channels.  相似文献   

8.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

9.
In this study we investigated the role of Mas on cardiac function during ischemia/reperfusion in isolated perfused mouse heart. Following a stabilization period of 30 min, hearts from WT and Mas KO mice were subjected to global ischemia. After 20 min of ischemia, the flow was restarted and the hearts were reperfused for 30 min. An additional group of WT mice was perfused with solution containing the Ang-(1-7) receptor Mas antagonist A-779. Isolated heart of Mas KO and WT treated with A-779 presented an increase in the perfusion pressure in the baseline period. This difference increased with 5 min of reperfusion reaching similar values to baseline period at the end of the reperfusion. Isolated hearts of Mas KO and WT treated with A-779 also presented a decreased systolic tension, +/-dT/dt, and HR. Upon global ischemia WT hearts showed a significant decrease in systolic tension and an increase in diastolic tension. During reperfusion an increase in systolic and diastolic tension was observed in WT mice. Deletion or blockade of Mas markedly attenuated these changes in isolated hearts. These results indicate that Mas plays an important role in cardiac function during ischemia/reperfusion which is in keeping with the cardiac and coronary effects previously described for Ang-(1-7).  相似文献   

10.
Endurance exercise training increases smooth muscle L-type Ca(2+) current density in both resistance and proximal coronary arteries of female miniature swine. The purpose of the present study was to determine 1) whether gender differences exist in coronary smooth muscle (CSM) L-type Ca(2+) current density and 2) whether endurance training in males would demonstrate a similar adaptive response as females. Proximal, conduit (approximately 1.0 mm), and resistance [~200 microm (internal diameter)] coronary arteries were obtained from sedentary and treadmill-trained swine of both sexes. CSM were isolated by enzymatic digestion (collagenase plus elastase), and voltage-gated Ca(2+)-channel current (I(Ca)) was determined by using whole cell voltage clamp during superfusion with 75 mM tetraethylammonium chloride and 10 mM BaCl(2). Current-voltage relationships were obtained at test potentials from -60 to 70 mV from a holding potential of -80 mV, and I(Ca) was normalized to cell capacitance (pA/pF). Endurance treadmill training resulted in similar increases in heart weight-to-body weight ratio, endurance time, and skeletal muscle citrate synthase activity in male and female swine. I(Ca) density was significantly greater in males compared with females in both conduit (-7.57 +/- 0.58 vs. -4.14 +/- 0.47 pA/pF) and resistance arteries (-11.25 +/- 0.74 vs. -6.49 +/- 0.87 pA/pF, respectively). In addition, voltage-dependent activation of I(Ca) in resistance arteries was shifted to more negative membrane potentials in males. Exercise training significantly increased I(Ca) density in both conduit and resistance arteries in females (-7.01 +/- 0.47 and -9.73 +/- 1.13 pA/pF, respectively) but had no effect in males (-8.61 +/- 0.50 and -12.04 +/- 1.07 pA/pF, respectively). Thus gender plays a significant role in determining both the magnitude and voltage dependence of I(Ca) in CSM and the adaptive response of I(Ca) to endurance training.  相似文献   

11.
TNFalpha is a cytokine wit pleiotropic functions in many organs. In the heart increased TNFalpha levels are not only associated with heart failure, but also, paradoxically, with protection from ischemic damage. To test whether the protective role of TNFalpha in the heart is concentration-dependent, we studied two mouse heart models with low (two- to threefold) over-expression of endogenous TNFalpha: mice deficient in a translational repressor of TNFalpha mRNA, TIA-1(-/-), and mice over-expressing human TNFalpha. Hearts lacking TIA-1 were characterized for their endogenous TNFalpha over-expression during normal Langendorff perfusion. To define which TNFalpha receptor mediates cardiac protection, we also used mice lacking the TNFR1 receptor. Contractile function was assessed in isolated hearts perfused in the isovolumic Langendorff mode during and following global no-flow ischemic stress and in response to varying extracellular [Ca(2+)] to determine their contractile response and Ca(2+) sensitivity. All hearts with low over-expression of TNFalpha, independent of human or murine origin, have improved contractile performance and increased Ca(2+) sensitivity (by 0.2-0.26 pCa). Hearts lacking TNFR1 have contractile performance equal to wild type hearts. Recovery from ischemia was greater in TIA-1(-/-) and was diminished in TNFR1(-/-). Better contractile function in TNFalpha over-expressing hearts is not due to improved cardiac energetics assessed as [ATP] and glucose uptake or to differences in expression of SERCA2a or calmodulin. We suggest that low levels of TNFalpha increase the Ca(2+) sensitivity of the heart via a TNFR1-mediated mechanism.  相似文献   

12.
Tepe NM  Lorenz JN  Yatani A  Dash R  Kranias EG  Dorn GW  Liggett SB 《Biochemistry》1999,38(50):16706-16713
The limiting element in beta-adrenergic receptor (betaAR)-G(s)-adenylyl cyclase (AC) signal transduction in the cardiomyocyte is not known, but it has been proposed that the level of adenylyl cyclase expression constrains betaAR signaling. To alter the above equilibrium, type V AC was overexpressed in a myocyte-specific manner in the hearts of transgenic mice using the alpha-myosin heavy chain promoter. Expression of type V AC was approximately 75% over endogenous levels as quantitated by [(3)H]forskolin binding. Functional activity of the transgene product was evident in cardiac membrane AC studies, where basal (45 +/- 11 vs 19 +/- 5 pmol min(-)(1) mg(-)(1)) and forskolin+Mn(2+) (695 +/- 104 vs 386 +/- 34 pmol min(-)(1) mg(-)(1)) stimulated activities were increased compared to activities in nontransgenic (NTG) littermates. However, while isoproterenol stimulated activities were higher (74 +/- 12 vs 46 +/- 9.8 pmol min(-)(1) mg(-)(1)), the fold stimulation over basal was not increased in ACV overexpressors compared to NTG (line 14.3 = 2.29 +/- 0.44-fold, line 15.1 = 1.70 +/- 0.1-fold, NTG = 2.62 +/- 0.18-fold). Similarly, in whole cell patch-clamp studies, betaAR-mediated opening of L-type Ca(2+) channels was not found to be enhanced in transgenic ACV myocytes (225 +/- 15 vs 216 +/- 10% of basal currents). Basal and isoproterenol stimulated PKA activities were elevated in the ACV mice compared to NTG, but again the extent of stimulation over basal was not enhanced. Phosphorylated phospholamban was approximately 2-fold greater in myocytes from ACV hearts compared to NTG, indicating that distal elements of the contractile cascade are activated by AC overexpression. ACV mice displayed increased heart rates and fractional shortening as assessed by echocardiography. However, in vivo hemodynamic studies revealed that heart rate and contractility responses to agonist infusion were not enhanced in ACV mice compared to NTG. We conclude that at native stoichiometries, the levels of adenylyl cyclase influence basal activities and cardiac function, but do not constrain betaAR signaling in the cardiomyocyte.  相似文献   

13.
Cardiac excitation-contraction coupling (EC coupling) links the electrical excitation of the cell membrane to the mechanical contractile machinery of the heart. Calcium channels are major players of EC coupling and are regulated by voltage and Ca(2+)/calmodulin (CaM). CaM binds to the IQ motif located in the C terminus of the Ca(v)1.2 channel and induces Ca(2+)-dependent inactivation (CDI) and facilitation (CDF). Mutation of Ile to Glu (Ile1624Glu) in the IQ motif abolished regulation of the channel by CDI and CDF. Here, we addressed the physiological consequences of such a mutation in the heart. Murine hearts expressing the Ca(v)1.2(I1624E) mutation were generated in adult heterozygous mice through inactivation of the floxed WT Ca(v)1.2(L2) allele by tamoxifen-induced cardiac-specific activation of the MerCreMer Cre recombinase. Within 10 days after the first tamoxifen injection these mice developed dilated cardiomyopathy (DCM) accompanied by apoptosis of cardiac myocytes (CM) and fibrosis. In Ca(v)1.2(I1624E) hearts, the activity of phospho-CaM kinase II and phospho-MAPK was increased. CMs expressed reduced levels of Ca(v)1.2(I1624E) channel protein and I(Ca). The Ca(v)1.2(I1624E) channel showed "CDI" kinetics. Despite a lower sarcoplasmic reticulum Ca(2+) content, cellular contractility and global Ca(2+) transients remained unchanged because the EC coupling gain was up-regulated by an increased neuroendocrine activity. Treatment of mice with metoprolol and captopril reduced DCM in Ca(v)1.2(I1624E) hearts at day 10. We conclude that mutation of the IQ motif to IE leads to dilated cardiomyopathy and death.  相似文献   

14.
N-oleoyldopamine (OLDA), a bioactive lipid originally found in the mammalian brain, is an endovanilloid that selectively activates the transient receptor potential vanilloid type 1 (TRPV1) channel. This study tests the hypothesis that OLDA protects the heart against ischemia and reperfusion (I/R) injury via activation of the TRPV1 in wild-type (WT) but not in gene-targeted TRPV1-null mutant (TRPV1(-/-)) mice. Hearts of WT or TRPV1(-/-) mice were Langendorffly perfused with OLDA (2 x 10(-9) M) in the presence or absence of CGRP8-37 (1 x 10(-6) M), a selective calcitonin gene-related peptide (CGRP) receptor antagonist; RP-67580 (1 x 10(-6) M), a selective neurokinin-1 receptor antagonist; chelerythrine (5 x 10(-6) M), a selective protein kinase C (PKC) antagonist; or tetrabutylammonium (TBA, 5 x 10(-4) M), a nonselective K(+) channel antagonist, followed by 35 min of global ischemia and 40 min of reperfusion (I/R). Left ventricular end-diastolic pressure (LVEDP), left ventricular developed pressure (LVDP), coronary flow (CF), and left ventricular peak positive dP/dt (+dP/dt) were evaluated after I/R. OLDA improved recovery of cardiac function after I/R in WT but not TRPV1(-/-) hearts by increasing LVDP, CF, and +dP/dt and by decreasing LVEDP. CGRP8-37, RP-67580, chelerythrine, or TBA abolished the protective effect of OLDA in WT hearts. Radioimmunoassay showed that the release of substance P (SP) and CGRP after OLDA treatment was higher in WT than in TRPV1(-/-) hearts, which was blocked by chelerythrine or TBA. Thus OLDA exerts a cardiac protective effect during I/R injury in WT hearts via CGRP and SP release, which is abolished by PKC or K(+) channel antagonists. The protective effect of OLDA is void in TRPV1(-/-) hearts, supporting the notion that TRPV1 mediates OLDA-induced protection against cardiac I/R injury.  相似文献   

15.
An increase in cytosolic Ca2+ via a capacitative calcium entry (CCE)-mediated pathway, attributed to members of the transient receptor potential (TRP) superfamily, TRPC1 and TRPC3, has been reported to play an important role in regulating cardiomyocyte hypertrophy. Increased cytosolic Ca2+ also plays a critical role in mediating cell death in response to ischemia-reperfusion (I/R). Therefore, we tested the hypothesis that overexpression of TRPC3 in cardiomyocytes will increase sensitivity to I/R injury. Adult cardiomyocytes isolated from wild-type (WT) mice and from mice overexpressing TRPC3 in the heart were subjected to 90 min of ischemia and 3 h of reperfusion. After I/R, viability was 51 +/- 1% in WT mice and 42 +/- 5% in transgenic mice (P < 0.05). Apoptosis assessed by annexin V was significantly increased in the TRPC3 group compared with WT (32 +/- 1% vs. 21 +/- 3%; P < 0.05); however, there was no significant difference in necrosis between groups. Treatment of TRPC3 cells with the CCE inhibitor SKF-96365 (0.5 microM) significantly improved cellular viability (54 +/- 4%) and decreased apoptosis (15 +/- 4%); in contrast, the L-type Ca2+ channel inhibitor verapamil (10 microM) had no effect. Calpain-mediated cleavage of alpha-fodrin was increased approximately threefold in the transgenic group following I/R compared with WT (P < 0.05); this was significantly attenuated by SKF-96365. The calpain inhibitor PD-150606 (25 microM) attenuated the increase in both alpha-fodrin cleavage and apoptosis in the TPRC3 group. Increased TRPC3 expression also increased sensitivity to Ca2+ overload stress, but it did not affect the response to TNF-alpha-induced apoptosis. These results suggest that CCE mediated via TRPC may play a role in cardiomyocyte apoptosis following I/R due, at least in part, to increased calpain activation.  相似文献   

16.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

17.
Duchenne muscular dystrophy (DMD) is caused by deficiency of the cytoskeletal protein dystrophin. Oxidative stress is thought to contribute to the skeletal muscle damage in DMD; however, little is known about the role of oxidative damage in the pathogenesis of the heart failure that occurs in DMD patients. The dystrophin-deficient (mdx) mouse is an animal model of DMD that also lacks dystrophin. The current study investigates the role of the antioxidant N-acetylcysteine (NAC) on mdx cardiomyocyte function, Ca(2+) handling, and the cardiac inflammatory response. Treated mice received 1% NAC in their drinking water for 6 wk. NAC had no effect on wild-type (WT) mice. Immunohistochemistry experiments revealed that mdx mice had increased dihydroethidine (DHE) staining, an indicator of superoxide production; NAC-treatment reduced DHE staining in mdx hearts. NAC treatment attenuated abnormalities in mdx cardiomyocyte Ca(2+) handling. Mdx cardiomyocytes had decreased fractional shortening and decreased Ca(2+) sensitivity; NAC treatment returned mdx fractional shortening to WT values but did not affect the Ca(2+) sensitivity. Immunohistochemistry experiments revealed that mdx hearts had increased levels of collagen type III and the macrophage-specific protein, CD68; NAC-treatment returned collagen type III and CD68 expression close to WT values. Finally, mdx hearts had increased NADPH oxidase activity, suggesting it could be a possible source of increased reactive oxygen species in mdx mice. This study is the first to demonstrate that oxidative damage may be involved in the pathogenesis of the heart failure that occurs in mdx mice. Therapies designed to reduce oxidative damage might be beneficial to DMD patients with heart failure.  相似文献   

18.
Transgenic mice overexpressing the inflammatory cytokine tumor necrosis factor (TNF)-alpha (TNF-alpha mice) in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, atrial and ventricular arrhythmias on ambulatory telemetry monitoring, and decreased survival compared with nontransgenic littermates. Programmed stimulation in vitro with single extra beats elicits reentrant ventricular arrhythmias in TNF-alpha (n = 12 of 13 hearts) but not in control hearts. We performed optical mapping of voltage and Ca(2+) in isolated perfused ventricles of TNF-alpha mice to study the mechanisms that lead to the initiation and maintenance of the arrhythmias. When compared with controls, hearts from TNF-alpha mice have prolonged of action potential durations (action potential duration at 90% repolarization: 23 +/- 2 ms, n = 7, vs. 18 +/- 1 ms, n = 5; P < 0.05), no increased dispersion of refractoriness between apex and base, elevated diastolic and depressed systolic [Ca(2+)], and prolonged Ca(2+) transients (72 +/- 6 ms, n = 10, vs. 54 +/- 5 ms, n = 8; P < 0.01). Premature beats have diminished action potential amplitudes and conduct in a slow, heterogeneous manner. Lowering extracellular [Ca(2+)] normalizes conduction and prevents inducible arrhythmias. Thus both action potential prolongation and abnormal Ca(2+) handling may contribute to the initiation of reentrant arrhythmias in this heart failure model by mechanisms distinct from enhanced dispersion of refractoriness or triggered activity.  相似文献   

19.
Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia. At 28 days after I/R, mortality was lower in mTOR-Tg mice than littermate control mice [wild-type (WT) mice]. Echocardiography and MRI demonstrated that global cardiac function in mTOR-Tg mice was preserved, whereas WT mice exhibited significant cardiac dysfunction. Masson's trichrome staining showed that 28 days after I/R, the area of interstitial fibrosis was smaller in mTOR-Tg mice compared with WT mice, suggesting that adverse left ventricular remodeling is inhibited in mTOR-Tg mice. In the ex vivo I/R model, mTOR-Tg hearts demonstrated improved functional recovery compared with WT hearts. Perfusion with Evans blue after ex vivo I/R yielded less staining in mTOR-Tg hearts than WT hearts, indicating that mTOR overexpression inhibited necrosis during I/R injury. Expression of proinflammatory cytokines, including IL-6 and TNF-α, in mTOR-Tg hearts was lower than in WT hearts. Consistent with this, IL-6 in the effluent post-I/R injury was lower in mTOR-Tg hearts than in WT hearts. These findings suggest that cardiac mTOR overexpression in the heart is sufficient to provide substantial cardioprotection against I/R injury and suppress the inflammatory response.  相似文献   

20.
We have recently reported that exposure of rat hearts to high Ca(2+) produces a Ca(2+) overload-induced contractile failure in rat hearts, which was associated with proteolysis of alpha-fodrin. We hypothesized that contractile failure after ischemia-reperfusion (I/R) is similar to that after high Ca(2+) infusion. To test this hypothesis, we investigated left ventricular (LV) mechanical work and energetics in the cross-circulated rat hearts, which were subjected to 15 min global ischemia and 60 min reperfusion. Sixty minutes after I/R, mean systolic pressure-volume area (PVA; a total mechanical energy per beat) at midrange LV volume (mLVV) (PVA(mLVV)) was significantly decreased from 5.89 +/- 1.55 to 3.83 +/- 1.16 mmHg.ml.beat(-1).g(-1) (n = 6). Mean myocardial oxygen consumption per beat (Vo(2)) intercept of (Vo(2)-PVA linear relation was significantly decreased from 0.21 +/- 0.05 to 0.15 +/- 0.03 microl O(2).beat(-1).g(-1) without change in its slope. Initial 30-min reperfusion with a Na(+)/Ca(2+) exchanger (NCX) inhibitor KB-R7943 (KBR; 10 micromol/l) significantly reduced the decrease in mean PVA(mLVV) and Vo(2) intercept (n = 6). Although Vo(2) for the Ca(2+) handling was finally decreased, it transiently but significantly increased from the control for 10-15 min after I/R. This increase in Vo(2) for the Ca(2+) handling was completely blocked by KBR, suggesting an inhibition of reverse-mode NCX by KBR. alpha-Fodrin proteolysis, which was significantly increased after I/R, was also significantly reduced by KBR. Our study shows that the contractile failure after I/R is similar to that after high Ca(2+) infusion, although the contribution of reverse-mode NCX to the contractile failure is different. An inhibition of reverse-mode NCX during initial reperfusion protects the heart against reperfusion injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号