首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
High rates of old growth (OG) forest destruction and difficult farming conditions result in increasing cover of secondary forests (SF) in the Amazon. In this setting, it is opportune to ask which animals use newly available SF and which stay restricted to OG. This study presents a comparison of SF and OG site occupancy by nocturnal birds in terra firme forests of the Amazon Guianan shield, north of Manaus, Brazil. We tested species-specific occupancy predictions for two owls ( Lophostrix cristata/Glaucidium hardyi ), two potoos ( Nyctibius leucopterus/Nyctibius griseus ) and two nightjars ( Caprimulgus nigrescens/Nyctidromus albicollis ). For each pair, we predicted that one species would have higher occupancy in OG while the other would either be indifferent to forest type or favor SF sites. Data were collected in 30 OG and 24 SF sites with monthly samples from December 2007 to December 2008. Our analytic approach accounts for the possibility of detection failure and for spatial autocorrelation in occupancy, thus leading to strong inferences about changes in occupancy between forest types and between species. Nocturnal bird richness and community composition were indistinguishable between OG and SF sites. Owls were relatively indifferent to forest type. Potoos followed the a priori predictions, and one of the nightjars ( C. nigrescens ) favored SF instead of OG as predicted. Only one species, Nyctib. leucopterus , clearly favored OG. The landscape context of our SF study sites, surrounded by a vast expanse of continuous OG forest, partially explains the resemblance between SF and OG fauna but leaves unexplained the higher occupancy for SF than OG sites for several study species. The causal explanation of high SF occupancy remains an open question, but the result itself motivates further comparisons for other groups, as well as recognition of the conservation potential of SF.  相似文献   

3.
4.
We analyze forest structure, diversity, and dominance in three large-scale Amazonian forest dynamics plots located in Northwestern (Yasuni and Amacayacu) and central (Manaus) Amazonia, to evaluate their consistency with prevailing wisdom regarding geographic variation and the shape of species abundance distributions, and to assess the robustness of among-site patterns to plot area, minimum tree size, and treatment of morphospecies. We utilized data for 441,088 trees (DBH ≥1 cm) in three 25-ha forest dynamics plots. Manaus had significantly higher biomass and mean wood density than Yasuni and Amacayacu. At the 1-ha scale, species richness averaged 649 for trees ≥1 cm DBH, and was lower in Amacayacu than in Manaus or Yasuni; however, at the 25-ha scale the rankings shifted, with Yasuni < Amacayacu < Manaus. Within each site, Fisher’s alpha initially increased with plot area to 1–10 ha, and then showed divergent patterns at larger areas depending on the site and minimum size. Abundance distributions were better fit by lognormal than by logseries distributions. Results were robust to the treatment of morphospecies. Overall, regional patterns in Amazonian tree species diversity vary with the spatial scale of analysis and the minimum tree size. The minimum area to capture local diversity is 2 ha for trees ≥1 cm DBH, or 10 ha for trees ≥10 cm DBH. The underlying species abundance distribution for Amazonian tree communities is lognormal, consistent with the idea that the rarest species have not yet been sampled. Enhanced sampling intensity is needed to fill the still large voids we have in plant diversity in Amazon forests.  相似文献   

5.
Tropical forests undergo continuous transformation to other land uses, resulting in landscapes typified by forest fragments surrounded by anthropogenic habitats. Small forest fragments, specifically strip-shaped remnants flanking streams (referred to as riparian remnants), can be particularly important for the maintenance and conservation of biodiversity within highly fragmented forests. We compared frog species diversity between riparian remnants, other forest fragments and cattle pastures in a tropical landscape in Los Tuxtlas, Mexico. We found similar species richness in the three habitats studied and a similar assemblage structure between riparian remnants and forest fragments, although species composition differed by 50 per cent. Frog abundance was halved in riparian remnants compared with forest fragments, but was twice that found in pastures. Our results suggest that riparian remnants play an important role in maintaining a portion of frog species diversity in a highly fragmented forest, particularly during environmentally stressful (hot and dry) periods. In this regard, however, the role of riparian remnants is complementary, rather than substitutive, with respect to the function of other forest fragments within the fragmented forest.  相似文献   

6.
Data on the response of bird communities to surface mining and habitat modification are limited, with virtually no data examining the effects of mining on bird communities in and along riparian forest corridors. Bird community composition was examined using line transects from 1994 to 2000 at eight sites within and along a riparian forest corridor in southwestern Indiana that was impacted by an adjacent surface mining operation. Three habitats were sampled: closed canopy, riparian forest with no open water; fragmented canopy, riparian forest with flood plain oxbows; and reclaimed mined land with constructed ponds. Despite shifts in species composition, overall bird species richness, measured as the mean number of bird species recorded/transect route, did not differ among habitats and remained unchanged across years. More species were recorded solely on mined land than in either closed forest or forested oxbow habitats. Mined land provided stopover habitat for shorebirds and waterfowl not recorded in other habitats, and supported an assemblage of grassland-associated bird species weakly represented in the area prior to mining. A variety of wood warblers and other migrants were recorded in the forest corridor throughout the survey period, suggesting that, although surface mining reduced the width of the forest corridor, the corridor was still important habitat for movement of forest-dependent birds and non-resident bird species in migration. We suggest that surface mining and reclamation practices can be implemented near riparian forest and still provide for a diverse assemblage of bird species. These data indicate that even narrow (0.4 km wide) riparian corridors are potentially valuable in a landscape context as stopover habitats and routes of dispersal and movement of forest-dependent and migratory bird species.  相似文献   

7.
We examined long‐term responses of an Amazonian bird assemblage to wildfire disturbance, investigating how understory birds reacted to forest regeneration 1, 3, and 10 years after a widespread fire event. The bird community was sampled along the Arapiuns and Maró river catchments in central Brazilian Amazonia. Sampling took place in 1998, 2000, and 2008 using mist‐nets in eight plots (four burned, four unburned sites). Species richness did not change significantly in unburned sites. In burned sites, however, we found significantly lower richness in 1998, higher richness in 2000, and similar richness in 2008. Multi‐dimensional scaling ordination showed consistent differences in bird communities both within burned sites sampled in different sampling years, and between burned and unburned sites in all years. Of the 30 most abundant species, 12 had not recovered 10 years after the fires, including habitat specialists such as mixed flocks specialists and ant‐followers. Fire‐disturbance favored three species (two hummingbirds and a manakin) in the short term only. All other species were either favored throughout the study (seven species of omnivores and small insectivores) or did not show a clear response (eight species). In burned sites, we also found significantly lower abundance of species sensitive to disturbances and habitat specialists over the entire study period. Although the bird community seems to be recovering in terms of richness, the overall community composition and abundance of some species in post‐burned and unburned sites remain very different, and have not recovered after 10 years of forest regeneration.  相似文献   

8.
Agricultural practices lead to losses of natural resources and biodiversity. Maintaining forests alongside streams (riparian forest strips) has been used as a mechanism to minimize the impact of clearing for agriculture on biodiversity. To test the contribution of riparian forest strips to conserve biodiversity in production landscapes, we selected bats as a biodiversity model system and examined two dimensions of diversity: taxonomic and functional. We compared bat diversity and composition in forest, with and without stream habitat, and in narrow forest riparian strips surrounded by areas cleared for agriculture. We tested the hypothesis that riparian forest strips provide potential conservation value by providing habitat and serving as movement corridors for forest bat species. Riparian forest strips maintained 75% of the bat species registered in forested habitats. We found assemblage in sites with riparian forest strips were dominated by a few species with high abundance and included several species with low abundance. Bat species assemblage was more similar between sites with streams than between those sites to forests without stream habitat. These results highlight the importance of stream habitat in predicting presence of bat species. We registered similar number of guilds between forest sites and riparian forest strips sites. Relative to matrix habitats, stream and edge habitats in riparian forest strips sites were functionally more diverse, supporting our hypothesis about the potential conservation value of riparian forest strips. Results from this study suggest that maintaining riparian forest strips within cleared areas for agricultural areas helps conserve the taxonomic and functional diversity of bats. Also, it provides basic data to evaluate the efficacy of maintaining these landscape features for mitigating impacts of agricultural development on biodiversity. However, we caution that riparian forest strips alone are not sufficient for biodiversity maintenance; their value depends on maintenance of larger forest areas in their vicinity.  相似文献   

9.
10.
Species persistence in fragmented landscapes is intimately related to the quality, structure, and context of remaining habitat remnants. Riparian vegetation is legally protected within private landholdings in Brazil, so we quantitatively assessed occupancy patterns of terrestrial mammals in these remnants, examining under which circumstances different species effectively use them. We selected 38 riparian forest patches and five comparable riparian sites within continuous forest, at which we installed four to five camera-traps per site (199 camera-trap stations). Terrestrial mammal assemblages were sampled for 60 days per station during the dry seasons of 2013 and 2014. We modelled species occupancy and detection probabilities within riparian forest remnants, and examined the effects of patch size, habitat quality, and landscape structure on occupancy probabilities. We then scaled-up modelled occupancies to all 1915 riparian patches throughout the study region to identify which remnants retain the greatest potential to work as habitat for terrestrial vertebrates. Of the ten species for which occupancy was modelled, six responded to forest quality (remnant degradation, cattle intrusion, palm aggregations, and understorey density) or structure (remnant width, isolation, length, and area of the patch from which it originates). Patch suitability was lower considering habitat quality than landscape structure, and virtually all riparian remnants were unsuitable to maintain a high occupancy probability for all species that responded to forest patch quality or structure. Beyond safeguarding legal compliance concerning riparian remnant amount, ensuring terrestrial vertebrate persistence in fragmented landscapes will require curbing the drivers of forest degradation within private landholdings.  相似文献   

11.
1. The structure of lotic macroinvertebrate communities may be strongly influenced by land‐use practices within catchments. However, the relative magnitude of influence on the benthos may depend upon the spatial arrangement of different land uses in the catchment. 2. We examined the influence of land‐cover patterns on in‐stream physico‐chemical features and macroinvertebrate assemblages in nine southern Appalachian headwater basins characterized by a mixture of land‐use practices. Using a geographical information system (GIS)/remote sensing approach, we quantified land‐cover at five spatial scales; the entire catchment, the riparian corridor, and three riparian ‘sub‐corridors’ extending 200, 1000 and 2000 m upstream of sampling reaches. 3. Stream water chemistry was generally related to features at the catchment scale. Conversely, stream temperature and substratum characteristics were strongly influenced by land‐cover patterns at the riparian corridor and sub‐corridor scales. 4. Macroinvertebrate assemblage structure was quantified using the slope of rank‐abundance plots, and further described using diversity and evenness indices. Taxon richness ranged from 24 to 54 among sites, and the analysis of rank‐abundance curves defined three distinct groups with high, medium and low diversity. In general, other macroinvertebrate indices were in accord with rank‐abundance groups, with richness and evenness decreasing among sites with maximum stream temperature. 5. Macroinvertebrate indices were most closely related to land‐cover patterns evaluated at the 200 m sub‐corridor scale, suggesting that local, streamside development effectively alters assemblage structure. 6. Results suggest that differences in macroinvertebrate assemblage structure can be explained by land‐cover patterns when appropriate spatial scales are employed. In addition, the influence of riparian forest patches on in‐stream habitat features (e.g. the thermal regime) may be critical to the distribution of many taxa in headwater streams draining catchments with mixed land‐use practices.  相似文献   

12.
Aim Attention has increasingly been focused on the floristic variation within forests of the Amazon Basin. Variations in species composition and diversity are poorly understood, especially in Amazonian floodplain forests. We investigated tree species composition, richness and α diversity in the Amazonian white‐water (várzea) forest, looking particularly at: (1) the flood‐level gradient, (2) the successional stage (stand age), and (3) the geographical location of the forests. Location Eastern Amazonia, central Amazonia, equatorial western Amazonia and the southern part of western Amazonia. Methods The data originate from 16 permanent várzea forest plots in the central and western Brazilian Amazon and in the northern Bolivian Amazon. In addition, revised species lists of 28 várzea forest inventories from across the Amazon Basin were used. Most important families and species were determined using importance values. Floristic similarity between plots was calculated to detect similarity variations between forest types and over geographical distances. To check for spatial diversity gradients, α diversity (Fisher) of the plots was correlated with stand age, longitudinal and latitudinal plot location, and flood‐level gradient. Results More than 900 flood‐tolerant tree species were recorded, which indicates that Amazonian várzea forests are the most species‐rich floodplain forests worldwide. The most important plant families recorded also dominate most Neotropical upland forests, and c. 31% of the tree species listed also occur in the uplands. Species distribution and diversity varied: (1) on the flood‐level gradient, with a distinct separation between low‐várzea forests and high‐várzea forests, (2) in relation to natural forest succession, with species‐poor forests in early stages of succession and species‐rich forests in later stages, and (3) as a function of geographical distance between sites, indicating an increasing α diversity from eastern to western Amazonia, and simultaneously from the southern part of western Amazonia to equatorial western Amazonia. Main conclusions The east‐to‐west gradient of increasing species diversity in várzea forests reflects the diversity patterns also described for Amazonian terra firme. Despite the fine‐scale geomorphological heterogeneity of the floodplains, and despite high disturbance of the different forest types by sedimentation and erosion, várzea forests are dominated by a high proportion of generalistic, widely distributed tree species. In contrast to high‐várzea forests, where floristic dissimilarity increases significantly with increasing distance between the sites, low‐várzea forests can exhibit high floristic similarity over large geographical distances. The high várzea may be an important transitional zone for lateral immigration of terra firme species to the floodplains, thus contributing to comparatively high species richness. However, long‐distance dispersal of many low‐várzea trees contributes to comparatively low species richness in highly flooded low várzea.  相似文献   

13.
We compared the bat species composition of three localities in the Brazilian Amazon: continuous forest and fragments at Alter do Chão, Santarém, an area not previously sampled, and continuous forest in two relatively well studied areas, Manaus and Belém. The number of species captured at each locality varied between 17 and 42. Most species occurred at high abundance in continuous forest in the three localities, but only a subset was common in the fragments at Santarém. The relative abundance of bat species in Santarém is different from other localities sampled in the Amazon Basin and the presence of forest fragments may be the most important factor contributing to this difference. Multidi-mensional scaling ordination of sites based on relative abundance indicated distinct assemblages of bat species in the forest fragments in Santarém, and little differentiation of continuous-forest sites from sites in other localities. Continuous forests at Santarém and near Belém were more similar to each other than to continuous forest near Manaus, indicating the possibility of an east-west gradient in bat communities in the Amazon.  相似文献   

14.
Results of a study of the fish community of the leaf litter banks in the lower reaches of the Taruma-Mirim, a small central Amazonian stream is presented. The Taruma-Mirim is an acidic, blackwater, forest stream which flows through igapo forest and enters the Rio Negro close to Manaus. The commonly held view that these blackwaters hold an impoverished ichthyofauna is challenged. The studied litter banks hold about 20 species of fish, all of which were found to live within distinct subregions of the habitat. Average fish density was about 100 individuals m−2. Absolute population sizes were found to be remarkably small; within a 200 m2 area the most abundant species had a population size of about 104 and the least abundant <102 individuals. It is argued that high species richness linked to specialized habitat requirements and small population size indicates considerable population stability. The factors leading to the evolution of such species richness are discussed.  相似文献   

15.
It is well known that bird richness in the Amazon is greater in upland forests and that seasonally flooded forest is particularly species poor. However, the misleading pattern of greater bird richness in seasonally flooded forest has emerged seemingly unnoticed numerous times in richness maps in the literature. We hypothesize that commission errors in digital distribution maps (DDMs) are the cause behind the misleading richness pattern. In the Amazon, commission errors are a consequence of the different methodological treatment given to large‐ranged versus small‐ranged habitat specialists when mapping distributions. DDMs of 1007 Amazonian birds were examined, and maps that had commission errors were corrected. We generated two richness maps, one from the overlay of original DDMs and another from the overlay of the corrected ones. We identified 291 species whose distribution maps had errors. In the original data, seasonally flooded forests showed higher species richness than upland forest, but this pattern was reverted in the corrected richness map. Commission errors were 35 times more likely in the seasonally flooded forest. We conclude that DDMs accurately portray the distribution of single species in the Amazon. Commission errors in individual maps, however, accumulate when they are overlaid, explaining the misleading pattern for birds in the Amazon. DDMs can continue to be used mapping richness, as long as, at a regional scale: (1) basic map refinements are carried, or (2) only small‐range species are used for mapping species richness.  相似文献   

16.
Tropical forests around the world have been lost, mainly because of agricultural activities. Linear elements like riparian vegetation in fragmented tropical landscapes help maintain the native flora and fauna. Information about the role of riparian corridors as a reservoir of bat species, however, is scanty. We assessed the value of riparian corridors on the conservation of phyllostomid bat assemblage in an agricultural landscape of southern Mexico. For 2 years (2011–2013), mist‐netting at ground level was carried out twice during the dry season (December to May) and twice during the wet season (June to November) in different habitats: (1) riparian corridors in mature forest, (2) riparian corridors in pasture, (3) continuous forest away from riparian vegetation, and (4) open pastures. Each habitat was replicated three times. To determine the influence of vegetation structure on bat assemblages, all trees (≥10 cm dbh) were sampled in all habitats. Overall, 1752 individuals belonging to 28 species of Phyllostomidae were captured with Sternodermatinae being the most rich and abundant subfamily. Riparian corridors in mature forest and pastures had the greatest species richness and shared 65% of all species. Open pastures had the lowest richness and abundance of bats with no Phyllostominae species recorded. Six of the 18 species recorded could be considered as habitat indicators. There was a positive relationship between bat species composition and tree basal area. Our findings suggest that contrary to our expectations, bats with generalist habits and naturally abundant could be useful detector taxa of habitat modification, rather than bats strongly associated with undisturbed forest. Also in human‐dominated landscapes, the maintenance of habitat elements such as large trees in riparian corridors can serve as reservoirs for bat species, especially for those that are strongly associated with undisturbed forest.  相似文献   

17.
The use of lizards as model organisms in ecological studies is based on their success in occupying a great diversity of habitats, and some species are closely tied to the environment, which is disadvantaged by the legislation of several countries concerning land use. Our aim was to relate lizard species distribution patterns in rainforest environments to variation in environmental gradients, and provide ecologically based metrics for establishing buffer zones around streams. Lizards were sampled three times in 41 standardised transects near Manaus, Brazil, only in dry season, with Time Limited Visual Search associated with raking through leaf litter. We recorded 20 species from 10 families and used non‐metric multidimensional scaling to reduce the dimensionality of quantitative and qualitative compositions of species. Multiple linear regression models indicated that the environmental gradients distance to nearest stream, extent of canopy openness, vegetation density and slope did not significantly influence assemblage species distribution, with an indication of effect of litter depth. By means of piecewise linear regression, the use of riparian zone was estimated at ~190 m from quantitative species composition and ~211 m from qualitative species composition. Five species occurred only in the riparian zone. Our results suggest that conservation of the entire riparian lizard assemblage in Amazonian rainforest is likely to require protection of at least a 211 m buffer on either side of streams.  相似文献   

18.
In tropical landscapes, forest remnants have been reduced to narrow strips of vegetation along rivers and streams surrounded by agricultural land that affects biodiversity, depending on the habitat and landscape characteristics. To assess the effect of riparian forest loss on the diversity of Staphylininae predatory rove beetles, we considered two habitat conditions (river sites with riparian vegetation and sites with heterogeneous pastures) within two micro-basin types (with >70% and <40% forest cover) in a tropical montane cloud forest landscape, Mexico. Beetles were collected using baited pitfall traps during the rainy season of 2014. No differences were found between micro-basin types and, although species richness (0D) was similar between habitat conditions, when the diversity of common (1D) and dominant (2D) species was considered, sites with heterogeneous pastures were almost twice as diverse as those with riparian vegetation. All diversity measurements were greater in sites with heterogeneous pastures of either micro-basin type. Air temperature and canopy cover were the environmental variables that best explained the variation in beetle species composition. The greatest environmental differences related to species composition were detected between habitat conditions and were more evident in sites with heterogeneous pastures and low forest cover in the surroundings. The results suggest that replacing riparian vegetation with heterogeneous pastures, within micro-basins that lost between 30% and 60% of their forest cover, does not significantly reduce the diversity of predatory rove beetle but rather modifies the beetle composition. Effective formulation of management strategies to mitigate the impact of land use modification therefore requires an understanding of the interaction between vegetation remnants and landscape characteristics.  相似文献   

19.
The principles of island biogeography are rarely applied to the animal assemblages of Amazonian river islands. Here, we compare bird assemblages of Amazonian river islands with a variety of mainland habitats. We also examine how bird species diversity and composition are related to island physical attributes. Birds were sampled with mist nets and qualitative censuses on 11 river islands and 24 mainland sites on the lower reaches of the Rio Negro in the Brazilian Amazon. Island bird assemblages were characterized by lower species richness and a higher abundance of a few dominant species. Additionally, the species composition of the islands was distinct from that of the mainland, including the nearby floodplain habitats. The number of bird species increased with island size and habitat diversity, and decreased with degree of isolation. In addition, small islands tended to harbor an impoverished subset of the species present on larger ones. Bird species diversity and composition on Amazonian river islands are likely influenced by the ecological succession and historical events affecting island formation. Considering their small total area across the Amazon basin, these insular fluvial communities could be disproportionately threatened by river channel disturbances related to climate change or hydroelectric dam development. Abstract in Portughese is available with online material.  相似文献   

20.
Aim Working within a system of high structural contrast between fragments and the surrounding matrix, we assessed patterns of species loss and changes in species composition of phyllostomid bats on artificial land‐bridge islands relative to mainland assemblages, and evaluated the responses of bats to forest edges. We further examined the relative influence of local‐scale characteristics (e.g. vegetation structure, island area) versus landscape attributes (e.g. forest cover, patch density) and the importance of spatial scale in determining phyllostomid species richness and composition on islands. Location Islands in Gatún Lake and adjacent mainland peninsulas in the Barro Colorado Nature Monument, Panama. Methods Bats were sampled over a 2‐year period on 11 islands as well as at forest‐edge and interior sites on adjacent mainland, resulting in > 8400 captures. Results The islands harboured a less diverse and structurally simplified phyllostomid bat fauna. Islands far from the mainland were especially species‐poor. This decline in species richness was associated with compositional shifts towards assemblages strongly dominated by frugivores with good dispersal abilities. Members of other ensembles, most importantly gleaning animalivores, were much less common or absent. Although overall species composition was not significantly altered, species richness at continuous forest‐edge sites was significantly lower compared with that at interior sites. Distance from the mainland and amount of forest cover in the landscape were the best predictors of species richness and assemblage composition. Responses were scale‐dependent. At the local scale, species richness was independent of island area but was correlated positively with distance from the mainland. In contrast, area effects became more important at larger spatial scales, suggesting that many species use multiple fragments. Main conclusions Our results underline the conservation value of small habitat remnants, which, even when embedded in a hostile matrix, can support a relatively diverse bat fauna, provided that there is a low degree of patch isolation and spatial proximity to larger tracts of continuous forest. Although the results at the assemblage level were inconclusive, we demonstrate that certain bat species and ensembles, particularly gleaning animalivores, exhibit high edge‐sensitivity. Our results point to habitat loss rather than changes in landscape configuration as the main process after isolation underlying phyllostomid bat responses, suggesting that conservation efforts should focus on habitat preservation instead of trying to minimize fragmentation per se at the expense of habitat amount.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号